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Abstract
This paper studies the detection and estimation of change points in volatility under nonpara-

metric regression models. Wavelet methods are applied to construct the test statistics which can

be used to detect change points in volatility. The asymptotic distributions of the test statistics are

established. We also utilize the test statistics to construct the estimators for the locations and jump

sizes of the change points in volatility. The asymptotic properties of these estimators are derived.

Some simulation studies are conducted to assess the finite sample performance of the proposed

procedures.
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§1. Introduction

The study of the conditional variance of financial and economic data has draw much

attention due to its importance in risk management, portfolio, and derivative pricing.

Lamoreux and Lastrapes (1990) gave evidence of jumps in conditional variance. Many

attempts have followed since then to test and estimate the change points in volatility. See,

for example, Jorion (1988), Vlaar and Palm (1993), Drost et al. (1998) and so on. All of

these models are variants of the popular ARCH and GARCH models.

For nonparametric regression models, the change point problem in volatility has also

attracted increasing interests in recent years. Müller (1992) used a nonparametric proce-

dure which is based on one sided kernel smoothers to detect the change points in volatility.

Chen et al. (2005) pointed out that the one sided kernel procedure has a drawback: the

power of the test is weak and the rate of convergence is slow. They proposed a hybrid

estimation procedure that combines the least squares and nonparametric methods to es-

timate the change points of volatility. Moreover, they used the method based on the
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iterated cumulative sums of squares (ICSS) algorithm proposed by Inclan and Tiao (1994)

to detect multiple change points in volatility. The idea of ICSS algorithm is that when

the first change point is identified, the whole sample is divided into two sub-samples by

the first change point, and then one makes detection of the change point for each sub-

sample. This step is repeated until the null hypothesis that volatility is smooth could not

be rejected for all sub-samples. However, the major drawback of the ICSS algorithm is

that the sub-sample size decreases very fast with the increasing number of change points.

They did not propose estimators for the jump sizes of the change points, either.

There have been developments of wavelet applications with respect to financial time

series. Many authors used wavelet methods to detect and estimate the change points

of the regression function in nonparametric regression models. See, for example, Wang

(1995), Wang (1999), Wong et al. (1999), Luan and Xie (2001), Chen et al. (2008), Zhou

et al. (2010), among many others. Wong et al. (2001) employed the wavelet methods to

identify the jumps for the conditional mean and conditional variance in a heteroscedastic

autoregressive model. However, they did not provide estimators for the jump sizes of the

change points nor establish the asymptotic distributions for their test statistics.

In this paper, we apply the wavelet methods to detect and estimate the possible

change points in volatility of nonparametric regression models with dependent observa-

tions. The test statistics we propose can be used to detect change points in volatility.

The asymptotic distributions of the test statistics are established. We also use the test

statistics to construct estimators of the locations and jump sizes of the change points.

The asymptotic properties of these proposed estimators are derived. We carry out some

simulation studies to assess the finite sample performance of the proposed methods.

The rest of this paper is organized as follows. Section 2 introduces some notation

and the basic model. In Section 3 we develop the test statistics which can be used to

detect change points in volatility. The asymptotic distributions of these test statistics

are discussed. The estimators of the locations and jump sizes of the change points are

constructed in Section 4. Section 5 gives out the setup and results of the simulation

studies. All technique details are given in the Appendix.

§2. Model and Notation

We consider the following nonparametric regression model

Yi = T (Xi) + σ(Xi)εi, i = 1, 2, . . . , n, (2.1)
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where T (x) = E(Y |X = x) and σ2(x) = Var (Y |X = x). {εi, i = 1, 2, . . .} is a sequence

of independently and identically distributed (i.i.d.) random variables with E(εi) = 0 and

Var (εi) = 1. {(Yi, Xi), i = 1, 2, . . .} is a sequence of random vectors. Here, we assume that

{(Yi, Xi), i = 1, 2, . . .} is a strongly mixing sequence, which obviously includes the i.i.d.

observations case. It also includes many time series models. For reader’s convenience,

more detailed assumptions of the model are stated in the Appendix.

Consider the volatility σ2(x) in model (2.1). We assume that σ2(x) has p jump points

in the interval [a, b] and σ2(x) can be decomposed as

σ2(x) = C(x) + D(x), (2.2)

where D(x) =
p∑

l=1

dlI(tl 6 x 6 b) with a < t1 < t2 < · · · < tp < b, dl = σ2(tl+)− σ2(tl−),

and C(x) is twice continuously differentiable on (a, b). The aim in this paper is first to

detect the change points and then to estimate p, tl and dl, l = 1, 2, . . . , p.

Wavelet methods are applied to detect and estimate the change points in volatility

under model (2.1). Before our discussion, we need to introduce some additional notation

and the wavelet coefficient of the volatility function. We use similar notation as that in

Chen et al. (2008).

Suppose {(Yi, Xi), 1 6 i 6 n} is the observed data following model (2.1). Denote

I(s, δn) =
{

k :
∣∣∣a +

k

2J
(b− a)− s

∣∣∣ 6 δn

}
,

where δn = 2−J and k ∈ IJ = {0, 1, 2, . . . , 2J − 1}. J = J(n) is a sequence with J →∞ as

n →∞. We take a wavelet ψ(x) which has compact support on [−A,A] with A > 1, and

ψ(x) satisfies the conditions (B1)-(B2) listed in the Appendix.

The wavelet coefficient of the volatility function σ2(x) is defined as follows. Let

βJ,k =
∫ b

a
σ2(x)ψper

J,k (x)dx,

where

ψper
J,k (x) =

1√
b− a

ψJ,k

(x− a

b− a

)

with ψJ,k(x) = 2J/2ψ(2Jx − k) and k ∈ IJ = {0, 1, 2, . . . , 2J − 1}. It is useful to note

that for a given k ∈ IJ = {0, 1, 2, . . . , 2J − 1}, βJ,k has relatively large absolute values

at fine resolution level J when a + (k/2J)(b − a) is near to the change points, while βJ,k

has relatively small absolute values at fine resolution level J when a + (k/2J)(b− a) shifts

away from the change points. These properties are important for designing test for change

points detection.
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§3. Test Statistics and Their Asymptotic Properties

In model (2.1), σ2(x) can be rewritten as

σ2(x) = E(Y 2|X = x)− E2(Y |X = x) , m(x)− T 2(x). (3.1)

From the Assumption (A4) in the Appendix, T (x) is smooth on [a, b]. Hence, σ2(x) and

m(x) have the same change points on [a, b]. Based on (3.1), (2.2) can be rewritten as

m(x) = C̃(x) + D(x), (3.2)

where C̃(x) = C(x) + T 2(x).

Let K(x) be a kernel function with bounded support [−C, C] for some constant C > 0.

A nonparametric estimator of m(x) is given by

m̂(x) =

n∑
i=1

Kh(Xi − x)Y 2
i

n∑
i=1

Kh(Xi − x)
, (3.3)

where h = hn is a sequence of bandwidths with h → 0 and nh → ∞ as n → ∞. m̂(x)

can be kernel estimation (see Nadaraya, 1964), local linear smoother (see Fan and Gijbels,

1996), or other nonparametric estimators.

