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Abstract

Let { X, un <7 < vp,n > 1} be an array of random variables and {ani, un < @ < vn,n > 1}
be an array of constants. A new concept of integrability (call residually h-integrability) for an array
of random variables { X,,; } with respect to an array of constants {an;} is introduced, which is weaker
than other related notions of integrability, such as h-integrability, Cesaro a-integrability. Under
this assumption of integrability and appropriate conditions on the array of weights, we investigate
strong convergence and mean convergence for weighted sums of dependent random variables. Some
related results in literature are extended and improved.

Keywords: ¢-mixing sequence, pairwise LCND random sequence, r-mean convergence, uni-
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§1. Introduction

Let { Xy, un < i < vy,n > 1} be an array of random variables and {ap;, u, < i < vy,
n > 1} be an array of constants, {u,,n > 1} and {v,,n > 1} be two sequences of integers
(neither necessarily positive nor finite) such that v, > u, for all n > 1 and v,, — u,, — 00
as n — oo.

Laws of large numbers for sequences of random variables play a central role in the
area of limit theorems in Probability Theory, however a uniform integrability condition of
some kind has played an increasingly important role as a key condition in proving laws of
large numbers for a sequence of random variables.

Cabrea (1994), in order to investigate the weak convergence for weighted sums of
random variables, introduces the condition of uniform integrability concerning the weights,

which is weaker than uniform integrability, and leads to Cesaro uniform integrability in
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[2] as a special case. Under this condition, a weak law of large numbers for weighted sums
of pairwise independent random variables is obtained.

The notion of h-integrability for an array of random variables with respect to an array
of constant weights is introduced in [3] and Cabrea and Volodin proved that this concept
was weaker than other previous related notions of integrability, such as Cesaro uniform
integrability in [2], {an;}-uniform integrability in [1] and Cesaro a-integrability in [4].
Under appropriate conditions on the weights, they prove that h-integrability concerning
the weights is sufficient for a mean convergence theorem and a weak law of large numbers
to hold for weighted sums of an array of random variables with respect to some special

kind of rowwise dependent array.

Definition 1.1 Let {Xp;,up, < @ < vy,n > 1} be an array of random variables

Un,
and {an;, up <1 < vy,n > 1} an array of constants with Y |ay;| < C for all n € N and
1=Un
some constant C' > 0. Let {h(n),n > 1} be an increasing sequence of positive constants

with h(n) T oo as n T oco. The array {X,i,u, < i < vy,n > 1} is said to be h-integrable
concerning the array of constant {a,;} (h-integrability, in short) if
Un

Un
sup Z ‘CLm’E‘Xm‘ < 00 and nhjglo Z ’am|E’Xm‘IHXm\>h(n)] =0.

n>21i=u, 1=Un

Chandra and Goswami (2003, 2006) introduce the condition of Cesaro a-integrability
(a > 0), and also prove that Cesaro a-integrability for appropriate « is sufficient for the
weak law of large numbers to hold for certain special dependent sequences of random
variables.

In this paper, we introduce a new concept of integrability which deals with weighted
sums of random variables, and obtain strong laws of large numbers and mean convergence
theorems for the weighted sums of non-positively correlated random sequences, pairwise

LCND random sequences and ¢-mixing sequences.

Definition 1.2 Let {X,;, up, < ¢ < vy, n > 1} be an array of random variables and

Un,
{ani,un <i < vy,n > 1} an array of constants with > |an;| < C for all n € N and some
1=Un
constant C' > 0. Let {h(n),n > 1} be an increasing sequence of positive constants with

h(n) T oo asn T co. A array { Xy, un < @ < vp,n > 1} is said to be residually h-integrable
with respect to the array of constants {a,;} (Rh-integrable in short) if the following two

conditions hold:

(i) Sl;}i Z |ani |[E| Xni| < 00 and (ii) nlirgo Z | | E(] X _h(n))l[\Xm-bh(n)] =0.

