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Abstract
In this paper, optimal constant-stress accelerated degradation test plans are developed under

the assumption that the degradation characteristic follows a Gamma processes. The test stress

levels and the proportion of units allocated to each stress level are determined by D-criterion and

V -criterion. The general equivalence theorem (GET) is used to verify that the optimized test plans

are globally optimum. In addition, compromise test plans are also studied. Finally, an example is

provided to illustrate the proposed method and a sensitivity analysis is conducted to investigate

the robustness of optimal plans.
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§1. Introduction

Due to the strong pressure for marketing, a manufacturer is usually asked to pro-
vide its customers with reliability information (e.g., mean-time-to-failure) of the product.
However, for highly reliable products, it is difficult to assess the lifetime of the products
using traditional accelerated life tests (ALTs) that record only time-to-failure. Even the
technique of censoring and/or accelerating the life by testing at higher levels of stress, such
as elevated temperatures or voltages, is little help, since no failures are likely to occur over
a reasonable period of time. In such a case, an accelerated degradation test (ADT) can
be used as an alternative. In an ADT, a reliability-related performance characteristic de-
graded over time is measured at several accelerated conditions, and then analyzed using
the specified ADT model. It is known that an ADT generally yields a better estimate of
the reliability of test units especially when no or few failures occur (Nelson (1990) and Lu
et al. (1996)).
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Recently, an optimal ADT plan was proposed based on the assumption that the
underlying degradation path follows a stochastic process. Liao and Tseng (2006) designed
optimal ADT plans under the assumptions of step-stress loading and a Wiener process
(WP) model for the degradation path. Lim and Yum (2011) developed optimal constant-
stress ADT (CSADT) plans based on a Wiener process model. For the Wiener process, it is
known that the degradation path is not a strictly increasing function. Generally, a Gamma
process (with monotone increasing pattern) is more suitable for describing the degradation
path of some specific products, and especially in the case of crack tests. Hence, designing
an efficient ADT plan for a gamma degradation process is of great interest. Although
Tseng et al. (2009) designed optimal ADT plans under the assumptions of step-stress
loading and a Gamma process model for the degradation path, they assume that the test
stress levels are given and not optimally determined, as well as their optimal plans are
obtained by numerical optimization method and no theory to verify that the optimized
test plans are globally optimum.

In this paper, optimal CSADT plans are developed under the assumption that the
degradation characteristic follows a Gamma processes. The test stress levels and the
proportion of units allocated to each stress level are determined by D-criterion and V -
criterion. The general equivalence theorem (GET) is used to verify that the optimized
test plans are globally optimum.

The rest of this article is organized as follows. Gamma degradation models, some
assumptions and parameter standardization procedures are introduced in Section 2. Ex-
pressions for the Fisher information matrix is obtained in Section 3. Section 4 provides the
ADT design criteria and describes how to use the general equivalence theorem. In Section
5, the problem of optimally designing ADT plans with two stress levels is formulated and
solved by an example. In Section 6, a compromise plan in which three stress levels are
involved is developed. Sensitivity analysis of the test plans are illustrated in Section 7.
Finally, conclusions and future research directions are presented in Section 8.

§2. Gamma Degradation Processes and Assumptions

2.1 Gamma Degradation Processes

Let L(t|S0) denote the degradation path of the product under a use stress S0, and its
lifetime τ can be suitably defined as the first passage time when L(t|S0) crosses a critical
value ω. Hence, we have

τ = inf{t|L(t|S0) ≥ ω}. (2.1)

In the following, we assume that the independent increments of the degradation path
of the product follows a gamma process (Lawless and Crowder (2004)). For fixed t and
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4t,

4L(t|S0) = L(t+4t|S0)−L(t|S0) ∼ f(x, α04t, λ) =
λα04t

Γ(α04t)
(x)α04t−1 exp(−λx), (2.2)

where α04t and λ are the shape and scale parameters of the gamma distribution, respec-
tively. Recently, Park and Padgett (2005) proposed a simple approximate formula for the
mean time to failure (MTTF) of the product under use stress S0 as

MTTF0 = E(τ) ≈ ωλ

α0
+

1
2α0

. (2.3)

The following assumptions A1-A5 are considered in this paper.
A1: Constant stress loading is adopted at each stress level Si, i = 1, . . . , r. The total

number of test units, n, is given and ni units are allocated to each stress level such that

ni = πin,
r∑

i=1
πi = 1, πi ≥ 0,

where πi is the proportion of test units allocated to the ith stress level.
A2: The maximum and use stress levels are pre-specified as SM and S0, respectively.

