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Abstract
In this paper, we consider the option pricing problem when the risky underlying assets are

driven by Markov-modulated geometric Brownian motion (GBM). That is, the market parameters,

for instance, the market interest rate, the appreciation rate and the volatility of the risky asset,

depend on unobservable states of the economy which are modeled by a continuous-time hidden

Markov chain. The market described by the Markov-modulated GBM model is incomplete in

general, and, hence, the martingale measure is not unique. We adopt the minimal relative entropy

martingale measure (MEMM) for the Markov-modulated GBM model as the suitable martingale

measure and we obtain the MEMM for the market in general sense.
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§1. Introduction

In the field of option pricing theory, the martingale measures play very important

roles. For example, the price of a contingent claim in the Black and Scholes model is

given as the expectation of the return function with respect to the unique risk neutral

martingale measure. If the market is complete, then the equivalent martingale measure

is unique, and so the prices of options are uniquely determined by this martingale mea-

sure. However, if the market is incomplete, then there are (infinitely) many equivalent

martingale measures. Therefore, the pricing models for the incomplete markets are con-

sisting of the following two parts in general. The first part is defining the price process

of underlying assets, and the second one is selecting a suitable martingale measure, which

determines the option prices, among the set of all equivalent martingale measure. Many

kinds of processes are proposed as the examples of price processes of underlying assets.

For example, diffusion processes, jump type processes and general semi-martingale pro-

cesses are proposed. For the problem to select a suitable martingale measure described in
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the second part of the construction of models, there are several candidates. For example,

minimal martingale measure, variance optimal martingale measure and utility martingale

measure are proposed and discussed (see [5], [11]). In this paper, we adopt the minimal

entropy martingale measure (MEMM) as the suitable martingale measure. The MEMM

has been discussed in [18]. Many researchers have studied the MEMMs in various models

and given the explicit form of the MEMMs. For example, Miyahara discussed the MEMM

of the log Lévy processes in [19]; Frittelli gave sufficient conditions for the existence of a

unique MEMM and provided the characterization of the density of the MEMM in [12];

Mania, Santacroce and Tevzadze considered an incomplete financial market model where

the dynamics of the assets price were described by an Rn-valued continuous semimartin-

gale in [17]. And the authors expressed the density of the MEMM in the terms of the

value process of the related optimization problem and showed that this value process

was determined as the unique solution of a semimartingale backward equation; Benth

and Meyer-Brandis derived the density of the MEMM in the stochastic volatility model

proposed by Barndorff-Nielsen and Shephard in [2]; Benth and Karlsen proved that in a

stochastic volatility market the Radon-Nikodym density of the MEMM could be expressed

in terms of the solution of a semilinear PDE in [1]; Rheinlander and Steiger determined

the MEMM for a general class of stochastic volatility models where both price process and

volatility process contained jump terms which were correlated in [21]; Fujiwara determined

the MEMMs for the exponential additive processes in [13].

In recent years, there is a considerable interest in the applications of regime switching

models driven by a hidden Markov chain process to various financial problems. For an

overview of hidden Markov Chain processes and their financial applications, we can refer

to [6] and [9]. Some work on the using of hidden Markov Chain models in finance include

[3], [7], [8], [15], [24] and so on. In [25], they obtained the MEMM for Markov switch-

ing Lévy processes. There are many authors have applied Markov-modulated geometric

Brownian motion model in many financial and economical problems. For example, Siu

considered the fair valuation of a participating life insurance policy with surrender op-

tions when the market values of the asset were modeled by Markov-modulated geometric

Brownian motion in [23]; Elliott, Siu and Chan considered a PDE approach to evaluate

coherent risk measures for derivative instruments when the dynamics of the risk under-

lying asset were governed by a Markov-modulated geometric Brownian motion in [10];

In [8], they considered the option pricing problem when the risky underlying assets were

driven by Markov-modulated geometric Brownian motion (GBM). There they adopted a

regime switching random Esscher transform to determine an equivalent martingale pricing

measure. In our paper, we still adopt the model in [8]. Since the market described by the