(1.1)
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A random array {X,;, u, < < vp,n > 1} is said to be strong residually h-integrable with
respect to the array of constants {a,;} if

(i) Sli]i _Z: |ani |[E| Xni| < 00 and (ii) 21 _Z: |ani|E(| Xni| = h(1)) 1| x> h(n)) < OO

Remark 1 It is apparent that (1.2)(ii) is indeed stronger than (1.1)(ii), it also
is trivially clear that h-integrable implies Rh-integrable. Let {hi(n)} and {ha(n)} be
two positive sequences monotonically increasing to infinity such that ha(n) > hi(n) for all

sufficiently n, it is also clear from the definition that Rh,-integrable implies Rho-integrable.

§2. Preliminary Lemmas

In this section we give some related concepts and lemmas about the following row-
wise dependence structures: low case negative dependence, rowwise pairwise non-positive

correction and @-mixing.

Definition 2.1 Random variables X and Y are lower case negatively dependent
(LCND, in short) if

PX<2,Y<y) <PX<2)P(Y <y) foral z,y€R.

A sequence of random variables {X,,,n > 1} is said to be pairwise lower case negatively

dependent if every pair of random variable in the sequence are LCND.

The following lemmas in [6] are well known and give the important property of pair-
wise LCND random variables. Lemma 2.1 states that pairwise LCND random variables

are non-positive correlated.

Lemma 2.1 If {X,,n > 1} is a sequence of pairwise LCND random variables,

then
E(X,X;) < EX;EXj, 1% 7.

Lemma 2.2 Let {X,,n > 1} be a sequence of pairwise LCND random variables.
If {fn,n > 1} is a sequence of increasing functions, then {f,(X,),n > 1} is a sequence of
pairwise LCND random variables.

In order to investigate the related questions about Markov process, Dobrushin intro-
duced the notion of p-mixing sequence in [7].

Definition 2.2 Let {X,,n > 1} be a sequence of random variables in probability
space (92, F,P). Let F* be the o-algebra generated by {X,,1 < n < k}, and Fj the
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o-algebra generated by {X,,n > k}. {X,,n > 1} is said to be p-mixing if there exists
a non-negative sequence {¢(m), m > 1}, with lim ¢(m) = 0, such that, for each k > 1
m—00

and for each m > 1,
IP(B|A) = P(B)| < ¢(m),  for A€ F* B € Fyim P(4) > 0.

The following lemma is in Billingsley (1968):

Lemma 2.3 Let X be a F¥-measurable random variables, and Y be a Flhrm)-
measurable random variable, with | X|<C; and |Y|<Cs. Then |Cov (X,Y)|<2C1Cap(m).

§3. Strong Laws of Large Numbers and Mean Convergence
for Weighted Sums of Random Variables with Some

Conditions of Dependence

One of the most interesting application of all these notions of integrability is connected
with the strong laws of large numbers and mean convergence with weighted sums of random
variables. In the following results, we suppose that all the random variables are defined
on the same probability space (2, F,P).

Now we state and prove our main results.

Theorem 3.1 Let {X,;,u, <i < wvy,n > 1} be an array of non-negative random
Un,
variables and {an;, u, < i < vy, n > 1} be an array of constants. Let S, = > api Xpi. If
1=Up
the following conditions hold:

(i) E(XniXnj) < EXpEXyj, for each n > 1, up, <1< j < vy,
(ii) {Xni} is strong residually h-integrable with respect to the array of constants
{ani};
o0
(i) > h(n) sup |ani| < oo,
n=1 Up I Un
then

S, —ES, — 0 as n — oo almost surely.

Proof Foreachn > 1, u, <i < vy, let Yy, = Xm'I[Xmgh(n)} + h(n)I[Xm->h(n)]7
Un
T, = Y. aniYy;. We prove

ES, — ET,, — 0, (3.1)
Sp — T, — 0, a.s., (3.2)
T, —ET, — 0, a.s.. (3.3)
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These will imply that S,, — ES,, — 0, as n — oo almost surely.