Based on m̂(x), we propose an estimator of wavelet coefficient of the m(x) as

UJ(k) =
∫ b

a
ψper

J,k (x)

n∑
i=1

Kh(Xi − x)Y 2
i

n∑
i=1

Kh(Xi − x)
dx. (3.4)

This estimator is an integral estimator. An alternative estimator, which is simple in

computation, is the following descretized version of UJ(k),

WJ(k) =
b− a

N

N∑
i=1

ψper
J,k (wi)

n∑
j=1

Kh(Xj − wi)Y 2
j

n∑
j=1

Kh(Xj − wi)
, (3.5)

where N →∞, wi = a + (i/N)(b− a).

For our discussion, the following assumptions are needed.

(C1) lim
n→∞ 22J(log n)3/n = 0, lim

n→∞ 25J/n = ∞, lim
n→∞ 2Jh log n = 0.

(C2) lim
n→∞n2J/(Nh)2 = 0.
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Theorem 3.1 Suppose that the assumptions (A1)-(A5) in the Appendix hold. Let

ti, i = 1, 2, . . . , p be p jump points of σ2(x), and the corresponding jump sizes be denoted

as di, i = 1, 2, . . . , p.

(a) If (C1) is satisfied, then for any k ∈ I(ti, 2−J(b− a)), we have

UJ(k) = 2−J/2(b− a)1/2di

∫ A

1
ψ(x)dx + Op(n−1/2), (3.6)

and for any k /∈
p⋃

i=1
I(ti, 2−J(b− a)), we have

UJ(k) = Op(n−1/2). (3.7)

(b) If (C1) and (C2) are satisfied, (3.6) and (3.7) hold for the discretized estimator

WJ(k).

Theorem 3.1 implies that at fine resolution level J , the wavelet coefficients nearby

the jump points are significantly larger than those that are a little farther away from the

jumps. Therefore, the points a + (k/2J)(b− a), corresponding to large empirical wavelet

coefficients UJ(k), may be potential change points. We want to test whether or not σ2(x)

jumps at these potential change points. The following results play a role in detecting the

jump points of the volatility σ2(x).

Theorem 3.2 Suppose that the assumptions (A1)-(A5) in the Appendix hold.

When there is no change point in σ2(x), we have

(a) if (C1) is satisfied, then for any k ∈ IJ ,

√
nUJ(k) −→ N(0, σ2

u(x0))

in distribution, where k/2J → θ ∈ (0, 1), x0 = a + θ(b− a) and

σ2
u(x) =

∫ A

−A
ψ2(z)dz

f(x)
{σ4(x)E(ε2 − 1)2 + 4T 2(x)σ2(x) + 4T (x)σ3(x)Eε3};

(b) if (C1) and (C2) are satisfied, then for any k ∈ IJ ,

√
nWJ(k) −→ N(0, σ2

u(x0))

in distribution.

Note that σ2
u(x) in Theorem 3.2 includes unknown parameters Eεr, r = 3, 4. It is

difficult to estimate these parameters in practical applications. Therefore, we will intro-

duce another version of σ2
u(x). Denote Zi = Y 2

i , and then model (2.1) can be rewritten
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as Zi = µ(Xi) + σZ(Xi)ε̃i, where µ(x) = E(Z|X = x) and σ2
Z(x) = Var (Z|X = x). {ε̃i,

i = 1, 2, . . .} is a sequence of i.i.d. random variables with E(ε̃i) = 0, Var (ε̃i) = 1. When

σ2(x) is smooth, µ(x) is also smooth by (3.1). Denote

τ2(x) =
σ2

Z(x)
f(x)

∫ A

−A
ψ2(z)dz.

Based on the fact that σ2
Z(X) = Var (Y 2|X) = E((Y 2 − E(Y 2|X))2|X), and some calcula-

tions, we obtain that σ2
u(x) = τ2(x).

Note that τ2(x) includes the unknown density function f(x) and heteroscedastic vari-

ance σ2
Z(x). There exist various methods for estimating these quantities. For example, we

can adopt the kernel method for estimating f(x) as follows

fn(x) =
1

nh

n∑
i=1

K
(Xi − x

h

)
,

where h is a bandwidth and K(x) is a kernel function. The variance σ2
Z(x) can be estimated

by

σ̂2
Z(x) =

n∑
i=1

Kh(Xi − x)(Y 2
i − µ̂(Xi))2

n∑
i=1

Kh(Xi − x)
,

where µ̂(x) is any consistent estimator for µ(x).

Suppose that one wants to test whether or not a particular point t is a change point.

Denote d = σ2(t+)− σ2(t−). To test whether σ2(x) jumps at t amounts to test:

H0 : d = 0 vs H1 : d 6= 0.

To develop a test statistic for testing H0 against H1, define

T (U)(k) =
UJ(k)
τ̂(t)

or T (W )(k) =
WJ(k)
τ̂(t)

,

where τ̂(t) is any estimator for τ(t), k is chosen sufficiently close to 2J(t − a)/(b − a).

Theorem 3.2 gives out approximate critical values for the tests under the null hypothesis

H0. The decision rule is to reject H0 if
√

n|T (U)(k)| or
√

n|T (W )(k)| is larger than C1−α,

the 1− α/2 quartile of the N(0, 1) distribution.

§4. Estimation of Jump Sizes and Change Points

We first consider the case that σ2(x) has only one change point t0 in [a, b], the cor-

responding jump size is denoted by d0. We propose the following estimators of t0 and
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d0:

tU0 = a +
kU

1 (b− a)
2J

or tW0 = a +
kW

1 (b− a)
2J

,

dU
0 =

2J/2UJ(kU
1 )

(b− a)1/2

∫ A

1
ψ(x)dx

or dW
0 =

2J/2WJ(kW
1 )

(b− a)1/2

∫ A

1
ψ(x)dx

,

where

kU
1 = arg max

k
|T (U)(k)|, kW

1 = arg max
k
|T (W )(k)|.

The following theorems establish the convergence rates of the proposed estimators.

Theorem 4.1 Under the assumptions (A1)-(A5) in the Appendix, if (C1) and

(C2) are satisfied, we have

tU0 = t0 + Op(2−J), tW0 = t0 + Op(2−J).

Theorem 4.2 Under the assumptions (A1)-(A5) in the Appendix, if (C1) and

(C2) are satisfied, we have

dU
0 = d0 + Op((2−Jn)−1/2), dW

0 = d0 + Op((2−Jn)−1/2).

Next, we consider the case that σ2(x) has p jump points, where p is unknown. Theo-

rem 3.2 implies that
√

n|T (U)(k)| 6 C1−α with approximate probability 1−α when σ2(x)

is smooth. So we can take C1−α as a threshold and use it to determine which points in

[a, b] are change points.

