
应用概率统计 第二十九卷
第三期 2013年6月

Chinese Journal of Applied Probability
and Statistics Vol.29 No.3 Jun. 2013

A Method for Estimating the Association Parameter

in the Clayton Model ∗

Zhang Qiaozhen

(Department of Statistics, School of Mathematical Sciences and LPMC, Nankai University,

Tianjin, 300071)

He Shuyuan

(School of Mathematical Sciences, Capital Normal University, Beijing, 100048)

Abstract
Based on the estimates of bivariate hazard functions, for right censored data, we give an

estimator of association parameter in Clayton model in the paper. The consistency and asymptotic

distribution are derived for the estimator. Simulation studies show that this procedure is effective.
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§1. Introduction

Bivariate survival time data arises when a sample consists of two variables. The

analysis of bivariate survival time must reflect the non-independence of failures between

the two variables. Let T1 and T2 be survival times with continuous probability density

f(t1, t2). For (t1, t2) such that f(t1, t2) > 0, Clayton model defined by

f(t1, t2)
∫ ∞

t1

∫ ∞

t2

f(u, v)dudv = θ

∫ ∞

t1

f(u, t2)du

∫ ∞

t2

f(t1, v)dv

is an appealing representation for such data. The parameter θ, called association param-

eter, measures the degree of association between T1 and T2. Independence of T1 and T2

is implied by θ = 1 and positive association is implied by θ > 1. Inverse association is

implied by θ < 1, but this case seems to have little practical importance (see Clayton

(1978)).
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298 应用概率统计 第二十九卷

Define the following bivariate hazard functions:

λ10(t1, t2) =

∫ ∞

t2

f(t1, v)dv

F (t1−, t2)
, λ01(t1, t2) =

∫ ∞

t1

f(u, t2)du

F (t1, t2−)
, λ11(t1, t2) =

f(t1, t2)
F (t1−, t2−)

,

where F (t1, t2) = P(T1 > t1, T2 > t2) is the joint survival function of (T1, T2). Using the

functions, we have an equivalent form of the Clayton model,

λ11(t1, t2)
λ10(t1, t2)λ01(t1, t2)

= θ. (1.1)

Many authors considered the inference of θ. Clayton (1978) gave an estimator of

θ for uncensored data. Oakes (1986) derived the asymptotic variance of Clayton’s es-

timator and obtained a simple explicit formula for uncensored data. He indicated that

a modification is necessary for random censored data. Genest et al. (1995) estimated θ

from a pseudo likelihood with nonparametric estimation of the marginal survival func-

tions for complete data. Shih and Louis (1995) investigated two-stage parametric and

two-stage semi-parametric estimation procedure in copula model where censoring was al-

lowed. Glidden (2000) extended the above approach and proposed a two-stage estimator

of θ, the estimator is consistent and asymptotically normal under mild regularity condi-

tions. Nan et al. (2006) used Clayton model to describe association of age at a marker

event and age at menopause. Ghosh (2008) used the model to solve problem of surrogate

endpoints in clinical research. Emura et al. (2010) extended an existing method suitable

for the Clayton model to general Archimedean copula models and derived the asymptotic

properties of the proposed test statistics.

This paper is organized as follows. In Section 2, we give a new estimator of θ by

the ratio of hazard functions. In Section 3, we present the asymptotic properties of the

estimator. In Section 4, we present simulation studies.

§2. The Estimation of Association

Let T = (T1, T2) be a 2-vector of failure times with continuous survival function

F (t1, t2). Let C = (C1, C2) be the censoring time independent of T with survival function

G(t1, t2) = P(C1 > t1, C2 > t2).

Under right censorship, the data consist of n realizations of (X1, X2, δ1, δ2), where Xi =

min(Ti, Ci), δi = I{Ti ≤ Ci}. Note that the survival function of (X1, X2) is H = F · G.
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The observation

(X1j , X2j , δ1j , δ2j), j = 1, . . . , n

are i.i.d. copies of (X1, X2, δ1, δ2).

Define bivariate cumulative functions:

Λ10(t1, t2) =
∫ t1

0
λ10(u, t2)du =

∫ t1

0

−F (du, t2)
F (u−, t2)

,

Λ01(t1, t2) =
∫ t2

0
λ01(t1, v)dv =

∫ t2

0

−F (t1,dv)
F (t1, v−)

,

Λ11(t1, t2) =
∫ t2

0

∫ t1

0
λ11(u, v)dudv =

∫ t2

0

∫ t1

0

F (du, dv)
F (u−, v−)

.

