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Abstract

In this paper, we consider the option pricing problem when the risky underlying assets are
driven by Markov-modulated geometric Brownian motion (GBM). That is, the market parameters,
for instance, the market interest rate, the appreciation rate and the volatility of the risky asset,
depend on unobservable states of the economy which are modeled by a continuous-time hidden
Markov chain. The market described by the Markov-modulated GBM model is incomplete in
general, and, hence, the martingale measure is not unique. We adopt the minimal relative entropy
martingale measure (MEMM) for the Markov-modulated GBM model as the suitable martingale
measure and we obtain the MEMM for the market in general sense.
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81. Introduction

In the field of option pricing theory, the martingale measures play very important
roles. For example, the price of a contingent claim in the Black and Scholes model is
given as the expectation of the return function with respect to the unique risk neutral
martingale measure. If the market is complete, then the equivalent martingale measure
is unique, and so the prices of options are uniquely determined by this martingale mea-
sure. However, if the market is incomplete, then there are (infinitely) many equivalent
martingale measures. Therefore, the pricing models for the incomplete markets are con-
sisting of the following two parts in general. The first part is defining the price process
of underlying assets, and the second one is selecting a suitable martingale measure, which
determines the option prices, among the set of all equivalent martingale measure. Many
kinds of processes are proposed as the examples of price processes of underlying assets.
For example, diffusion processes, jump type processes and general semi-martingale pro-
cesses are proposed. For the problem to select a suitable martingale measure described in
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the second part of the construction of models, there are several candidates. For example,
minimal martingale measure, variance optimal martingale measure and utility martingale
measure are proposed and discussed (see [5], [11]). In this paper, we adopt the minimal
entropy martingale measure (MEMM) as the suitable martingale measure. The MEMM
has been discussed in [18]. Many researchers have studied the MEMMs in various models
and given the explicit form of the MEMMs. For example, Miyahara discussed the MEMM
of the log Lévy processes in [19]; Frittelli gave sufficient conditions for the existence of a
unique MEMM and provided the characterization of the density of the MEMM in [12];
Mania, Santacroce and Tevzadze considered an incomplete financial market model where
the dynamics of the assets price were described by an R™-valued continuous semimartin-
gale in [17]. And the authors expressed the density of the MEMM in the terms of the
value process of the related optimization problem and showed that this value process
was determined as the unique solution of a semimartingale backward equation; Benth
and Meyer-Brandis derived the density of the MEMM in the stochastic volatility model
proposed by Barndorff-Nielsen and Shephard in [2]; Benth and Karlsen proved that in a
stochastic volatility market the Radon-Nikodym density of the MEMM could be expressed
in terms of the solution of a semilinear PDE in [1]; Rheinlander and Steiger determined
the MEMM for a general class of stochastic volatility models where both price process and
volatility process contained jump terms which were correlated in [21]; Fujiwara determined
the MEMMs for the exponential additive processes in [13].

In recent years, there is a considerable interest in the applications of regime switching
models driven by a hidden Markov chain process to various financial problems. For an
overview of hidden Markov Chain processes and their financial applications, we can refer
to [6] and [9]. Some work on the using of hidden Markov Chain models in finance include
3], [7], [8], [15], [24] and so on. In [25], they obtained the MEMM for Markov switch-
ing Lévy processes. There are many authors have applied Markov-modulated geometric
Brownian motion model in many financial and economical problems. For example, Siu
considered the fair valuation of a participating life insurance policy with surrender op-
tions when the market values of the asset were modeled by Markov-modulated geometric
Brownian motion in [23]; Elliott, Siu and Chan considered a PDE approach to evaluate
coherent risk measures for derivative instruments when the dynamics of the risk under-
lying asset were governed by a Markov-modulated geometric Brownian motion in [10];
In [8], they considered the option pricing problem when the risky underlying assets were
driven by Markov-modulated geometric Brownian motion (GBM). There they adopted a
regime switching random Esscher transform to determine an equivalent martingale pricing