《
应
用
概
率
统
计
》
版
权
所
用



第二期 王波 宋瑞丽: 马尔可夫调制的几何布朗运动的最小熵鞅测度 181

Markov-modulated GBM model is incomplete in general, hence the equivalent martingale

measure is not unique. We will adopt the relative entropy as a measure of the choice and

seek a martingale measure that minimizes the relative entropy with respect to the canon-

ical measure. The definition of relative entropy in [8] is the conditional expectation of the

general relative entropy with respect to the natural filtration generated by hidden Markov

chain which means that the information for the hidden Markov chain process is accessible

to the market’s agent in advance. We will adopt the general definition of relative entropy

rather than the definition of relative entropy in [8] which means that the market’s agent

know nothing about the information for the hidden Markov chain process in advance, and

we will obtain the MEMM for the Markov-modulated GBM model in general sense which

is much more general than the MEMM in [8].

§2. The Model

Suppose (Ω,F ,P) is a complete probability space, where P is a real-world probability

measure. Let T denote the time index set [0, T ] of the model. Let {Bt}t∈T denotes a

standard Brownian motion on (Ω,F ,P). We assume that the states of the economy are

modeled by a continuous-time hidden Markov chain process {Ut}t∈T on (Ω, F ,P) with

a finite state space χ := (x1, x2, . . . , xN ) which is independent of the Brownian motion

{Bt}t∈T . Without loss of generality, we can identify the state space of {Ut}t∈T to be a

finite set of unit vectors {e1, e2, . . . , eN}, where ei = (0, . . . , 1i, . . . , 0) ∈ RN .

We consider a financial model consisting of two risky underlying assets, namely a bank

account and a stock, that are tradable continuously. The instantaneous market interest

rate {rt}t∈T of the bank account is given by

rt := 〈r, Ut〉,

where r := (r1, r2, . . . , rN ) with ri > 0 for each i = 1, 2, . . . , N and 〈·, ·〉 denotes the inner

product in RN .

In this case, the dynamics of the price process {Rt}t∈T for the bank account are

described by 



dRt = rtRtdt, 0 < t ≤ T ;

R0 = 1.
(2.1)

Thus the SDE (2.1) has a unique solution

Rt = e
∫ t
0 rsds, 0 < t ≤ T.
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We suppose that the stock appreciation rate {µt}t∈T and the volatility {σt}t∈T of the

stock price process S also depend on {Ut}t∈T and are described by

µt := 〈µ,Ut〉, σt := 〈σ,Ut〉,

where µ := (µ1, µ2, . . . , µN ) and σ := (σ1, σ2, . . . , σN ) with σi > 0 for each i = 1, 2, . . . , N .

The dynamics of the stock price process {St}t∈T are then given by the following

Markov-modulated geometric Brownian motion:




dSt = µtStdt + σtStdBt, 0 < t ≤ T ;

S0 = s

with s > 0.

Thus, the stock price dynamics can be written as

St = s exp
( ∫ t

0

(
µs − 1

2
σ2

s

)
ds +

∫ t

0
σsdBs

)
. (2.2)

The discounted price process is defined by

S̃t := e−
∫ t
0 rsdsSt.

By (2.2), we have

S̃t = S0 exp
( ∫ t

0
σsdBs +

∫ t

0

(
µs − 1

2
σ2

s − rs

)
ds

)

with 0 < t ≤ T .

§3. The MEMM for the Markov-Modulated GBM

The minimal entropy martingale measure (MEMM) is one of the major tools for

option valuation in an incomplete market. A martingale measure here is understood to

be a probability measure Q ¿ P such that S̃ is a Q-martingale. We denote with Me

the space of all equivalent martingale measure for S̃. The relative entropy H(Q,P) of a

probability measure Q with respect to a probability measure P is given as

H(Q,P) :=





EP

[dQ

dP
log

dQ

dP

]
, if Q ¿ P;

+∞, otherwise.

We are interested in optimal investment in a financial asset with the discounted price

process S̃t as well as in the valuation of contingent claims. This pricing measure is linked
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to the optimal investment strategy with respect to expected exponential utility by a key

duality result (see [4], [16], [22]):

sup
θ∈Θ

EP

[
− exp

(
−

∫ T

0
θtdS̃t

)]
= − exp

(
− inf

Q∈Me
H(Q, P)

)
.