From Theorem 3.1, there may be several large wavelet coefficients near a single jump,

so how to combine those wavelet coefficients which have large absolute values into suitable

subgroups is a key point. Each subgroup should be regarded as the result from a single

jump. Our analysis uses the ρ-division method introduced by Li and Xie (1999). Let

ρ = 2A. Denote

E(U) = {k : |T (U)(k)| > C1−αn−1/2} , {k1, k2, . . . , km},

where m is a finite number. Put m1 = max{i : 1 6 i 6 m, ki 6 k1+ρ}; if m1 < m, then put

m2 = max{i : m1 6 i 6 m, ki 6 km1+1 + ρ}; if m2 < m, then define m3 in a similar way,

and so no. At the end, we can get a series of integers {mj : 1 6 m1 < m2 < · · · < mq = m}.
Let E

(U)
1 = {ki : 1 6 i 6 m1}, E(U)

2 = {ki : m1 < i 6 m2}, . . . , E(U)
q = {ki : mq−1 <

i 6 mq}, then E(U) =
q⋃

j=1
E

(U)
j . The estimator of the number p of change points is

constructed as follows

p̂U =





q, E(U) 6= ∅,

0, E(U) = ∅.
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The estimators of locations ti and jump sizes di for change points are constructed as

follows

tUi = a +
ki(b− a)

2J
, dU

i =
2J/2UJ(ki)

(b− a)1/2

∫ A

1
ψ(x)dx

, i = 1, 2, . . . , p̂U ,

where

ki = arg max
k
{|T (U)(k)|, k ∈ E

(U)
i }, i = 1, 2, . . . , p̂U .

These procedures also hold for the test statistic T (W )(k). The corresponding esti-

mators which are constructed by T (W )(k) in a similar way are denoted as p̂W , tWi , dW
i ,

i = 1, 2, . . . , p̂W .

The following theorem establishes the convergence rates of the proposed estimators.

Theorem 4.3 Under the assumptions (A1)-(A5) in the Appendix, if (C1) and

(C2) are satisfied, we have

lim
n→∞P(p̂U = p) = 1, lim

n→∞P(p̂W = p) = 1,

tUi = ti + Op(2−J), dU
i = di + Op((2−Jn)−1/2), i = 1, 2, . . . , p̂U ,

tWi = ti + Op(2−J), dW
i = di + Op((2−Jn)−1/2), i = 1, 2, . . . , p̂W .

§5. Simulations

In this section, some simulations are carried out to verify the theoretical findings of

the proposed change point analysis methods. Throughout our simulation studies, m(x),

f(x) and σ2
Z(x) are estimated by kernel estimation. The Epanechnikov kernel K(x) =

3(1 − x2/5)I(x2 6 5)/4
√

5 is used to estimate m(x), and the Gaussian kernel K(x) =

(1/
√

2π)e−x2/2 is used to estimate f(x) and σ2
Z(x). The bandwidths in the estimators of

f(x) and σ2
Z(x) are 0.1. The wavelet is chosen to be

ψ(x) = 5(x− 1)4I(1 6 x 6 2) +
{20

3
(x + 1)3 + 2(x + 1)2

}
I(−2 6 x 6 −1).

Example 1 This example concerns the detection and estimation of a unique jump

point in volatility. The simulation model is as follows

Yi = T (Xi) + σ(Xi)εi, (5.1)

where {εi} is a sequence of i.i.d. random variables with the standard normal distribution.

The volatility function is

σ(x) =





(x + 4)−1, x < t,

(x + 4)−1 + d, x > t,
(5.2)
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and T (x) = 0.2x. When σ(x) has a jump size d at point t, the corresponding jump size in

σ2(x) is denoted as d0 = σ2(t+)− σ2(t−). The following designs for Xi are considered:

(a) {Xi} is generated from the uniform distribution on [0, 1].

(b) Xt+1 = 0.4 + 0.3Xt + ξt+1 + 0.2ξt is truncated in [0, 1], where ξt ∼ N(0, 0.252),

X1 ∼ U [0, 1].

The aim in this example is to study the sizes and powers of the test statistic T (W )(k)

at known change point t, and to estimate the location t and the jump size d0 in σ2(x).

When d0 = 0, without loss of generality, we only present the sizes of the test statistic

T (W )(k) at t = 0.5.

We generate 500 series for two lengths (n = 128 and n = 256) from this model. Test

size is set to 0.01, 0.05, 0.10. Estimates of change points are calculated for d = 0.5, 1, 1.5

at different locations t = 0.3, 0.5, 0.7, and the true values of the corresponding jump size

d0 in σ2(x) are to see Tables 1 and 2. The bandwidths in the wavelet coefficients are

h = 0.05 (n = 256) and h = 0.06 (n = 128). The resolution level in simulations is J = 4.

The simulated results are listed in Table 1 and 2. The design for Xi in Table 1 is

from (a), and the design for Xi in Table 2 is from (b). From Table 1 and 2, the location of

change point seems to have an effect on the power of the tests, and the bias and variance

of the estimates decrease as the sample size increases.

Example 2 This example is used to make comparison with Example 5.1. We

consider model (5.1) with AR(1) process error term. Assume that error {εi} is a sequence

of stationary random variables satisfying the AR(1) model

εi = (0.4εi−1 + ei)/σ, σ = 1.09, ε1 ∼ N(0, 1), ei ∼ N(0, 1).

{Xi} is a sequence of i.i.d. uniform random variables on [0, 1]. The other parameters are

all the same as in Example 1. The simulation results are listed in Table 3.

The results for this example are similar to those listed in Tables 1 and 2, which imply

that our methods may be used in the case of correlated errors.

Example 3 We consider model (5.1) with multiple jumps in volatility. The error

term is the same as in Example 1. Assume that the regression function is T (x) = 0.1x,

and the volatility is

σ(x) =





0.4− 0.1
√

x + 4, x < t1,

0.4− 0.1
√

x + 4 + d1, t1 6 x < t2,

0.4− 0.1
√

x + 4 + d1 − d2, x > t2,

(5.3)
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Table 1 Sizes and powers of statistic T (W )(k) for Example 1 with uniform design (a)

for Xi for various sample sizes n

Test Estimation

t d d0 α = 10% 5% 1% t̂ se d̂0 se

n = 256

0 0 13% 6.8% 2%

0.3 0.5 0.48 99.8% 99% 96.8% 0.314 0.060 0.493 0.100

1 1.47 100% 100% 99% 0.308 0.046 1.488 0.290

1.5 2.94 100% 100% 99% 0.309 0.057 3.007 0.582

0.5 0.5 0.47 100% 99.8% 98.8% 0.515 0.058 0.484 0.098

1 1.44 100% 100% 99.4% 0.511 0.049 1.490 0.288

1.5 2.92 100% 100% 99.2% 0.508 0.047 2.986 0.567

0.7 0.5 0.46 100% 100% 98.4% 0.705 0.041 0.482 0.107

1 1.43 100% 100% 99.8% 0.706 0.040 1.466 0.306

1.5 2.89 100% 100% 99.8% 0.706 0.036 2.968 0.583

n = 128

0 0 13% 8.8% 1.6%

0.3 0.5 0.48 98.8% 96.6% 82.2% 0.362 0.142 0.501 0.137

1 1.47 98.4% 96% 86.2% 0.344 0.119 1.451 0.382

1.5 2.94 98.8% 96% 87.6% 0.348 0.126 2.976 0.734

0.5 0.5 0.47 99.4% 98.2% 86.2% 0.529 0.080 0.485 0.132

1 1.44 99.8% 98.4% 92.2% 0.527 0.078 1.438 0.361

1.5 2.92 99.2% 98.6% 92.4% 0.527 0.076 3.032 0.850

0.7 0.5 0.46 99.6% 98.8% 89.4% 0.712 0.045 0.477 0.146

1 1.43 100% 99% 95.8% 0.710 0.043 1.416 0.369

1.5 2.89 100% 99.2% 96.4% 0.711 0.043 2.919 0.812

{Xi} is a sequence of i.i.d. uniform random variables on [0, 1]. The volatility has two

different change points at t1 and t2 (t1 < t2). The jump sizes for two change points

are d1 and d2 (d1 > 0, d2 > 0). The corresponding jump sizes in σ2(x) are denoted as:

d10 = σ2(t1+)− σ2(t1−), d20 = σ2(t2+)− σ2(t2−).