Let

Ĥ(t1, t2) =
1
n

n∑
j=1

I{X1j > t1, X2j > t2},

K̂1(t1, t2) =
1
n

n∑
j=1

I{X1j > t1, X2j > t2, δ1j = 1, δ2j = 1},

K̂2(t1, t2) =
1
n

n∑
j=1

I{X1j > t1, X2j > t2, δ1j = 1},

K̂3(t1, t2) =
1
n

n∑
j=1

I{X1j > t1, X2j > t2, δ2j = 1},

and

H = E(Ĥ), K1 = E(K̂1), K2 = E(K̂2), K3 = E(K̂3).

It can be checked that

Λ10(t1, t2) = −
∫ t1

0

K2(du, t2)
H(u−, t2)

,

Λ01(t1, t2) = −
∫ t2

0

K3(t1,dv)
H(t1, v−)

,

Λ11(t1, t2) =
∫ t1

0

∫ t2

0

K1(du, dv)
H(u−, v−)

.

Thus, the estimates of the bivariate cumulative hazard functions can be defined as follows,

Λ̂10(t1, t2) = −
∫ t1

0

K̂2(du, t2)

Ĥ(u−, t2)
=

n∑
j=1

I{X1j ≤ t1, X2j > t2, δ1j = 1}
nĤ(X1j−, t2)

,

Λ̂01(t1, t2) = −
∫ t2

0

K̂3(t1,dv)

Ĥ(t1, v−)
=

n∑
j=1

I{X1j > t1, X2j ≤ t2, δ2j = 1}
nĤ(t1, X2j−)

,

Λ̂11(t1, t2) =
∫ t1

0

∫ t2

0

K̂1(du,dv)

Ĥ(u−, v−)
=

n∑
j=1

I{X1j ≤ t1, X2j ≤ t2, δ1j = 1, δ2j = 1}
nĤ(X1j−,X2j−)

.
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Fermanian (1997) proposed the following kernel estimators of λ10, λ01, λ11,

λ̂10(t1, t2) =
∫

K
(1)
h (t1 − u)Λ̂10(du, t2)

=
n∑

i=1
K

(1)
h (t1 −X1i)

I{δ1i = 1, X2i > t2}
nĤ(X1i−, t2)

,

λ̂01(t1, t2) =
∫

K
(1)
h (t2 − v)Λ̂01(t1,dv)

=
n∑

i=1
K

(1)
h (t2 −X2i)

I{δ2i = 1, X1i > t1}
nĤ(t1, X2i−)

,

λ̂11(t1, t2) =
∫ ∫

K
(2)
h (t1 − u, t2 − v)Λ̂11(du, dv)

=
n∑

i=1
K

(2)
h (t1 −X1i, t2 −X2i)

I{δ1i = 1, δ2i = 1}
nĤ(X1i−,X2i−)

,

where we use
∫

for
∫ ∞

−∞
and

K
(1)
h (u) =

1
h

K(1)(u/h), K
(2)
h (u, v) =

1
h2

K(2)(u/h, v/h).

Let K(1) be a bounded Lebesgue-integrable kernel function with integral 1 defined on

the real line R andK(2) be a bounded Lebesgue-integrable kernel function with integral 1

defined on the plane R2.

In view of (1.1), for any (t1, t2) such that λ̂10(t1, t2)λ̂01(t1, t2) > 0, we can define an

estimator of θ by

θ̂(t1, t2) =
λ̂11(t1, t2)

λ̂10(t1, t2)λ̂01(t1, t2)
. (2.1)

§3. Asymptotic Theory

Consider the subset τ = [0, τ1] × [0, τ2] of R2 and a positive ε such that H(τ1 + ε,

τ2 + ε) > 0. Select the bandwidth (hn)n→∞ such that hn → 0.

General assumptions on the kernel functions K(1),K(2) are:

(K1) K(1) is compactly supported with support [−A,A], K(2) is compactly supported

with support [−A1, A1]× [−A2, A2];

(K2) K(i)is symmetric.

In the following, by saying a function is C2 in a set, we mean it is twice continuous

differentiable in the set.

Theorem 3.1 Suppose K(1),K(2) satisfy conditions (K1) and (K2), f is continu-

ous on τ , for all (t1, t2) ∈ τ , λ10(·, t2) is C2 in a neighborhood of t1, λ01(t1, ·) is C2 in a
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neighborhood of t2 and λ11(·, ·) is C2 in a neighborhood of (t1, t2). If λ01(t1, t2)λ01(t1, t2)

> 0 for (t1, t2) ∈ τ and nh2
n/ lnn →∞, then θ̂(t1, t2) → θ in probability for all (t1, t2) ∈ τ ,

where θ̂(t1, t2) is defined in (2.1).