In the dual problem we minimize the relative entropy H(Q,P) over the space Me of all

equivalent martingale measures for S̃. This duality result is robust for various choices

of the space Θ of admissible strategies. For instance, we can take Θ to consist of all

predictable processes θ such that
∫

θ dS̃ is a Q-martingale for all Q ∈ Me with finite

relative entropy. It then turns out that if there exists an equivalent martingale measure

with finite relative entropy, we can find an optimal strategy θ ∈ Θ for the primal problem.

A probability measure QE ∈Me is the MEMM if it satisfies

H(QE ,P) ≤ H(Q, P), for all Q ∈Me.

In the following, we will give a very explicit representation for the MEMM of the

process S̃.

By Proposition 3.2 of [14], the density of the MEMM QE can be written in the

following form
dQE

dP
= c · exp

( ∫ T

0
ηtdS̃t

)
,

where c is a constant.

Now we take

ηt = −µt − rt

σ2
t

(S̃t)−1

and

c−1 = EP

[
exp

(
− 1

2

∫ T

0

(µs − rs)2

σ2
s

ds
)]

.

And define

dP∗

dP
:= c · exp

( ∫ T

0
ηtdS̃t

)

= c · exp
(
−

∫ T

0

µs − rs

σs
dBs −

∫ T

0

(µs − rs)2

σ2
s

ds
)
. (3.1)

We denote the above density as ZT . Now, we are in a position to prove the probability

measure P∗ is the MEMM for Markov-modulated GBM.

Theorem 3.1 The probability measure P∗ is the MEMM for Markov-modulated

GBM.
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Proof Referring to the results in [20], it is enough to verify the following three

statements.

(1) The expectation EP[ZT ] is equal to one.

(2) The measure induced by ZT has finite entropy.

(3) ∫ T

0
(ηt)2d[S̃]t ∈ Lexp(P),

where [S̃]t is the quadratic variation process of S̃t and Lexp(P) is the Orlicz space generated

by the Yong function exp(·).
In the following, we will prove the above three statements one by one.

(1) Define

Z ′t = exp
(
−

∫ t

0

µs − rs

σs
dBs − 1

2

∫ t

0

(µs − rs)2

σ2
s

ds
)
. (3.2)

Then we know that Z ′t is a true martingale. We denote the corresponding probability

measure by Q′.

Hence, we get

ZT = c · Z ′T exp
(
− 1

2

∫ T

0

(µs − rs)2

σ2
s

ds
)
. (3.3)

Denote FU
T = σ{Ut, 0 < t ≤ T}, then we have

EP[ZT ] = EP[EP[ZT |FU
T ]] = EP

[
EP

[
c · Z ′T exp

(
− 1

2

∫ T

0

(µs − rs)2

σ2
s

ds
)∣∣∣FU

T

]]

= c · EP

[
exp

(
− 1

2

∫ T

0

(µs − rs)2

σ2
s

ds
)
EP[Z ′T |FU

T ]
]

= c · EP

[
exp

(
− 1

2

∫ T

0

(µs − rs)2

σ2
s

ds
)]

= 1.

(2)

EP[ZT | lnZT |]

= c · EQ′
[
exp

(
− 1

2

∫ T

0

(µs − rs)2

σ2
s

ds
)∣∣∣ ln c−

∫ t

0

µs − rs

σs
dBs − 1

2

∫ t

0

(µs − rs)2

σ2
s

ds
∣∣∣
]

= c · EQ′
[
exp

(
− 1

2

∫ T

0

(µs − rs)2

σ2
s

ds
)∣∣∣ ln c−

∫ t

0

µs − rs

σs
dBQ′

s

∣∣∣
]

< ∞,

where BQ′
t is a Q′ Brownian motion.
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(3) Since we have

d[S̃]t = S̃2
t σ2

t dt.

Hence, ∫ T

0
(ηt)2d[S̃]t =

∫ T

0

(µt − rt

σ2
t

)2
(S̃−1

t )2d[S̃t] =
∫ T

0

(µt − rt)2

σ2
t

dt.