The aim of this example is to study the sizes and powers of the test T (W )(k) at

known change points t1 and t2, and to estimate the locations t1, t2 and jump sizes d10, d20

in σ2(x). Without loss of generality, let |d10| > |d20| in this example.

In this example, we set t1 = 0.3, t2 = 0.7. The jump sizes in σ(x) are set to d1 =
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Table 2 Sizes and powers of statistic T (W )(k) for Example 1 with mixing design (b)

for Xi for various sample sizes n

Test Estimation

t d d0 α = 10% 5% 1% t̂ se d̂0 se

n = 256

0 0 12.2% 5.2% 2.2%

0.3 0.5 0.48 99.6% 98.8% 94.8% 0.304 0.067 0.493 0.100

1 1.47 100% 99.6% 96.8% 0.301 0.048 1.472 0.285

1.5 2.94 99.8% 99.4% 98.6% 0.303 0.052 2.994 0.524

0.5 0.5 0.47 100% 100% 99.8% 0.508 0.053 0.480 0.090

1 1.44 100% 100% 99.8% 0.507 0.042 1.464 0.257

1.5 2.92 100% 100% 100% 0.504 0.033 2.931 0.512

0.7 0.5 0.46 100% 100% 100% 0.712 0.040 0.482 0.103

1 1.43 100% 100% 100% 0.710 0.038 1.477 0.293

1.5 2.89 100% 100% 100% 0.709 0.038 2.930 0.584

n = 128

0 0 15% 8.2% 1.2%

0.3 0.5 0.48 95.8% 91.4% 73% 0.333 0.117 0.488 0.126

1 1.47 97.6% 94.6% 80.6% 0.322 0.105 1.463 0.356

1.5 2.94 96.4% 92.8% 79.8% 0.323 0.112 2.890 0.704

0.5 0.5 0.47 99.8% 99.4% 92.4% 0.522 0.072 0.481 0.121

1 1.44 99.8% 99.6% 97% 0.514 0.060 1.456 0.336

1.5 2.92 100% 100% 98% 0.519 0.066 2.893 0.652

0.7 0.5 0.46 99.2% 99.2% 95.6% 0.719 0.048 0.488 0.148

1 1.43 100% 100% 98.2% 0.719 0.045 1.408 0.392

1.5 2.89 100% 100% 99% 0.717 0.064 2.891 0.800

0, 0.4, 0.8, 1.2, 1.6, d2 = 0, 0.4, 0.8. We generate 500 series for two lengths (n = 128 and

n = 256) from this model. Test size is set to 0.01, 0.05, 0.10. The bandwidths in the

wavelet coefficients are h = 0.05 (n = 256) and h = 0.06 (n = 128). The resolution level

in simulations is J = 4.

The simulation results for Example 3 are listed in Table 4. As the sample size in-

creases, the bias and variance of the estimates decrease. The sizes and powers of the test

statistic T (W )(k) at t = 0.3 and the estimates of t = 0.3 are similar to those in the Table

1, 2 and 3. As to the second change point t2, with the increasing difference of jump sizes
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Table 3 Sizes and powers of statistic T (W )(k) for Example 2 with correlate error

term for various sample sizes n

Test Estimation

t d d0 α = 10% 5% 1% t̂ se d̂0 se

n = 256

0 0 14% 7.6% 1.4%

0.3 0.5 0.48 99.8% 99.6% 97.4% 0.318 0.076 0.493 0.112

1 1.47 100% 100% 98.8% 0.314 0.064 1.497 0.324

1.5 2.94 100% 99.8% 98.6% 0.309 0.041 2.983 0.612

0.5 0.5 0.47 100% 100% 99% 0.508 0.049 0.497 0.104

1 1.44 99.8% 99.8% 99.4% 0.509 0.045 1.502 0.310

1.5 2.92 100% 99.8% 99.2% 0.509 0.047 2.990 0.620

0.7 0.5 0.46 100% 99.8% 99.6% 0.704 0.040 0.480 0.109

1 1.43 100% 99.6% 99.4% 0.702 0.036 1.452 0.298

1.5 2.89 100% 100% 99.8% 0.703 0.036 2.975 0.566

n = 128

0 0 12.8% 6.8% 0.8%

0.3 0.5 0.48 98.4% 95% 80.6% 0.351 0.121 0.504 0.148

1 1.47 98.6% 96.8% 87.4% 0.338 0.105 1.475 0.406

1.5 2.94 98.2% 97% 88.8% 0.342 0.112 2.995 0.783

0.5 0.5 0.47 99% 96.6% 87% 0.532 0.080 0.492 0.140

1 1.44 99.8% 99.2% 93.6% 0.522 0.064 1.459 0.393

1.5 2.92 100% 99.8% 95.4% 0.530 0.078 2.979 0.831

0.7 0.5 0.46 99.8% 98% 91% 0.713 0.047 0.490 0.147

1 1.43 99.8% 99.4% 94.8% 0.713 0.044 1.404 0.427

1.5 2.89 99.6% 99% 95.6% 0.711 0.045 2.884 0.805

between t1 and t2 (|d10| > |d20|), the bias of the estimates for jump sizes of the second

change point t2 becomes larger.

§6. Appendix

For our discussion, the following assumptions are needed for model (2.1):

(A1) {Xi, i = 1, 2, . . .} is a sequence of stationary and strongly mixing random vec-

tors, with mixing coefficient α(·). Let {ln} be a sequence of positive integers such that
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Table 4 Sizes and powers of statistic T (W )(k) for Example 3 with multiple change

points for various sample sizes n

Test 1 Test 2 Estimation 1 Estimation 2

d10 d20 α = 10% 5% 1% α = 10% 5% 1% t̂1(se) d̂10(se) t̂2(se) d̂20(se)

n = 256, t1 = 0.3, t2 = 0.7

0 0 10% 5% 1.8% 8.8% 5% 0.8%

0.31 0 100% 99.8% 97% 10.4% 5.4% 1.2% 0.293(0.048) 0.311(0.083)

0.31 0.31 100% 99.4% 97.2% 100% 99.6% 96.6% 0.309(0.044) 0.317(0.068) 0.692(0.042) 0.316(0.067)

0.95 0 100% 99.8% 98.8% 13% 5.8% 0.8% 0.291(0.047) 0.925(0.240)

0.95 0.31 100% 99.8% 98% 94% 87% 62.6% 0.306(0.039) 0.962(0.198) 0.686(0.062) 0.687(0.198)

0.95 0.93 100% 100% 98.8% 100% 100% 99.4% 0.303(0.039) 0.958(0.193) 0.692(0.038) 0.944(0.192)