We will estimate each of these terms separately. For (3.1), since strong residually
h-integrable implies residually h-integrable, and according to Lemma 2.1 Y;,; preserves the
negative dependence property. it holds

Un,
ES, — ET,, < E |ani|E(Xni — h(n))[x,;>hm) — 0, as n — oo.

i=uUn

To verity (3.2), Ve > 0,
[e'e) o0 1 Un o0 Un ]_
Y PUSh—Tal>e) < 20 —E| X ani(Xni—Yoi)|< X2 X *’am'|E(Xni_h(n))I[Xm>h(n)]a
n=1 n=1¢€ T=Unp n=1i=u, €
the last sum convergence since the condition (ii), by Borel-Cantelli Lemma we get S,, —
T, — 0, a.s..

Note that

00 Un, oo 1 Un, 2
> P(] 2 ani(Vui — Ea)| > ) < X S| 35 ani(Yui — Vo)
n=1 T=Un n=1¢€ i=un

o0 Un %)
< X Y aEBYi+ Y Yo aniani(EYyYn; — EYEY, )

n=11i=uy n=1wu, <i<j<vn

= L+ L.

To prove (3.3) therefore, it suffices to prove that I; < oo, i = 1,2 by Borel-Cantelli Lemma.

The convergence of I; follows from the assumption (ii) and (iii), note that Y,; <
min{h(n), Xp;},

Lo< X Y aZh(mEX < 3 Am)( sup awl) 3 [anlEXn

n=1i=un n=1 Up KIS Un, i=Unp
Un oo
< (sup > |am-|EXm-> > h(n) sup |api| < 0.
n>1i=u, n=1 Up KT Un,

While the convergence of Iz, by the assumption (i) and (ii) we note that

00
I, < Z Z ‘anianj|(EXnanj - EYanYn])

n=1up<i<j<vn

00
< Z Z |anianj|(EXniEan — EYm'EYnj)
n=1up<i<j<on

= Z Z \amanjH(EXm — EYm')Ean + EYm(Ean — EYn])]

n=1 u, <i<j<vn

< 21 2 anitni |[EXn; B[ Xni — h(n)]I[x,; > h(n)]
n=11i,j
+ 21 > anian; [EXniB[Xn; — h(n)I[x,, ;> nm)]
n=11,j
< 2(sup 3 anilEX) Y fang ELXa; = h(m)} i, hm) <

n=21i=u, n=1j=un
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Because {X,;} is strong residually h-integrable with respect to the array of constants

{an;}, this completes the proof of the theorem. O

Lemma 2.2 states that pairwise LCND random variables are non-positive correlated.
For a general sequence {X,,,n > 1} of random variables, noting that if {X,,n > 1} is
residually h-integrable, respectively strong residually h-integrable, then {X;F,n > 1} and
{X, ,n > 1} are residually h-integrable, respectively strong residually h-integrable. By
Lemma 2.3 {X:{Z-,un <i<vg,n > 1} and {X,, u, <@ < wvp,n > 1} are arrays of rowwise
pairwise LCND where a™ = aV 0, a~ = —a V 0, and applying Theorem 3.1 to the arrays
{X=} and {X,} separately, we get the following result.

Corollary 3.1 Let {X,;,u, < i < vy,n > 1} be an array of rowwise pairwise
LCND and {an;, un <@ < vy,n > 1} be an array of constants. Suppose that

(i) {Xni} is strong residually h-integrable concerning the array of constants {a,;},

o0
(i) > h(n) sup |ani| < oo,
n=1 Up KT Un
then S,, — ES,, — 0 as n — oo almost surely.

A special case of pairwise LCND random variables is the case of pairwise independent

random variables. We also have the following corollary.

Corollary 3.2 Let {X,;,u, < i < v,,n > 1} be an array of rowwise pairwise
independent random variables and {a,;,u, < ¢ < v,,n > 1} be an array of constants.
Suppose that

(i) {Xni} is strong residually h-integrable with respect to the array of constants
{ani}a
.o e
(il) > h(n) sup |ani| < oo,
n=1 Up <I<Un

then S, — ES,, — 0 as n — oo almost surely.

