NHAMERST E TG Chinese Journal of Applied Probability
B 20134E2H and Statistics Vol.29 No.1 Feb. 2013

The Strong Law of Large Numbers of Random Walk in

Random Environments on Half-Line *

ZHU DONGJIN
(S’chool of Mathematics and Computer Science, Anhui Normal University, Wuhu, 241005’)

Abstract

The random walk in random environments (RWIRE) on the right half line with reflected
barrier on the origin is discussed. The recurrence of RWIRE on the right half line is studied. In the
non-recurrent case, we obtain an estimation for the second moment of 7, the frist time of RWIRE
{X,} from n — 1 to n, which in turn yields a strong law of large numbers of RWIRE on the right
half line.
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81. Introduction

Let ap =1 ,{an}72; be a fixed sequence of numbers between 0 and 1, we can define

a random walk on the nonnegative integers Z with a transition matrix

0 1 0
1—051 0 a1
0 1—@1 0 a9

0 l-a, 0 a«a, O

By the transition matrix M, we know the random walk has reflected barrier on the origin.

Now, suppose that {a,}52, is a sequence of random variables with 0 < a;, < 1. We can
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still define a stochastic process {X,,} on the nonnegative integers Z, which satisfies

P(Xo=10) =1, (1.1)
P(Xn—H = j‘X() = O,X1 = il, ... 7Xn—1 = in—l;Xn = i,an,n S Z+)

Q4 if j=i+1
= 1— oy, if j=i—1 a.s.. (1.2)
0, otherwise

We call the stochastic process { X, } is random walk in random environments (RWIRE) on
the right half line with reflected barrier on the origin. {X,,} is not, in general, a Markov
chain. In fact, the future, given the present, is not independent of the past. Using the
same method as [8], we can construct the process on the Cartesian product of the set of
environments and the set of paths. Setting N = {0,1,2,...}, we will define a probability
measure on ([0, 1]V x Z¥, F), where F is the o-field generated by the cylinder sets. For a
fixed environment e = {, }%° ), let P, be the Markov chain measure on Z} and {X,} be

coordinate process so that

o, it j=it1
Pe(Xnt1 =71Xn=1)=131-q, if j=i—1 foreach n>1, ¢ > 0.

0, otherwise

On the environments [0, 1]V, let Q be a product measure so that ap = 1 and {a,, }2 is
i.i.d.. Now for A C [0,1]Y and F' C Z¥ measureable with respect to the o-fields generated
by the cylinder sets, let

P(Ax F) = /A Pe(F)Q(de),

The Caratheodory extension theorem shows that P extends to a probability measure on
([0, N x Z&, F).

The random walk in a random environment is formally defined the process {X,}
defined on ([0,1]" x Z¥, F,P), where X, (e,w) = w, and @, (e, w) = ay, it is obvious that
the distribution of {@,,} is the same as the distribution of {ay,}.

When the environment {a,}22, is fixed, [3], uses systems of difference equations to

derive results which we summarize in Lemma 1.1.

Lemma 1.1 Fix {a,}5%; with 0<a,, <1 for all n; set pp, = (81 -+ Bn) /(1 o),
where 3; =1 — «;, n > 1. Then
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(i) {X,} is a recurrent chain if and only if
z_:l Prn = 0. (1.3)

(ii) {X,} is a positive recurrent chain if and only if

(e8]

oo
Y pp =00 and < 0. (1.4)
n=1 n=1 ®npPn
Let

TO = 07

min{k > 0: X} = n}, if such a k exists;
n pr—

o0, if no such k exists,

Tn=1Tn —Th_1, n > 1.

It is obvious that 7, is the first time of {X,,} from n — 1 to n. The sequence of ladder
variables 7, is not strictly stationary since RWIRE {X,,} on the right half line with re-
flected barrier on the origin, and the law of large numbers or Birkhoff’s ergodic theorem
cannot be used for the sequence {7,}. It is different from the case of [8] (we know that,
{7} is strictly stationary in [8]). The weak law of large numbers of random walk in
random environments on the right half line is obtained by [2], but the strong law of large
numbers is not discussed. We have gotten the strong law of large numbers of RWIRE on

the nonnegative integers Z in this paper.

82. The Second Moments of 7,

Lemma 2.1 Let {V,} be a sequence of independent, identically distributed,

nondegenerate, finite valued random variables; let S, =Y +--- 4+ Y,,.

oo oo
(i) n~'P(S, > 0) < oo if and only if lim S, = —oo a.e. in which case > e <
n=1 n—0o0 n=1
00 a.e..
[e.°] [e.°]
(i) S n7P(S, > 0) = 0o = Y. n P(S, < 0) if and only if —co = liminf S,, <
n=1 n=1 n—0o0

o0 o0
limsup S, = 0o a.e. in which case > e =00 = Y % ae..
n—00 n=1 n=1

Lemma 2.2 Let {X,,} be a RWIRE on Z, with random environment e = {a, }7°,
where ap = 1, {a,}52; iid. and 0 < o, < 1, n > 1, if E(In 81 /o) exists, then

(i) {X,} is transient if and only if E(In 51 /a;) < 0.