1.90 0.31 100% 100% 99.6% 73.8% 61.6% 36.8% 0.306(0.037) 1.957(0.413) 0.681(0.075) 1.170(0.410)

1.90 0.93 100% 99.8% 97.6% 99.8% 99.2% 94.4% 0.307(0.040) 1.948(0.400) 0.695(0.046) 1.706(0.405)

3.18 0.93 100% 100% 99.4% 97% 91.8% 74.8% 0.309(0.041) 3.203(0.665) 0.689(0.058) 2.392(0.634)

n = 128, t1 = 0.3, t2 = 0.7

0 0 16.2% 10% 2.4% 14.2% 8.2% 3%

0.31 0 98.8% 96% 82% 12.8% 5.4% 0.6% 0.312(0.063) 0.309(0.098)

0.31 0.31 97.4% 95.8% 84.6% 98.2% 95.4% 81.8% 0.317(0.052) 0.326(0.094) 0.680(0.055) 0.322(0.096)

0.95 0 98.4% 96.8% 89.2% 11.6% 6.6% 1.2% 0.303(0.060) 0.917(0.281)

0.95 0.31 99.6% 97.4% 86% 75.2% 61.8% 33.4% 0.311(0.052) 0.947(0.245) 0.678(0.073) 0.679(0.248)

0.95 0.93 99.4% 98% 89.2% 98.8% 96.2% 86.6% 0.317(0.050) 0.948(0.234) 0.686(0.051) 0.953(0.240)

1.90 0.31 98.6% 96.6% 88.2% 52.8% 40.2% 16.6% 0.311(0.052) 1.877(0.495) 0.673(0.091) 1.206(0.478)

1.90 0.93 98.8% 98% 89.8% 93.8% 89% 71.6% 0.313(0.046) 1.892(0.485) 0.682(0.061) 1.644(0.469)

3.18 0.93 99.2% 97.8% 88.2% 83.8% 72.2% 46.2% 0.315(0.051) 3.146(0.810) 0.677(0.068) 2.391(0.840)

ln →∞ and ln = o((n2−J)1/2).

(i) (n2J)1/2α(ln) →∞ as n →∞.

(ii) There exist e > 2 and a > 1− 2/e such that
∞∑
l=1

la(α(l))1−2/e < ∞.

(A2) The density f(x) of X1 is bounded away from zero and infinity on some open

subset U , where U is a non-empty open neighborhood of the origin of R and [a, b] ⊂ U .

(A3) The conditional density f(xi|x) of Xi, given X1 = x, is also bounded away from

zero and infinity on U .

(A4) f(x) is a twice bounded derivative function, and T (x) and C(x) are third con-

tinuously differentiable on U .

(A5) Let {εi, i = 1, 2, . . .} be a sequence of i.i.d. random variables and for each i, εi

is independent of {(Xj , Yj−1), j 6 i}. Also, E|X|λ < ∞, E|ε|λ < ∞ and E|Y |λ < ∞ for

some λ > 4.

These assumptions are satisfied by most time series models. (A2) and (A3) are neces-

sary for the kernel estimation with dependent data. (A1) and (A5) are to simplify proofs.

(A4) is necessary for kernel smoother. For a detailed discussion of these assumptions, see

Chen et al. (2008), Zhou et al. (2010) and Xia (1998).
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The wavelet ψ(x) in this paper satisfies the following properties:

(B1) ψ(x) has finite support, say, [−A,A], A > 1, and ψ(x) = 0, x ∈ [−1, 1]. ψ(x)

has bounded variation on [−A,A].

(B2) ψ(x) is a twice continuously differentiable function on [−A,A]. Furthermore

∫ A

−A
ψ(x)dx = 0,

∫ A

−A
xψ(x)dx = 0,

∫ A

1
ψ(x)dx 6= 0,

∫ A

1
xψ(x)dx 6= 0.

0 <
∣∣∣
∫ A

y
ψ(x)dx

∣∣∣ <
∣∣∣
∫ A

1
ψ(x)dx

∣∣∣, 0 <
∣∣∣
∫ −y

−A
ψ(x)dx

∣∣∣ <
∣∣∣
∫ −1

−A
ψ(x)dx

∣∣∣,

for all 1 < y < A.

We only provide proofs for the theorems based on the integral estimator UJ(k). The

proofs based on the discretized estimator WJ(k) can be took in the similar way. The

theorems are proved based on kernel estimation. Let C denote a generic constant which

may vary depending on the context.

Lemma 6.1 Under the assumptions (A1)-(A5). K(x) is a continuously differen-

tiable kernel function with finite support [−C, C], and
∫

K(x)dx = 1,
∫

xK(x)dx = 0.

Let h → 0, nh →∞ as n →∞, then for any positive integer i, we have

n∑
t=1

Kh(Xt − x)(Xt − x)i = nhi+1Φif(x) + nhi+2Φi+1f
′(x) + O(nhi+1cn) a.s.,

n∑
t=1

Kh(Xt − x)εt = Op((nh)1/2),

n∑
t=1

Kh(Xt − x)
(Xt − x

h

)
εt = Op((nh)1/2),

uniformly for x ∈ [a, b], where

Kh(x) = K
(x

h

)
, cn = h2 +

( log n

nh

)1/2
, Φi =

∫
xiK(x)dx.

Lemma 6.2 Assume that ψ(x) satisfies the assumptions (B1)-(B2), and that C(x)

is a continuously differentiable function in the order of two. Then, uniformly for k ∈ IJ ,

∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)(C(Xj)− C(x))

n∑
j=1

Kh(Xj − x)
dx = Op(2−J/2hcn),

∫ b

a
ψper

J,k (x)C(x)dx = O(2−5J/2).
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Lemma 6.3 Assume that ψ(x) satisfies the assumptions (B1)-(B2), and that K(x)

is a kernel function with finite support [−C, C]. Let h → 0 as n →∞. We have

∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)
( p∑

i=1
diI(ti 6 Xj 6 b)

)

n∑
j=1

Kh(Xj − x)
dx = 2−J/2(b− a)1/2di

∫ A

1
ψ(x)dx,

uniformly for k ∈ I(ti, 2−J(b− a)), and

∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)
( p∑

i=1
diI(ti 6 Xj 6 b)

)

n∑
j=1

Kh(Xj − x)
dx = 0,

uniformly for k /∈
p⋃

i=1
I(ti, 2−JA(b− a)).

Lemma 6.1, Lemma 6.2 and Lemma 6.3 come from Chen et al. (2008).

Proof of Theorem 3.1 Note that UJ(k) can be decomposed into three parts:

UJ(k) = U
(1)
J (k) + U

(2)
J (k) + U

(3)
J (k),

where

U
(1)
J (k) =

∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)T 2(Xj)

n∑
j=1

Kh(Xj − x)
dx,

U
(2)
J (k) =

∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)σ2(Xj)ε2
j

n∑
j=1

Kh(Xj − x)
dx,

U
(3)
J (k) =

∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)2T (Xj)σ(Xj)εj

n∑
j=1

Kh(Xj − x)
dx.