Theorem 3.2 Let{X,;,u, < i < v,,n > 1} be an array of mixing random vari-
ables such that for each n > 1 the row {X,;,u, < i < v,} is a p,-mixing sequences of
random variables. Let {an;, un, < i < vy,,n > 1} be an array of constants with a,; < an;

forallm > 1 and uy, <@ < j < v,. Suppose that

Vp—Un
(i) limsup > ¢n(i) < oo for each n > 1,

n—oo =1
(ii) {X,i} is strong residually h-integrable with respect to {an;},
00 Un,
(iii) 35 h*(n) 3 af; < oo,
n=1 1=Up,

then S, — ES,, — 0 as n — oo almost surely.
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Proof Let Y,;,S,, T, be the same as in the proof of Theorem 3.1, we only need to
prove that

> > ankanjCov (Yo Yn;) < oo.

n=1u, <k<j<uvn

By applying Lemma 2.3 and note that Y,; < h(n), u, < i < v,, we have

> > Ank@njCov (YnrYng)

n=1u, <k<j<vn

00 Up—Un Up—1i

= > > 2 k(i) Cov (YarYo(eri))

n=1 i=1 k=un

< 25 R ST e <2 5 w0 3 b el
Unp—Un Un
< (tmsup T 0u(9) 3 H2m) 3 ady < oo
n—oo = n=1 k=un

The last inequality is according to the assumption (i) and (iii). The rest of the proof

is similar to the proof of Theorem 3.1. ([

Un
Now we discuss r-mean convergence for the randomly weighted sums > (an; Xni —
1=Un
Ea,; Xpi) under the condition of residually h-integrable.

Theorem 3.3 Let {X,;,u, <i < wvy,n =1} be an array of non-negative random
variables and {an;, un <@ < vy, n > 1} be an array of constants. Suppose that

(i) E(XniXnj) < EX,EX,,;, foreach n > 1, u, <@ < j < vp,

(i1) {Xni} is residually h-integrable with respect to the array of constants {ay;},

(iii) lim h(n) sup |ani| =0,

n—oo Un KIKVn

then S, — ES,, — 0 in L' and, hence, in probability as n — oo.

Proof Let Y,;,S,,T, be the same as in the proof of Theorem 3.1. It suffices to
prove that

ES, — ET,, — 0, Sp—T, —0, in L', as n — co. (3.4)
T, — ET,, — 0, in L', as n — . (3.5)

We first prove (3.4), note that the {X,,;} is an array of non-negative random variables,
it holds
Un,
|ESn — ETo| < E[Syn —To| < X2 |ani|E[Xni — h(”)]I[Xm>h(n)]a

1=Un

and the last expression above tends 0 as n — oo by the assumption (ii).
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Turning now to (3.5), we actually show that T,, — ET,, — 0 in L? and hence in L.

Un o0
EIT, —ET,> < 3 anEYg+ 3 2 lanian|(EVniYay — EYniEY))

1—=Un n=1 u, <i<j<vn
= Anl + An2-

We only need to prove that A,; — 0,7 = 1,2 when n — oco. For A,1, we have

Un, Un
A1 < Y a2 h(n)EX,; < (sup > \am-]EXm-) [h(n) sup |ani|| — 0.

1=Up n>21li=uy Up LT Un

Next we estimate A2, since every random variable X,,; is non-negative:

An2 < Z ‘anianj|(EXnanj - EYanYn])

up <I<J<un
< Z |amam|(EXmEXm — EYmEYn])
Uy LI<J<KUn
= > |aniani| [(EXni — EYni) EXpj + EY5i(EX; — EYaj)]
up <I<J<Un
< Z |aniani |EXni B[ Xni — h(n)|L[x,,>hn)]
,L?-]
o
+ Zl > anian; [EXpniB[Xn; — h(n)[I1x, ;> hmn)]
n=11j

< 2(sup X JanlEXni) Y- Jan ELXns — Am)ix, () — O,

nzli=uy, J=Un
the second inequality follows from the assumption (i), the last series go to 0 because {X;}

is residually h-integrable with respect to the array of constants {ay;}. O]

Remark 2 Cabrera and Volodin (2005) prove Theorem 3.3 when {X,;} is h-

Un,
integrable with respect to the array of constants {an;} and h?(n) Y a2, — 0 are satisfied
1=Un

Un

as n — oo. The condition h?(n) Y. a2, — 0 is stronger than h(n) sup an; — 0 as
1=Un unglgvn

n — oo, however the condition residually h-integrable concerning the array of constants

{an;} is weaker than the condition h-integrable concerning the array of constants {a,;} in
Remark 1. Hence Theorem 3.3 contains as a particular case [3, Theorem 2]. According
to the Remark 4 in [3], we also show that Theorem 3.3 contains as a particular case [4,
Theorem 2.1(a)].