(i1) {X,} is positive recurrence if and only if E(In 81 /ay) > 0.

(iii) {X,,} is null recurrence if and only if E(In 51 /1) =
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Theorem 2.1  Suppose p = E(81/a;1) < 1, then each 7, is finite a.e. and

1
lim Er, — ~ M.
n—00 1— W

Furthermore, if v = E(1/a1)? < 1, then

. o 1+6p+Tv+2ur+ pu?— v
lim E7; = :
o, 0 w20 )

Proof Note that P(p, > 1) < Ep, = p™. Thus p < 1 implies
oo
S nTP(p, > 1) < o0,
n=1
equivalently,
& -1 51 Bn - -1
Son P(ln(—) +-~—|—ln<—> >0) => n P(np, >0) < 0.
n=1 a1 On n=1
Then by Lemma 2.1 we have

o) o
=Y M <oo  ae.
n=1 n=1

(2.1)

(2.2)

Hence Lemma 1.1 implies { X, } is not recurrent, such that lim X, = oo a.e., so trivially

n—oo

7, is finite a.e.. For e = {a,} fixed, noting that oy = 1, by Markov property we

EeTl = 1,
EeTn =Qp-1+ /anlEe(l + Th—1 + TTL)7 n =2
Thus, by (2.4) we obtain
1 _ _ _
E°r, = + Ln ! E¢r—1 =1+ Fn—1 + Fn—1 E¢r,—1, n>2
On—1 On—1 Onp—1 (|

Taking the expectation with respect to Q yields
Er =1, Er, = 14+ pw)Emp—1, n=>2.

By induction, we obtain

obtain
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Since p < 1, (2.6) implies (2.1). Next, we prove (2.2). For e = {«,} fixed, by Markov
property

Er2 = S k?P(1n =k) =P (mn=1)+ . k?Po(, = k)
k=1 k=2

00 k—1
= ap-1+ B Z K Z Pe(Tn—l =1i— 1)Pe(Tn =k— Z)

k=2 1=2
= apoi 4Bt Y ( S k2P(r = k — i))Pe(Tn_l —i-1)
1=2 “k=i+1

= an-1+ Bn1(E°Ty, 4 26E°T, +i°)Pe(Tn1 =i — 1)

= ap_1+ ﬁn_l(EeTn2 + 2E°7,, - E®Ty 1 + 2E°7, + ES72 | 4+ 2E°7, 1 + 1)
= 1+ ﬁn_lEeTg + ﬁn_lEeTg_l +26,-1(1 + E®—1)E®T, + 2061 BT -1
= 1+ B, 1E°T2 + B, 1E°T?

—1
+ Q/Bn—l(l + EeTn—l) <1 + B + bEaTn—l) + 28— 1E°Th1
Qp—1 Qp—1
2 2 ,62
= 1+ »3n71Ee7'7% + ﬂnflEeTrs_l + Qﬁnfl + Znml + 4(57171 + n—l ) EeTnfl
Qp—1 Qp—1
2 2
+ ﬁn—l (EeTn_l)Q.
Op—1
So
B _ 2 2 B 2
E¢r? = P lEeTg_l + 1+3ﬁn LI ﬂanl +4(ﬁn LA 6271>E67'n,1
Qp—1 Qp—1 o q Qp—1 o q
2 2
+ ﬁ;—l (ET_1)2. (2.7)
Qp—1

Taking the expectation with respect to Q yields

n—1

L+p 2p
l—p 1—p

Er? = pEr2_ +1+3u+2v+4(p+ u)( ) +20E(E‘T,-1)% (2.8)

According to (2.8), noting that E°r = 1, we obtain

Brn-1 n Brn-1Bn—2 T Bn-1Bn—2--- 5 )

E¢r, =1+ 2(
Qp—1 Qp—10p—2 Qp—10pn-2" Q]

It implies

(E°mn)? = 1+4(B"_1 y PniBz ﬂn—lﬂn—r"ﬂl)

Qn—1 Q10502 Op—10p—2 Q]

Brn-1 n Brn—18n—2 T Brn-1Bn—2-- A )2'

Qn—1 Qp—10n-2 Qp—10np-2 Q]

+4(
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Taking the expectation with respect to Q yields

E(Er,)? = 14+4(p+p2+- +p" H+4w+2+ 407 +8 Z,uiuk_i

n—1 k . )
= 8 ST A Pt T A T T
k=01i=0

So we see

8 ) 4v

lim E(E®r,)? = _ _ B
L B I i
1
14+ 3p+3v+ v 2.9
- -v)
(2.8) implies
4 1 2v(1
lim ETT% = u lim E73_|_1+3'u+2y_’_ (n+v)(1+p) v(143u+3v+ pv)
n—o00 n—00 1—u (1—p)(1—v)
1 2 2 _ 2
= p lim Er? + Ot v 2w Ty
e (= —v)

It is obvious that

. o 14+6p+Tv+2uv+ p? — v
lim E7; = .
n—o0 (I—p)321-v)

§3. The Strong Law of Large Numbers

In this section we give the almost sure limits of the averages X, /n in terms of the

environments.