We first consider U
(1)
J (k). From Lemma 6.2 and assumption (C1), we have

U
(1)
J (k) = Op(2−5J/2 + 2−J/2hcn) = Op(n−1/2),

for all k ∈ IJ .
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As to U
(3)
J (k), based on (2.2), σ(x) can be decomposed into σ(x) = C̃(x) + D̃(x),

where C̃(x) is twice continuously differentiable on (a, b), D̃(x) =
p∑

l=1

d̃lI(tl 6 x 6 b),

d̃l = σ(tl+)− σ(tl−). Then

U
(3)
J (k) =

∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)2T (Xj)C̃(Xj)εj

n∑
j=1

Kh(Xj − x)
dx

+
∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)2T (Xj)D̃(Xj)εj

n∑
j=1

Kh(Xj − x)
dx

= U
(3)(C)
J (k) + U

(3)(D)
J (k).

From the same arguments of Lemma B.1 in Chen et al. (2008), we obtain

n∑
j=1

Kh(Xj − x)T (Xj)I(tl 6 Xj 6 b)εj

n∑
j=1

Kh(Xj − x)
= I(tl 6 x 6 b)

n∑
j=1

Kh(Xj − x)T (Xj)εj

n∑
j=1

Kh(Xj − x)
.

According to the Lemma A.4 of Chen et al. (2008), we have

U
(3)(C)
J (k) = Op(n−1/2).

Therefore

U
(3)
J (k) = 2

p∑
l=1

d̃l

∫ b

a
ψper

J,k (x)I(tl 6 x 6 b)

n∑
j=1

Kh(Xj − x)T (Xj)εj

n∑
j=1

Kh(Xj − x)
dx + Op(n−1/2)

= 2
p∑

l=1

d̃l

∫ b

tl

ψper
J,k (x)

n∑
j=1

Kh(Xj − x)T (Xj)εj

n∑
j=1

Kh(Xj − x)
dx + Op(n−1/2).

In fact, Taylor’s formula implies that

n∑
j=1

Kh(Xj − x)T (Xj)εj = T (x)
n∑

j=1
Kh(Xj − x)εj + T ′(x)

n∑
j=1

Kh(Xj − x)(Xj − x)εj

+
1
2

n∑
j=1

T ′′(ξj)Kh(Xj − x)(Xj − x)2εj ,
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where ξj lies between Xj and x. By Lemma 6.1, we have

sup
x∈Λ

∣∣∣
n∑

j=1
Kh(Xj − x)εj

∣∣∣ = Op((nh)−1/2),

sup
x∈Λ

∣∣∣
n∑

j=1
Kh(Xj − x)(Xj − x)εj

∣∣∣ = Op((nh)−1/2h),

sup
x∈Λ

∣∣∣
n∑

j=1
Kh(Xj − x)(Xj − x)2εj

∣∣∣ = Op((nh)−1/2h2),

where Λ = [a−∆0, b + ∆0] for some ∆0 > 0. Therefore

U
(3)
J (k) = Op((2Jnh)−1/2) + Op(n−1/2) = Op(n−1/2).

Now, we consider U
(2)
J (k)

U
(2)
J (k) =

∫ b

a
ψper

J,k(x)

n∑
j=1

Kh(Xj−x)σ2(Xj)

n∑
j=1

Kh(Xj−x)
dx+

∫ b

a
ψper

J,k(x)

n∑
j=1

Kh(Xj−x)σ2(Xj)(ε2
j−1)

n∑
j=1

Kh(Xj−x)
dx

=
∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)σ2(Xj)

n∑
j=1

Kh(Xj − x)
dx + Op(n−1/2).

From Lemma 6.2 and Lemma 6.3, we have

U
(2)
J (k) = 2−J/2(b− a)1/2dl

∫ A

1
ψ(x)dx + Op(2−5J/2 + 2−J/2hcn) + Op(n−1/2),

uniformly for k ∈ I(tl, 2−JA(b− a)), and

U
(2)
J (k) = Op(2−5J/2 + 2−J/2hcn) + Op(n−1/2) = Op(n−1/2),

for k /∈
p⋃

l=1

I(tl, 2−JA(b− a)). This completes the proof of Theorem 3.1. ¤

Proof of Theorem 3.2 From the proof of Theorem 3.1, we have

UJ(k) =
∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)σ2(Xj)(ε2
j − 1)

n∑
j=1

Kh(Xj − x)
dx

+
∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)2T (Xj)σ(Xj)εj

n∑
j=1

Kh(Xj − x)
dx + op(n−1/2).
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Similar to the proof of Lemma A.2 in Zhou et al. (2010), we obtain

UJ(k) =
∫ b

a
ψper

J,k (x)

1
nh

n∑
j=1

Kh(Xj − x)σ2(Xj)(ε2
j − 1)

f(x)
dx

+
∫ b

a
ψper

J,k (x)

1
nh

n∑
j=1

Kh(Xj − x)2T (Xj)σ(Xj)εj

f(x)
dx + op(n−1/2)

=
1

nh

n∑
j=1

(σ2(Xj)(ε2
j−1)+2T (Xj)σ(Xj)εj)

∫ b

a
ψper

J,k (x)
Kh(Xj−x)

f(x)
dx+op(n−1/2)

, 1
nh

n∑
j=1

Zj + op(n−1/2),

where Zj = Z
(1)
j + Z

(2)
j with

Z
(1)
j = σ2(Xj)(ε2

j − 1)
∫ b

a
ψper

J,k (x)
Kh(Xj − x)

f(x)
dx,

Z
(2)
j = 2T (Xj)σ(Xj)εj

∫ b

a
ψper

J,k (x)
Kh(Xj − x)

f(x)
dx.

We first consider Var (Zj). Obviously, {Zj , j = 1, 2, . . . , n} is a stationary sequence,

and E(Zj) = 0, j = 1, 2, . . . , n. Denote Fj = σ(Xj , Xj−1, . . .), then E(Zj |Fj) = 0. We

know that

Var (Zj) = Var (Z(1)
j ) + Var (Z(2)

j ) + 2Cov (Z(1)
j , Z

(2)
j ).

As to Var (Z(1)
j ),

Var (Z(1)
j ) = E(Var (Z(1)

j |Fj)) + Var (E(Z(1)
j |Fj)) = E(Var (Z(1)

j |Fj)),

where

Var (Z(1)
j |Fj) = σ4(Xj)

( ∫ b

a
ψper

J,k (x)
Kh(Xj − x)

f(x)
dx

)2
E((ε2

j − 1)2|Fj)

=
σ4(Xj)
f2(Xj)

( ∫ b

a
ψper

J,k (x)Kh(Xj − x)dx
)2

E((ε2
j − 1)2) + o(h2).

Hence

Var (Z(1)
j ) = E(Var (Z(1)

j |Fj))

= E((ε2
j − 1)2)

∫ b

a

σ4(Xj)
f2(Xj)

( ∫ b

a
ψper

J,k (x)Kh(Xj − x)dx
)2

f(Xj)dXj + o(h2).

Based on the fact that |a + 2−J(b − a)(y + k) − x0| = o(1) for any y ∈ [−A,A], we can

show that

Var (Z(1)
j ) = h2E((ε2 − 1)2)

σ4(x0)
f(x0)

γ(J, h) + o(h2),
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where

γ(J, h) =
∫ b

a

(1
h

∫ b

a
ψper

J,k (x)Kh(y − x)dx
)2

dy.