Thus

EP

[
exp

( ∫ T

0
(ηt)2d[S̃]t

)]
= EP

[
exp

( ∫ T

0

(µt − rt)2

σ2
t

dt
)]

< ∞. ¤

Remark 1 Z ′t in (3.2) is the density process of the MEMM in [8]. (3.3) expresses

the relation between the density of the general MEMM and the density of the MEMM in

[8].

Remark 2 If the process U has only one state, that is

rt ≡ r > 0, µt ≡ µ, σt ≡ σ > 0, t ∈ T .

Then the dynamics of the stock price process {St}t∈T are given by the standard

geometric Brownian motion:




dSt = µStdt + σStdBt, 0 < t ≤ T ;

S0 = s.

That is,

St = s exp
((

µ− 1
2
σ2

)
t + σBt

)
, 0 < t ≤ T.

Thus the market is complete, hence there is a unique equivalent martingale measure Q

such that

S̃t := e−rtSt

is a martingale. As we all known, the probability measure Q is defined by

dQ

dP
:= exp

(
− µ− r

σ
BT − (µ− r)2

2σ2
T

)
.

That is just the case P∗ in (3.1) when the process U has only one state.

It expresses that the standard geometric Brownian motion is a special case of our

model, and the MEMMs that we obtain are much more general than the risky neutral

equivalent martingale measures in the Black-Scholes models.

《
应
用
概
率
统
计
》
版
权
所
用



186 应用概率统计 第二十九卷

References

[1] Benth, F.E. and Karlsen, K.H., A PDE representation of the density of the minimal entropy martin-

gale measure in stochastic volatility markets, Stochastic: An International Journal of Probability and

Stochastic Processes, 77(2)(2005), 109–137.

[2] Benth, F.E. and Meyer-Brandis, T., The density process of the minimal entropy martingale measure

in a stochastic volatility model with jumps, Finance and Stochastics, 9(2005), 563–575.

[3] Bo, L.J., Wang, Y.J. and Yang, X.W., Markov-modulated jump-diffusions for currency option pricing,

Insurance: Mathematics and Economics, 46(2010), 461–469.

[4] Delbean, F., Grandits, P., Rheinländer, T., Samperi, D., Schweizer, M. and Stricker, C., Exponential

hedging and entropic penalties, Mathematical Finance, 12(2)(2002), 99–123.

[5] Delbean, F. and Schachermayer, W., The variance-optimal martingale measure for continuous pro-

cesses, Bernoulli, 2(1996), 81–106.

[6] Elliott, R.J., Aggoun, L. and Moore, J.B., Hidden Markov Models: Estimation and Control, Berlin,

Heiderberg, New York: Springer, 1994.

[7] Elliott, R.J. and Buffington, J., Regime switching and European options, Stochastic Theory and

Control, LNCIS 280(2002), 73–82.

[8] Elliott, R.J., Chan, L. and Siu, T.K., Option pricing and Esscher transform under regime switching,

Annals of Finance, 1(2005), 423–432.

[9] Elliott, R.J. and Kopp, P.E., Mathematics of Financial Markets, Springer-Verlag, New York, 1999.

[10] Elliott, R.J., Siu, T.K. and Chan, L., A PDE approach for risk measures for derivatives with regime

switching, Annals of Finance, 4(2008), 55–74.
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马尔可夫调制的几何布朗运动的最小熵鞅测度

王 波 宋瑞丽

(南京财经大学应用数学学院, 南京, 210023)

本文中, 我们考虑风险资产由马尔可夫调制的几何布朗运动驱动的期权定价问题. 在此模型中, 市场参数

如市场利率、升值幅度和风险资产的波动率都依赖于不可观的经济状态, 而这些经济状态是由连续时间隐马

尔可夫链来描述. 由马尔可夫调制的几何布朗运动描述的市场一般不是完备的, 因此鞅测度不唯一. 我们采用

最小熵鞅测度作为马尔可夫调制的几何布朗运动模型的适宜的鞅测度, 并且得到了一般意义上的最小熵鞅测

度.

关键词: 几何布朗运动, 隐马尔可夫链模型, 最小熵鞅测度.

学科分类号: O211.62.
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