Lemma 3.1/ When an environment e = {a,,} is fixed, under probability P,, the
random variables 7,,, n > 1, are independent. When ag = 1, {a,}52; be a sequence of
independent, identically distributed, random variables with 0 < «,, < 1 for all n, if MCIRE
{X,,} satisfies limsup X,, = 400 a.e., then {7,} is strong mixing under probability P.

Theorem 3.1 Suppose g = E(B1/a1) < 1 and v = E(f1/a1)? < 1, let r(n) =

sup |E(7x7Tgsn) — ETkETkan|, n > 1, then r(n) < Cu™, n > 1.
k

Proof For a fixed environment e = {ay, }22 ; with o9 = 1, by (2.8) we obtain

+ + -+
Oktn—1 Oktn—10k+4n—2 Akpn—10k4n—2 " Qk41

Brtn—1Bk4n—2"" B Brrn—1Pk4n—2" Bk e
+ E°7.

EThyn = 1+ 2<ﬁk+n71 Brn—1Bk+n—2 Brtn—18kn—2 " Brs1 )

_.I_




Eine BUARHE: 2 T 2k b BALPRSE B L 30 (1 5t K H0E H 103

According to Lemma 3.1, noting that {a,}2° is i.i.d., and 75 is measurable with respect

to the o-fields Fr_1 = o(ay,1 < i < k— 1), one can easily check that

E(TkThgn) = E(E®(ThThin)) = E(E*TRE Th1n),
= (L+2(u+p® 4+ p" ") + p"Em + p"E(E°T)?,
EmErpyrn = Em(l+2(u+p*+ -+ 5" 1) 4+ p" 4 p"Emp).

Then we have
E(TkThtn) — ETRETin| = [ E(E®Tk)? — 1" (Emp)?| = p"'|E(E°T3)* — (E7p)?).
If v = E(B1/a1)? < 1, (2.5) and (2.6) imply
r(n) = sup |E(TkTktn) — ETkETr4n| < Cp™, n>1. O
k

Theorem 3.2  Suppose = E(f1/a1) <1 and v = E(31/a1)? < 1, then

(i) lim T/n = (14 0)/(1— ) ac.

(i) lim X,/n=(1—-p)/(1+pn) ae.

n
Proof Let 7, =7, —Emn, T}, = > 7, =T, — ET,, then E7}, = 0, Theorem 2.1 and
k=1
Theorem 3.1 imply

n n—1 n
E(T))* = DT,,=>Y.Dr+2> > Cov(ri,1)
k=1 i=1 j=i+1

n 9 n—1 n
< Y Em+2) X r(G-9)
k=1 i=1 j=i+1
n—1 n o
< Cn+2) > Cp™
i=1 j=i+1
< Cn,

where C' is a constant, line and line may be different. Chebyshev’s inequality implies that

if e > 0.
= 2 o & DT 5 &1
> P(IT2 —ET,2[ >en”) <7 ), —~<e °C ) — <o
n=1 n=1 T n=1"M

Borel-Cantelli lemma implies
P(|T},2 — ET)2| > en? i.0.) = 0.

Since ¢ is arbitrary, it shows

T2 — ET)z

5 —0 a.e.. (3.1)

n
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(n+1)?
For each n, let D, = n?g}?f(lfﬂ)? T}, —T",], note that D2 < k:%—i—l T}, — T)2|*, we obtain
(n+1)2 n242n+1
EDZ< Y E(T,-T,)*<C Y (k—n?)=Cn2n+1).
k=n2+1 k=n2+1
Chebsyshev’s inequality implies
e > ED? % 2n+1
P(D, > n’c) < L Ce?
ngl ( " ) nzl n4€2 nzl n3
It is similar to (3.2),
Dy
— —0 .e.. 3.2
2 a.e (3.2)
We observe that if n? < k < (n + 1)2, then
|Tx] _ T2+ D
E oo n? ’
So (3.1) and (3.2) imply
T/
?k — 0 a.e.,
ie.
T, — ET,
lim —&—" =0 a.e..
n—oo n
Since lim E7, = (14 p)/(1 — ), it follows that
n—oo
ET, 12 1
lim —* = lim 7ZETk:j.
n—oo n n—oo N 1 1-— 1%

The proof of (i) is completed.

The result for X, is followed by a simple argument used in [8], which shows that

lim — = lim — a.e..
The proof of (ii) is complete. O
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