Using the condition lim
n→∞ 2Jh log n = 0 in the assumption (C1), we can show that

γ(J, h) =
∫ A

−A
ψ2(z)dz + o(1).

Hence

Var (Z(1)
j ) = h2E((ε2 − 1)2)

σ4(x0)
f(x0)

∫ A

−A
ψ2(z)dz + o(1).

Similarly, we can show that

Var (Z(2)
j ) =

4h2σ2(x0)T 2(x0)
f(x0)

∫ A

−A
ψ2(z)dz + o(1),

Cov (Z(1)
j , Z

(2)
j ) =

4h2E(ε3)σ3(x0)T (x0)
f(x0)

∫ A

−A
ψ2(z)dz + o(1).

Hence

Var (Zj) =

∫ A

−A
ψ2(z)dzh2

f(x0)
{σ4(x0)E(ε2 − 1)2 + 4T 2(x0)σ2(x0) + 4T (x0)σ3(x0)Eε3}

= σ2
u(x0)h2.

Denote

Vj =
Zj

hσu(x0)
=

Z
(1)
j + Z

(2)
j

hσu(x0)
= V

(1)
j + V

(2)
j .

We have

UJ(k) =
1

nh

n∑
j=1

Zj + op(n−1/2) =
(σ2

u(x0)
n

)1/2 1√
n

n∑
j=1

Vj + op(n−1/2).

Obviously, E(Vj) = 0 and Var (Vj) = 1 + o(1) −→ 1.

Now, we show that
n∑

j=2
|Cov (V1, Vj)| −→ 0. (A.1)

For j 6= 1,

∣∣∣Cov (V1, Vj)| =
∣∣∣
E(Z(1)

1 + Z
(2)
1 )(Z(1)

j + Z
(2)
j )

h2σ2
u(x0)

∣∣∣

6 1
h2σ2

u(x0)
{|E(Z(1)

1 Z
(1)
j )|+|E(Z(1)

1 Z
(2)
j )|+|E(Z(2)

1 Z
(1)
j )|+|E(Z(2)

1 Z
(2)
j )|}

, 1
h2σ2

u(x0)
{R1 + R2 + R3 + R4}.
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As to R1, we have

R1 = |E{E(Z(1)
1 Z

(1)
j |Fj)}|

6 C
∣∣∣E

{
h2σ2(X1)σ2(Xj)

ψper
J,k (X1)

f(X1)

ψper
J,k (Xj)

f(Xj)

}∣∣∣

6 C2−Jh2.

Similarly, R2 6 C2−Jh2, R3 6 C2−Jh2, R4 6 C2−Jh2. Hence

|Cov (V1, Vj)| = O(2−J). (A.2)

Let Cn be a sequence of integers such that Cn →∞, Cn/2J → 0. Denote

n∑
j=2

|Cov (V1, Vj)| =
Cn∑
j=2

|Cov (V1, Vj)|+
n∑

j=Cn+1

|Cov (V1, Vj)| , F1 + F2.

Based on (A.2), we have

F1 = O(Cn2−J) → 0.

Considering F2, we have

|Cov (V1, Vj)| 6 |Cov (V (1)
1 , V

(1)
j )|+ |Cov (V (1)

1 , V
(2)
j )|+ |Cov (V (2)

1 , V
(1)
j )|+ |Cov (V (2)

1 , V
(2)
j )|.

From Lemma 2.1 of Davydor (1968), we have

|Cov (V (1)
1 , V

(1)
j )| 6 C[α(j − 1)]1−2/e(E|V (1)

1 |e)2/e,

where e > 2. We can show that

E|V (1)
1 |e 6 C

1
he

E|Z(1)
1 |e 6 CE

∣∣∣ψper
J,k (X1)

σ2(X1)(ε2
1 − 1)

f(X1)

∣∣∣
e

6 C2J(e/2−1).

Therefore

|Cov (V (1)
1 , V

(1)
j )| 6 C[α(j − 1)]1−2/e2J(1−2/e).

Similarly,

|Cov (V (1)
1 , V

(2)
j )| 6 C[α(j − 1)]1−2/e2J(1−2/e).

|Cov (V (2)
1 , V

(1)
j )| 6 C[α(j − 1)]1−2/e2J(1−2/e).

|Cov (V (2)
1 , V

(2)
j )| 6 C[α(j − 1)]1−2/e2J(1−2/e).

Hence

|Cov (V1, Vj)| 6 C[α(j − 1)]1−2/e2J(1−2/e).
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It then follows that

F2 6
n∑

j=Cn+1

C[α(j − 1)]1−2/e2J(1−2/e) 6 C2J(1−2/e)C−a
n

n∑
j=Cn+1

(j − 1)a[α(j − 1)]1−2/e.

We choose Cn = 2J(1−2/e)/a, so that Cn/2J → 0 as a > 1 − 2/e and e > 2. According to

the assumption (A1), we have F2 → 0. This implies that (A.1) is true.

To prove Theorem 3.2, it suffices to show that

1√
n

n∑
j=1

Vj → N(0, 1). (A.3)

Now, partition the set {1, 2, . . . , n} into 2qn + 1 subsets with large blocks u = un and

small blocks v = vn. Let q = qn = [n/(u + v)]. Denote

ηj =
j(u+v)+u∑

i=j(u+v)+1

Vi, ξj =
(j+1)(u+v)∑

i=j(u+v)+u+1

Vi, ηq =
n∑

i=q(u+v)+1

Vi.

Then, we have
n∑

j=1
Vj =

q−1∑
j=0

ηj +
q−1∑
j=0

ξj + ηq , S1 + S2 + S3.

According to Theorem 18.4 of Ibragimov and Linnik (1971), to prove (A.3), it suffices to

show that

1
n

ES2
2 → 0,

1
n

ES2
3 → 0, (A.4)

∣∣∣E exp(itS1)−
q−1∏
j=0

E exp(itηj)
∣∣∣ → 0, (A.5)

1
n

q−1∑
j=0

Eη2
j → 1,

1
n

q−1∑
j=0

E(η2
j I(|ηj | > ε

√
n)) → 0. (A.6)

To prove (A.4)-(A.6), we choose v = ln in accordance with the assumption (A1). So there

exists a constant pn → ∞ such that pnv = o((n2−J)1/2) and pn(n2J)1/2α(v) → 0. Let

u = [(n2−J)1/2/pn], we obtain

v

u
→ 0,

u

n
→ 0,

u

(n2−J)1/2
→ 0, (A.7)

n

u
α(v) → 0. (A.8)

We first consider (A.4). Note that

1
n

ES2
2 =

1
n

q−1∑
j=0

Var (ξj) +
1
n

q−1∑
i=0

q−1∑
j=0,j 6=i

Cov (ξi, ξj) , G1 + G2.
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Based on the proof of (A.1) and the stationary of {Vj}, we have

Var (ξj) = vVar (V1) +
v∑

i=1

v∑
j=1,j 6=i

Cov (Vi, Vj)

= v(1 + o(1)) + 2v
v∑

j=2

(
1− j + 1

v

)
Cov (V1, Vj)

= v + o(v).