Under any constant stress level Si, i = 0, 1, . . . , r, the degradation characteristic yij(t) of
the jth unit (j = 1, 2, . . . , ni) follows a Gamma process with shape αit and scale λ.

A3: The relationship between the parameter αi and the stress level Si, i = 0, 1, . . . , r,
is assumed to follow a Arrhenius model

ln(αi) = a +
b

Si + 273
. (2.4)

A4: A unit is assumed to fail when the degradation characteristic yij(t) becomes
greater than the critical value ω.

A5: Let mij be the number of measurements for the jth unit at the stress level Si.
It is assumed that mij = m for all i and j. The measurement times (tijk, k = 1, 2, . . . , m)
and maximum test duration (tMij) for the jth test unit at the stress levels Si are pre-
determined. In particular, it is assumed that tMij = tM , tijk − tijk−1 = z and tijm = tM

for all i, j and k. That is tijm = mz.

For the jth unit at the stress level Si, let yijk be the degradation characteristic
measured at tijk, where tij(k−1) < tijk and tij0 = 0 for i = 1, 2, . . . , r, j = 1, 2, . . . , ni,
and k = 1, 2, . . . , m. Then, due to Assumption A2, each degradation increment 4yijk =
yijk−yij(k−1) follows a Gamma distribution with shape αi4tijk and scale λ, where4tijk =
tijk − tij(k−1) = z. That is, the probability density function of 4yijk is given by

f(4yijk) =
λαiz

Γ(αiz)
(4yijk)αiz−1 exp(−λ4yijk). (2.5)
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2.2 Standardization

In practical ADT experiments, the experimental region is between the use level S0

and maximum allowable level SM . For simplicity, the accelerating variable level is often
standardized as

xi =
( 1

S0 + 273
− 1

Si + 273

)/( 1
S0 + 273

− 1
SM + 273

)
,

such that the experimental region of x is in the range [0, 1]. Thus, in terms of the stan-
dardized variable level xi, the acceleration model (2.4) can be expressed as

ln(αi) = γ0 + γ1xi, 0 ≤ xi ≤ 1, (2.6)

where (γ0, γ1) is a re-parameterization of (a, b). That is

γ0 = a +
b

S0 + 273
, γ1 =

b

SM + 273
− b

S0 + 273
.

§3. Fisher Information

According to (2.5), the likelihood function of the ADT model for a gamma process is
given by

L(θ) =
r∏

i=1

ni∏
j=1

m∏
k=1

λαi4tijk

Γ(αi4tijk)
(4yijk)αi4tijk−1 exp(−λ4yijk), (3.1)

where θ = (γ0, γ1, λ). Then, the maximum likelihood estimator (MLE) θ̂ = (γ̂0, γ̂1, λ̂) of θ

can be obtained by a numerical method. The MLE of the MTTF under S0, M̂TTF0, can
be obtained by substituting γ̂0, γ̂1, λ̂ and S0 into (2.3) and (2.6) directly.

A test plan ξ consists of r test stress levels x1, x2, . . . , xr, and the corresponding

proportions of test units π1, π2, . . . , πr, such that
r∑

i=1
πi = 1. That is

ξ =

(
x1 x2 . . . xr

π1 π2 . . . πr

)
.

Theorem 3.1 The Fisher information matrix for a test plan ξ is the expected
value of the second derivative of the total log-likelihood, that is

I(θ, ξ) = E
(
− ∂2 lnL(θ)

∂θ∂θ′
)

=




r∑
i=1

Pi

r∑
i=1

xiPi − tM
λ

r∑
i=1

αini

r∑
i=1

xiPi

r∑
i=1

x2
i Pi − tM

λ

r∑
i=1

xiαini

− tM
λ

r∑
i=1

αini − tM
λ

r∑
i=1

xiαini
tM
λ2

r∑
i=1

αini




,

(3.2)
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where Pi =
ni∑

j=1

m∑
k=1

(αi4tijk)2ψ1(αi4tijk), and ψ1(x) = d2 ln Γ(x)/dx2 is a trigamma func-

tion. According to Assumption A5, Pi is simplified as mni(αiz)2ψ1(αiz).