measure. In our paper, we still adopt the model in [8]. Since the market described by the
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Markov-modulated GBM model is incomplete in general, hence the equivalent martingale
measure is not unique. We will adopt the relative entropy as a measure of the choice and
seek a martingale measure that minimizes the relative entropy with respect to the canon-
ical measure. The definition of relative entropy in [8] is the conditional expectation of the
general relative entropy with respect to the natural filtration generated by hidden Markov
chain which means that the information for the hidden Markov chain process is accessible
to the market’s agent in advance. We will adopt the general definition of relative entropy
rather than the definition of relative entropy in [8] which means that the market’s agent
know nothing about the information for the hidden Markov chain process in advance, and
we will obtain the MEMM for the Markov-modulated GBM model in general sense which
is much more general than the MEMM in [8].

§2. The Model

Suppose (2, .%#, P) is a complete probability space, where P is a real-world probability
measure. Let 7 denote the time index set [0, 7] of the model. Let {B;}tc7 denotes a
standard Brownian motion on (€,.#,P). We assume that the states of the economy are
modeled by a continuous-time hidden Markov chain process {U;}ier on (£2,.%#,P) with
a finite state space x := (z1,22,...,zy) which is independent of the Brownian motion
{Bi}ier. Without loss of generality, we can identify the state space of {U;}ic7 to be a
finite set of unit vectors {ej,ez,...,ex}, where e; = (0,...,1;,...,0) € RV,

We consider a financial model consisting of two risky underlying assets, namely a bank
account and a stock, that are tradable continuously. The instantaneous market interest

rate {r}te7 of the bank account is given by
ry = (r, Uy),

where r := (r1,79,...,ry) with 7; > 0 for each i = 1,2,..., N and (-,-) denotes the inner
product in R,
In this case, the dynamics of the price process {R;}ier for the bank account are

described by

th = rthdt, 0<t S T,
(2.1)

Ry = 1.

Thus the SDE (2.1) has a unique solution

Ry=chmds — og<t<T
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We suppose that the stock appreciation rate {u; }te7 and the volatility {o;}tc7 of the
stock price process S also depend on {U,};c7 and are described by

=, Up),  op:= (0, Uy),

where p := (1, 2, ..., un) and o := (01,02,...,0n) with ; > 0 for each i = 1,2,..., N.
The dynamics of the stock price process {S;}ier are then given by the following

Markov-modulated geometric Brownian motion:

dSt = ,utStdt + O'tStdBt, 0<t S T,
So =5

with s > 0.
Thus, the stock price dynamics can be written as

S; = sexp (/Ot (us — %af) ds + /Ot osdBS>. (2.2)

The discounted price process is defined by

ot
St =e jo TsdsSt.

By (2.2), we have

§t = Spexp (/Ot osdBs + /Ot (us — %ag - 1"3)(18)

with 0 <t <T.

§3. The MEMM for the Markov-Modulated GBM

The minimal entropy martingale measure (MEMM) is one of the major tools for
option valuation in an incomplete market. A martingale measure here is understood to
be a probability measure Q < P such that S is a Q-martingale. We denote with M*®
the space of all equivalent martingale measure for S. The relative entropy H(Q,P) of a

probability measure Q with respect to a probability measure P is given as

dQ dQ .
Ep[@log@}, if Q< P;

400, otherwise.

H(Q,P) :=

We are interested in optimal investment in a financial asset with the discounted price

process S, as well as in the valuation of contingent claims. This pricing measure is linked
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to the optimal investment strategy with respect to expected exponential utility by a key
duality result (see [4], [16], [22]):

supEp[—exp<—/0T9td§t>} :—exp(— inf H(Q,P)).