Hence

G1 =
1
n

q−1∑
j=0

Var (ξj) 6 qv

n
→ 0,

by using (A.7). As to G2, denote mj = j(u+ v)+u. Since i 6= j, |mi + l1− (mj + l2)| > u,

then

G2 =
1
n

q−1∑
i=0

q−1∑
j=0,j 6=i

v∑
l1=1

v∑
l2=1

Cov (Vmi+l1 , Vmj+l2)

6 2
n

n∑
l1=1

n−u∑
l2=l1+u

|Cov (Vl1 , Vl2)|

6 2
n−1∑
j=u

|Cov (V1, Vj)| = o(1).

Based on the above arguments, the first result in (A.4) has been verified. As to the second

result in (A.4), we have

1
n

ES2
3 6 1

n
(n− q(n− v))Var (V1) + 2

n∑
j=2

|Cov (V1, Vj)| 6 v + u

n
(1 + o(1)) + o(1) → 0.

Therefore, (A.4) holds.

Note that ηj is a function of random variables {Vj(u+v)+1, . . . , Vj(u+v)+u}, so ηj is

F
jj

ij
-measurable, with ij = j(u + v) and jj = j(u + v) + u − 1. Applying Lemma 1.1 of

Volkonskii and Rozanov (1959), we have

∣∣∣E
( q−1∏

j=0
exp(itηj)−

q−1∏
j=0

E exp(itηj)
)∣∣∣ 6 Cqα(v + 1) 6 Cα(v + 1)

n

u + v
= o(1).

Hence, (A.5) holds.

As to the first result of (A.6), we have

Var (ηj) = uVar (V1) + 2
u∑

j=2
(u− j + 1)Cov (V1, Vj) = u(1 + o(1)).

Hence
1
n

q−1∑
j=0

Eη2
j =

qu

n
(1 + o(1)) =

u

u + v
→ 1.
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Now, we consider the second result of (A.6). For a fixed L > 0, denote WL
i = ViI(ε2

i 6
L), W

L
i = E(WL

i ) and V L
i = WL

i −W
L
i . Define

SL =
n∑

j=1
V L

j , S̃L =
n∑

j=1
(Vj − V L

j ).

By the boundedness of K(x), σ(x) and T (x), we know that

|V L
i | = |WL

i −W
L
i | 6 |WL

i |+ |WL
i | = |WL

i |+ o(2−J/2) 6 |ViI(ε2
i 6 L)|

6
∣∣∣ Z

(1)
i

hσu(x0)
I(ε2

i 6 L)
∣∣∣ +

∣∣∣ Z
(2)
i

hσu(x0)
I(ε2

i 6 L)
∣∣∣ 6 C2J/2.

Hence

max
06j6q−1

|ηL
j | 6 C2J/2u,

where

ηL
j =

j(u+v)+u∑
i=j(u+v)+1

V L
i .

According to (A.7), we know that the set {|ηL
j | > ε

√
n} is empty for large enough n. Then

max
06j6q−1

E{(ηL
j )2I(|ηL

j | > ε
√

n)} → 0.

Therefore, the second part of (A.6) holds for the truncated variables ηL
j . Hence

1√
n

SL =
1√
n

n∑
j=1

V L
j → N(0, σ2

L), (A.9)

where σ2
L = Var (V1I(ε2 6 L)). To prove the second result of (A.6), it suffices to show

that as n →∞ and L →∞, we have

1
n

Var (S̃L) → 0. (A.10)

In fact, we know that

S̃L =
n∑

j=1
(VjI(ε2 > L)− E(VjI(ε2 > L))).

Hence
1
n

Var (S̃L) = Var (VjI(ε2 > L)) → 0.

Therefore, (A.6) is true.
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To complete the proof of Theorem 3.2, we can show that

∣∣∣E exp
(
it

1√
n

n∑
j=1

Vj

)
− exp

(
− t2σ2

2

)∣∣∣

6
∣∣∣E exp

(
it

1√
n

n∑
j=1

Vj

){
exp

(
it

1√
n

S̃L
)
− 1

}∣∣∣

+
∣∣∣E exp

(
it

1√
n

S̃L
)
− exp

(
− t2σ2

L

2

)∣∣∣ +
∣∣∣ exp

(
− t2σ2

L

2

)
− exp

(
− t2σ2

2

)∣∣∣

, R̃1 + R̃2 + R̃3,

where σ2 is the asymptotic variance of (1/
√

n)
n∑

j=1
Vj . According to (A.10), R̃1 → 0, for

every L > 0, as n → ∞. R̃2 → 0 as n → ∞ and L → ∞ by using (A.9). R̃3 → 0 as

n →∞ and L →∞ by dominated convergence. Hence, Theorem 3.2 is true. ¤

Proof of Theorem 4.1 Our proof is similar to the proof of Theorem 2.4 in Chen

et al. (2008), so we only provide outline of proof. We know that

Y 2
j = σ2(Xj) + (T 2(Xj) + σ2(Xj)(ε2

j − 1) + 2T (Xj)σ(Xj)εj).

From the proof of Theorem 2.4 in Chen et al. (2008), we know that for all k ∈ IJ

∣∣∣∣∣
∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)T 2(Xj)

n∑
j=1

Kh(Xj − x)
dx

∣∣∣∣∣ 6 C2−3J/2,

and for all k /∈ I(t0, 2−JA(b− a)),

∣∣∣∣∣
∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)σ2(Xj)

n∑
j=1

Kh(Xj − x)
dx

∣∣∣∣∣ 6 C2−3J/2.

According to Lemma 6.3, we know that for k ∈ I(t0, 2−JA(b− a))

∣∣∣∣∣
∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)σ2(Xj)

n∑
j=1

Kh(Xj − x)
dx

∣∣∣∣∣ > C2−J/2.
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Similar to the proof of Theorem 3.1, we can easily show that

∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)σ2(Xj)(ε2
j − 1)

n∑
j=1

Kh(Xj − x)
dx = Op((2Jnh)−1/2),

∫ b

a
ψper

J,k (x)

n∑
j=1

Kh(Xj − x)2T (Xj)σ(Xj)εj

n∑
j=1

Kh(Xj − x)
dx = Op((2Jnh)−1/2).

Based on
2−J/2 − (2Jnh)−1/2

2−3J/2 + (2Jnh)−1/2
→∞,

we have

max{|UJ(k)|, k ∈ IJ} = max{|UJ(k)|, k ∈ I(t0, 2−JA(b− a))}.

This implies that

|tU0 − t0| =
∣∣∣a +

kU
1 (b− a)

2J
− t0

∣∣∣ < 2−JA(b− a).

This completes the proof of Theorem 4.1. ¤
Proof of Theorem 4.2 The proof is straightforward from Theorem 3.1. ¤
Proof of Theorem 4.3 The proof is similar to the proof of Theorem 4.1 in Zhou

et al. (2010). ¤
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非参数回归中方差变点的小波检测

王景乐 郑 明

(复旦大学管理学院统计学系, 上海, 200433)

本文主要研究了非参数回归模型中方差函数的变点, 利用小波方法构造的检验量来检测方差中的变点,

建立了这些检验量的渐近分布, 并且运用这些检验量构造了方差变点的位置和跳跃幅度的估计, 给出了这些估

计的渐近性质, 并进一步通过随机模拟验证了本文方法在有限样本下的性质.

关键词: 方差变点, 小波系数, 核估计, 局部线性平滑, α-混合.

学科分类号: O212.7.
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