Proof According to (3.1), Expression of the elements of the Fisher information
I(θ, ξ) in (3.2) are

E
(
− ∂2 lnL

∂γ2
0

)
= −

r∑
i=1

(αinitM ) ln λ +
r∑

i=1

ni∑
j=1

m∑
k=1

[
(4tijkαi)2ψ1(4tijkαi)

+ψ0(4tijkαi)4tijkαi

]−
r∑

i=1

ni∑
j=1

m∑
k=1

4tijkαiE(ln(4yijk)),

E
(
− ∂2 lnL

∂γ0∂γ1

)
= −

r∑
i=1

(xiαinitM ) ln(λ) +
r∑

i=1

ni∑
j=1

m∑
k=1

[
(4tijkαi)2xiψ1(4tijkαi)

+ψ0(4tijkαi)xi4tijkαi

]−
r∑

i=1

ni∑
j=1

m∑
k=1

xi4tijkαiE(ln(4yijk)),

E
(
− ∂2 lnL

∂γ0∂λ

)
= −

r∑
i=1

αinitM
1
λ

, E
(
− ∂2 lnL

∂γ1∂λ

)
= −

r∑
i=1

ni∑
j=1

m∑
k=1

4tijkαixi
1
λ

,

E
(
− ∂2 lnL

∂γ2
1

)
= −

r∑
i=1

ni∑
j=1

m∑
k=1

x2
i4tijkαi ln(λ) +

r∑
i=1

ni∑
j=1

m∑
k=1

[
(4tijkαixi)2ψ1(4tijkαi)

+ψ0(4tijkαi)x2
i4tijkαi

]−
r∑

i=1

ni∑
j=1

m∑
k=1

x2
i4tijkαiE(ln(4yijk)),

E
(
− ∂2 lnL

∂λ2

)
=

r∑
i=1

ni∑
j=1

m∑
k=1

4tijkαi
1
λ2

=
1
λ2

r∑
i=1

αinitim,

where E(ln(4yijk)) = ψ0(4tijkαi)− ln(λ), and ψ0(x) = d lnΓx/dx, ψ1(x) = d2 ln Γx/dx2

are the digamma and trigamma functions, respectively. According to

E(ln(4yijk)) = ψ0(4tijkαi)− ln(λ),

we obtain the Fisher information matrix (3.2). ¤

§4. Optimization Criteria and Optimization Procedure

4.1 D-Criterion

The main purpose of this paper is to study the choice of π1, π2, . . . , πr−1, and x1, x2,
. . . , xr, in a r-stress CSADT. D optimality criterion (Francis (2010)), often used in plan-
ning ALT, is based on the determinant of the Fisher information matrix, which is the
same as the reciprocal of the determinant of the asymptotic variance covariance matrix.
Note that the overall volume of the asymptotic joint confidence region of θ = (γ0, γ1, λ)
is proportional to |I(θ, ξ)−1|1/2 at a fixed confidence level. Consequently, a larger value of
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|I(θ, ξ)| is equivalent to a smaller asymptotic joint confidence ellipsoid of θ and a higher
joint precision of the estimators of θ. Motivated by this, our objective is to select the
optimal π1, π2, . . . , πr−1 and x1, x2, . . . , xr to maximum

|I(θ, ξ)|. (4.1)

4.2 V -Criterion

The mean of the failure time is an important characteristic and indispensable in
reliability analysis. In CSADT, we need to estimate the MTTF at the use stress with
maximum precision. We can use the asymptotic variance of MTTF at use stress as the
criterion for selecting the optimal ξ. Thus, according to (2.3) and by the δ method, the
approximate variance of M̂TTF0 is found to be

Avar(M̂TTF0) = C ′I(θ, ξ)−1C, (4.2)

where C ′ = (−(ωλ/α0+1/(2α0)), 0, ω/α0), and C ′ denotes the transpose of C. A desirable
test plan with a small Avar(M̂TTF0) value is said to be efficient for estimating MTTF0.