Corollary 3.3 Let {X,;,u, < i < vy,n > 1} be an array of rowwise pairwise
LCND and {an;, un <@ < wvy,n > 1} be an array of constants. Suppose that
(i) {Xni} is h-integrable with respect to the array of constants {a;},

(ii) lim h(n) sup |an| =0,
e Un SEKUn

then S, — ES,, — 0 in L' and, hence, in probability as n — oco.
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Remark 3 According to Remark 1 and Remark 2, Corollary 3.3 extends Theorem
1 in [3]. The proof is similar to the proof of Theorem 3.3.

A special case of pairwise LCND random variables is the case of pairwise independent

random variables. We also have the following corollary.

Corollary 3.4 Let {X,;,u, < i < vy,n > 1} be an array of rowwise pairwise
independent random variables and {an;, un <@ < v,,n > 1} be an array of constants. If

(i) {Xni} is h-integrable with respect to the array of constants {an;},

(i) lim h(n) sup |an| =0,

n—0o0 Un <i<vn

then S, — ES,, — 0 in L' and, hence, in probability as n — oo.

Theorem 3.4 Let{X,;,u, < i < v,,n > 1} be an array of mixing random vari-
ables such that for each n > 1 the row {X,;,u, < i < v,} is a p,-mixing sequences of
random variables. Let {ani, u, < i < vy,n = 1} be an array of constants with a,; < nj

forall n > 1 and uy, <@ < j < v,. Suppose that
Up—Un

(i) limsup > ¢n(i) < oo for each n > 1,

n—oo i=1

(ii) {Xni} is residually h-integrable with respect to {an;},

Un
(iii) lim A%(n) > a2, =

then S, — ES,, — 0 in L' and, hence, in probability as n — oc.
Proof Let Y,;,S,, T, be the same as in the proof of Theorem 3.1. We proceed as
in the proof of Theorem 3.3 in order to prove that S, — T}, — 0, T, — ET};, — 0 in L',
ES, — ET,, — 0 as n — oo. It suffices to for us show that
lim sup > ankanjCov (Yo Yn;) <O. (3.6)

n—0oo un<k<j<7)n
By applying Lemma 2.3 and note that Y,; < h(n), u, < i < v,, we have

Uy —Un, Up—1

Z ankamCov( nkYn]) = Z Z ankan(kH)Cov( nkYn(k—H))
Un LE<j<n =1 k=un

Uy —Un VUp—1

< 20%(n) 3 X appenli)

=1 k=un
< () 3 0l S el
< 2w S enl@)) [170) X a).
n=l i= k=un

By the condition (i) and (iii), we know (3.6) is satisfied. O
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Corollary 3.5 Let{X,;,u, < i < v,,n > 1} be an array of random variables
such that for each n > 1 the row {X,;,u, < i < v,} is a m(n)-dependent sequences of
random variables. Let {ani,u, < i < vy,m > 1} be an array of non-negative constants

with a,; < ap; for alln > 1 and u,, <@ < j < v,. Suppose that

(i) limsupm(n) < oo for each n > 1,
n—oo

(ii) {Xni} is residually h-integrable with respect to {an;},
(i) lim h2(n) 3. a2, =0,

then S,, — ES,, — 0 in L' and, hence, in probability as n — oo.
Proof We only need to note that we can consider ¢, (i) = 0 for i > m(n) and

Vp —Un
on(i) =1 for i <m(n), and so >, @n(i) < m(n) for all n > 1. O
i=1

Remark 4 According to Remark 1, it is clear that Theorem 3.4 (respectively
Corollary 3.5) extends Theorem 3 in [3] (respectively Corollary 2 in [3]).
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