0O QeMe

In the dual problem we minimize the relative entropy H(Q,P) over the space M€ of all

equivalent martingale measures for S. This duality result is robust for various choices

of the space © of admissible strategies. For instance, we can take © to consist of all

predictable processes 6 such that 0ds is a Q-martingale for all Q € M*® with finite

relative entropy. It then turns out that if there exists an equivalent martingale measure

with finite relative entropy, we can find an optimal strategy 6 € © for the primal problem.
A probability measure Q¥ € M¢ is the MEMM if it satisfies

H(Q¥,P) < H(Q,P),  forall Qe M".

In the following, we will give a very explicit representation for the MEMM of the
process S.

By Proposition 3.2 of [14], the density of the MEMM Q¥ can be written in the

following form
dQE /T _
—— =c-exp nedSt ),
dP ( 0 t)

where ¢ is a constant.

Now we take

and
o1, [exp ( B ;/OT (ks agrs)QdS)}
And define
(i;* = c'exp(/Odegt)
= c-exp(—/OT’usa_Srsst—/oT(Ms;grs)zds) (3.1)

We denote the above density as Zr. Now, we are in a position to prove the probability
measure P* is the MEMM for Markov-modulated GBM.

Theorem 3.1 The probability measure P* is the MEMM for Markov-modulated
GBM.



184 N R G BTG

Proof Referring to the results in [20], it is enough to verify the following three
statements.

(1) The expectation Ep[Z7] is equal to one.

(2) The measure induced by Zr has finite entropy.

(3) )
/0 (10)?d[S)s € Loxp(P).

where [g]t is the quadratic variation process of S, and Lexp(P) is the Orlicz space generated
by the Yong function exp(-).

In the following, we will prove the above three statements one by one.

(1) Define

¢ s I's 1 ¢ s 52
Z’:exp(—/ a Tst—/ uds). (3.2)
t 2
0 0 Os

Os 2

Then we know that Z] is a true martingale. We denote the corresponding probability
measure by Q'.

Hence, we get
e (Ns - Ts)2
ZT:c~Z'Texp<—2/0 Tds). (3.3)

Denote ZY = o{U;,0 < t < T}, then we have

Ep[Zr] = EplEp(ZelFY]] = Ep[En[c- Zhoxp (- /0 ' “‘s;ﬁds)\%fﬂ
= c~Ep[eXp<—;/()Tst>EP[Z}5Z}]ﬂ
T (g — 1)
= C-Ep{exp<;/0 st)}
= 1
(2)
Ep[Zr|In Z7|]

1 T s 52 ¢ s I's 1 ¢ s 52
_ C.EQ,[eXp(_/ “‘j)ds)\m_/ WdBS—/ udsu
2 Jo o 0 Os 2 Jo o2

1 T _ 2 t _ ,
= c-EQx[exp(—z/ Mds)’lnc—/ udBSQ
0 g 0o Os

S
< 00,

/
where BtQ is a Q' Brownian motion.
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(3) Since we have
d[S], = S?o2dt.

Hence,
2

/ (n2a[8), - / (BT G alS - / Ty,

O O

Thus

Ep [exp (/OT(nt)2d[§]t)] =Ep [exp (/OT Wdt)] < 00. O

Remark 1 7] in (3.2) is the density process of the MEMM in [8]. (3.3) expresses
the relation between the density of the general MEMM and the density of the MEMM in
[3].

Remark 2 If the process U has only one state, that is
re=1>0, e = [, o =0 >0, teT.

Then the dynamics of the stock price process {Si}ier are given by the standard

geometric Brownian motion:

dsS; = ,uStdt + 05;d By, 0<t<T,
S(] = S.

That is,

1
St:sexp<(,u—§a2)t+aBt), 0<t<T.

Thus the market is complete, hence there is a unique equivalent martingale measure Q
such that
§t = e_TtSt

is a martingale. As we all known, the probability measure Q is defined by

dQ —r —7)?
—:zexp(—'ua Br — (,u202) T).

That is just the case P* in (3.1) when the process U has only one state.
It expresses that the standard geometric Brownian motion is a special case of our
model, and the MEMMSs that we obtain are much more general than the risky neutral

equivalent martingale measures in the Black-Scholes models.
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