4.3 Equivalence Theorems

Equivalence theorems are used to verify the global optimality of test plan ξopt over
all possible test plans. Similar to the discussion in Francis (2010), general equivalence
theorem (GET) (Whittle (1973)) and its extensions to nonlinear models by White (1973)
and Chaloner and Larntz (1989) can be applied to the current problem. Let V denote the
set of values for the transformed accelerating variable. The test plan ξ may be regarded
as a probability measure over the design space V . General equivalence theorem applies
to the maximization of a concave criterion function ψ(ξ). The derivative of ψ at ξ in the
direction of ξ′ is defined by

d(ξ, ξ′) = lim
ε→0

ψ((1− ε)ξ + εξ′)− ψ(ξ)
ε

.

Let ξv denote the test plan with all allocations at v. ψ(ξ) is said to be differentiable at ξ,
if

d(ξ, ξ′) =
∫

d(ξ, ξv)ξ′(dv),

and d(ξ, ξ′) is linear in ξ′. Furthermore, d(ξ, v) represents d(ξ, ξv) and is called the (direc-
tional) derivative function of ψ at measure ξ. The GET, in the notation of this article, is
given below.

Theorem 4.1 (Whittle (1973)) 1. If ψ is concave, then an optimal design, ξopt,
can be equivalently characterized by any of the three conditions:
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(a) ξopt maximizes ψ. (b) ξopt minimizes sup
v∈V

d(ξ, v). (c) sup
v∈V

d(ξopt, v) = 0.

2. The point (ξopt, ξopt) is a saddle point of d in that

d(ξopt, ξ1) ≤ 0 = d(ξopt, ξopt) ≤ d(ξ2, ξopt),

for designs ξ1 and ξ2.
3. If ψ is also differentiable, then the support of ξopt is contained in the set of v for

which d(ξopt, v) = 0, in that d(ξopt, v) = 0 almost everywhere in ξopt measure.

Equivalence theorems require evaluation of a function d(ξ, v) often called the direc-
tional derivative of a test plan criterion at ξ, where v ∈ V . It suffices to plot d(ξopt, v) for
v ∈ V , and check that d(ξopt, v) = 0 for all levels v of ξopt, and d(ξopt, v) < 0 otherwise. If
these hold, then ξopt is considered to be globally optimal over V .

4.4 Optimality Procedure

4.4.1 Equivalence Theorem for D-Optimality

White (1973) extended the GET to the nonlinear design problem. She presented
results for D and Ds-optimality. The results, in the notation of this article, are given
below. For D-optimality, we have

dD(ξ, v) = tr{I(θ, ξv)[I(θ, ξ)]−1} − 3. (4.3)

Theorem 4.2 The following conditions on a design measure ξopt are equivalent:
1. ξopt is D-optimal. 2. sup

v∈V
dD(ξopt, v) = 0.

Proof It is easy to prove by using Theorem 4.1 and (4.3). ¤

4.4.2 Equivalence Theorem for V -Optimality

Whittle (1973) proved the GET in the framework of the linear design problem. How-
ever, Chaloner and Larntz (1989) remarked that the proof was valid for nonlinear design
problems under some additional regularity conditions. The criterion given by Eq. (4.2) is
a function of ξ that is convex. Theorem 4.1 is applied to this by considering ψ = −Avar

which is concave and satisfies the regularity conditions stated in Chaloner and Larntz
(1989). Hence, the GET applies. Observe that ψ = −Avar is a special case of the φ2

criterion in Chaloner and Larntz (1989). The derivative function for ψ = −Avar is given
by

dV (ξ, v) = C ′[I(θ, ξ)]−1I(θ, ξv)[I(θ, ξ)]−1C − C ′[I(θ, ξ)]−1C. (4.4)

Theorem 4.3 The following conditions on a design measure ξopt are equivalent:
1. ξopt is V -optimal. 2. sup

v∈V
dV (ξopt, v) = 0.
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Condition 2 of Theorem 4.2 and 4.3 is used to verify the D-optimality and V -
optimality of test plan respectively in this article.

§5. Example

In this section, we illustrate the proposed procedure with a numerical example based
on the carbon-film-resistor problem described by Meeker and Escobar (1998) on page
471. The resistance value of the carbon-film resistors over time is defined as a failure-
related degradation characteristic y(t). Obviously, y(0) = 0. The stress variable is the
temperature and the degradation characteristic is assumed to follow a gamma process at
a temperature level. Arrhenius model is assumed between the drift parameter and the
temperature. The maximum test temperature SM is specified as 173oC(446ok) and the
use test temperature S0 is 50oC(323ok). Changes in resistance will cause the reduction
of the performance of the product, or even system failures. The lifetime of the product is
typically defined as the time when the resistance value increases by a critical value from
its initial value under the operating temperature S0 = 50oC(323ok). The critical value is
taken to be ω = 5. The sample size n = 100 is considered for the CSADT.

For illustrative purpose, we adopt the true parameter configuration as

(a, b, λ) = (4.17,−4058.79, 16), (5.1)

which have been adopted by Tseng et al. (2009) for optimal step-stress accelerated degra-
dation test plan. The new parameters θ are obtained by re-parameterization of (a, b, λ).
That is

θ = (γ0, γ1, λ) = (−8.396, 3.465, 16). (5.2)

The maximum test duration is assumed to be 1200h (i.e. tM = 1200) and the number
of measurements for each unit is assumed 40 (i.e. m = 40). According to Assumption
A5, the interval of two measure times, z = tijk − tijk−1, is equal to 30. D-criterion and
V -criterion can be used to find the optimum plans for the ADT experiment. With the
particular problem specification, (4.1) and (4.2) are functions of the plan ξ. For a given
ξ, the values of (4.1) and (4.2) can be easily calculated. Thus, we can search for the plan
ξ based on D-criterion or V -criterion.

For simplicity, assume that r = 2 for the rest of the article. The results for r > 2 are
similarly derived. For designs with r = 2, by grid search we obtained the optimal plans
ξD and ξV for D-criterion and V -criterion respectively,

ξD =

(
0 1

0.34 0.66

)
, ξV =

(
0 1

0.3 0.7

)
.
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Moreover, the optimal values of D-criterion and V -criterion are 6888878 and 357041194
respectively. The equivalence Theorem 4.2 and 4.3 are applied to verify the global opti-
mality of the test plans. Figure 1 and Figure 2 verify the global optimality of test plans
for D-criterion and V -criterion respectively. The results indicate that the optimal stress
levels for the D-optimal plan ξD and the V -optimal plan ξV are the use stress (S0 = 50oC)
and highest stress (Sh = 173oC). The optimal assign ratios of π1 and π2 are almost same
for the D-optimal plan and the V -optimal plan.
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Figure 1 Plot of dD(ξopt, v) versus stan- Figure 2 Plot of dV (ξopt, v) versus stan-
dardized stress v to verify opti- dardized stress v to verify opti-

mality of test plans for D-criterion mality of test plans for V -criterion

§6. Compromise Test Plan

Since the optimal ADT plan in Section 5 involves two stress levels, it dose not suitable
for application. To avoid this problem, Meeker and Escobar (1998) proposed compromise
test plans with three stress levels that are motivated by the optimum test plans. Thus, a
compromise test plan which is similar to Meeker (1984) is proposed as follows:

1. The middle stress level x2 is set to (x1 + x3)/2, where the high stress level x3 is
set to 1.

2. The proportion (π2) of test units allocated to x2 is pre-specified (0 < π2 ≤ 0.3).
In this paper, we set π2 = 0.2.

3. For a given π2, our objective is to select the low stress level x1 and the proportion
(π1) of test units to maximum |I(θ, ξ)| or to minimum Avar(MTTF0).

It is difficult to analytically determine the optimal values of x1 and π1 since the objective
function |I(θ, ξ)| and Avar(MTTF0) are very complex. Therefore, a simple grid search
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method is employed. Grids are obtained by dividing each range of x1 and π1 into 100 equal
parts. Then, the optimal solution, xc

1 and πc
1, is determined as the grid point at which

|I(θ, ξ)| attains the maximum or Avar(MTTF0) attains the minimum. Compromise ADT
plans for D-criterion and V -criterion are shown in Table 1 and Table 2. The optimized
D-criterion value and V -criterion value from compromise plans are 4804903 and 416938034
respectively, about 29% and 16% departure from the global optimum. Such these plans,
with more than two levels of temperature, would be preferred in practice.

Table 1 ADT compromise test plan for D-criterion

Level Allocation

Condition Temp Standardized Proportion Number

i (oC) xc
i πc

i nc
i

Low 50 0 0.26 26

Middle 111.5 0.5 0.2 20

High 173 1 0.54 54

Table 2 ADT compromise test plan for V -criterion

Level Allocation

Condition Temp Standardized Proportion Number

i (oC) xc
i πc

i nc
i

Low 50 0 0.23 23

Middle 111.5 0.5 0.2 20

High 173 1 0.57 57

§7. Sensitivity Analysis

In this section, we follow the framework of sensitivity analysis in Tseng et al. (2009).
In practice, the estimated parameters θ̂ = (γ̂0, γ̂1, λ̂) would depart from the true param-
eters θ = (γ0, γ1, λ). Hence, it is important to investigate the effects of these unknown
parameters on the optimal test plan. Without loss of generality, we assume that ε1, ε2 and
ε3 denote the predicted errors for γ0, γ1, and λ, respectively. Under the same configuration
(n,m, z, ω) = (100, 40, 30, 5), Table 3 and Table 4 present the optimal plan under various
combinations of ((1+ε1)γ0, (1+ε2)γ1, (1+ε3)λ) according to a L9(33−1) orthogonal array
with θ = (γ0, γ1, λ) in (5.2). From these results, it shows that the D-test plan is quite
robust for a moderate departure from the assumed values of these parameters. Note that
the optimal plans for V -criterion are slightly affected by the parameters of θ = (γ0, γ1, λ).
Hence, to design a better ADT plan, we need more precise estimation of θ.
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Table 3 Optimal ADT plan for D-criterion under various combinations
of parameters ((1 + ε1)γ0, (1 + ε2)γ1, (1 + ε3)λ)

ε1 ε2 ε3 x1 x2 π1 π2 D-criterion value

−5% −5% −5% 0 1 0.34 0.66 9287719

−5% 0 0 0 1 0.34 0.66 9666715

−5% +5% +5% 0 1 0.34 0.66 10097190

0 −5% 0 0 1 0.34 0.66 5824802

0 0 +5% 0 1 0.34 0.66 6125322

0 +5% −5% 0 1 0.34 0.66 8659532

+5% −5% +5% 0 1 0.34 0.66 3626175

+5% 0 −5% 0 1 0.34 0.66 5163548

+5% +5% 0 0 1 0.34 0.66 5422761

0 0 0 0 1 0.34 0.66 6753168

Table 4 Optimal ADT plan for V -criterion under various combinations
of parameters ((1 + ε1)γ0, (1 + ε2)γ1, (1 + ε3)λ)

ε1 ε2 ε3 x1 x2 π1 π2 V -criterion value

−5% −5% −5% 0 1 0.33 0.67 122634983

−5% 0 0 0 1 0.34 0.66 125656311

−5% +5% +5% 0 1 0.35 0.65 129058176

0 −5% 0 0 1 0.29 0.71 396043518

0 0 +5% 0 1 0.30 0.70 397002563

0 +5% −5% 0 1 0.32 0.68 297373093

+5% −5% +5% 0 1 0.25 0.65 1317078785

+5% 0 −5% 0 1 0.27 0.63 966020478

+5% +5% 0 0 1 0.28 0.72 964409566

0 0 0 0 1 0.30 0.70 357041194

§8. Conclusion and Areas for Further Research

In this paper, we obtain the optimal CSADT plan based on D-criterion and V -
criterion. The sensitivity analysis reveals that the optimal test plans are quite robust to
moderate departures from the assumed values of the model parameters. In practice, the
optimal designs often depend on the preestimates of its parameters. In order to overcome
this problem, attractive future research is to follow a Bayesian approach to planning by
assigning prior distributions to experimental conditions and deriving the corresponding
optimal designs.
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基于Gamma过程加速退化试验的优化设计

管 强1,2 汤银才1

(1华东师范大学金融统计学院, 上海, 200241; 2三明学院信息工程学院, 三明, 365004)

本文研究了基于Gamma过程恒定应力加速退化试验的优化设计问题. 在D–最优和V –最优为准则下, 确

定了试验最优应力和各个应力下所分配的最优比例数. 广义等价性定理被用来确保最优点的全局最优性. 另

外我们还研究了其平衡试验. 最后, 通过一个例子说明本文所提的方法, 同时通过敏感性分析研究了优化点的

稳键性.

关键词: 最优设计, 加速退化试验, Gamma过程, Fisher信息量, 可靠性.

学科分类号: O213.2.

《
应
用
概
率
统
计
》
版
权
所
用