Proof From Proposition 2.5 of Fermanian (1997), we can derive for (t1, t2) ∈ τ ,

λ̂10(t1, t2) → λ10(t1, t2), in prob,

λ̂01(t1, t2) → λ01(t1, t2), in prob,

λ̂11(t1, t2) → λ11(t1, t2), in prob.

It follows that

λ̂11

λ̂01λ̂10

(t1, t2) → λ11

λ01λ10
(t1, t2) = θ, in prob. ¤

Theorem 3.2 Under the conditions of Theorem 3.1, if H(t1, t2) is continuous on

τ , and nh5
n = o(1), nh2

n/ lnn →∞, then for any (t1, t2) ∈ τ ,

(nh2
n)1/2(θ̂(t1, t2)− θ) ⇒ N(0, σ2(t1, t2)),

where θ̂(t1, t2) is defined in (2.1), “⇒ ” denotes convergence in distribution and

σ2(t1, t2) =
θ2

H(t1, t2)λ11(t1, t2)

∫ ∫
[K(2)(u, v)]2dudv. (3.1)

Proof Firstly, we have
√

nh2
n(θ̂(t1, t2)− θ)

=
√

nh2
n

( λ̂11(t1, t2)

λ̂10(t1, t2)λ̂01(t1, t2)
− λ11(t1, t2)

λ10(t1, t2)λ01(t1, t2)

)

=
√

nh2
n

( λ̂11

λ̂10λ̂01

− λ11

λ̂10λ̂01

+
λ11

λ̂10λ̂01

− λ11

λ10λ̂01

+
λ11

λ10λ̂01

− λ11

λ10λ01

)
(t1, t2)

=
1

λ̂10(t1, t2)λ̂01(t1, t2)

[√
nh2

n(λ̂11(t1, t2)− λ11(t1, t2))
]

+
√

hn
λ11(t1, t2)

λ̂01(t1, t2)

[√
nhn

( 1

λ̂10(t1, t2)
− 1

λ10(t1, t2)

)]

+
√

hn
λ11(t1, t2)
λ10(t1, t2)

[√
nhn

( 1

λ̂01(t1, t2)
− 1

λ01(t1, t2)

)]
. (3.2)

Using Proposition 2.6 of Fermanian (1997), for any (t1, t2) ∈ τ we have
√

nh2
n(λ̂11(t1, t2)− λ11(t1, t2)) ⇒ N(0,Φ(t1, t2)),

where

Φ(t1, t2) =
λ11(t1, t2)
H(t1, t2)

∫ ∫
[K(2)(u, v)]2dudv.
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Proposition 2.6 of Fermanian (1997) also gives the asymptotic property of λ̂10(t1, t2) and

λ̂01(t1, t2), that is
√

nhn(λ̂10(t1, t2)− λ10(t1, t2)) and
√

nhn(λ̂01(t1, t2)− λ10(t1, t2))

are asymptotically normal and hence they are bounded in probability.

Using Theorem 3.1, we can derive both
√

nhn

( 1

λ̂10(t1, t2)
− 1

λ10(t1, t2)

)
and

√
nhn

( 1

λ̂01(t1, t2)
− 1

λ10(t1, t2)

)

are bounded in probability. Using the fact that hn = o(1), we get that the last two terms

of (3.2) are both op(1).

At last, using the consistency of λ̂10(t1, t2) and λ̂01(t1, t2), we know that the first

term of (3.2) converges in distribution to a normal random variable with mean zero and

variance

σ2(t1, t2) =
Φ11(t1, t2)

λ2
10(t1, t2)λ

2
01(t1, t2)

=
1

λ2
10(t1, t2)λ

2
01(t1, t2)

λ11(t1, t2)
H(t1, t2)

∫ ∫
[K(2)(u, v)]2dudv

=
θ2

H(t1, t2)λ11(t1, t2)

∫ ∫
[K(2)(u, v)]2dudv. ¤

Note that σ2(t1, t2) can be estimated by

σ̂2(t1, t2) =
θ̂(t1, t2)2

Ĥ(t1, t2)λ̂11(t1, t2)

∫ ∫
[K(2)(u, v)]2dudv.

The consistency of σ̂2(t1, t2) is proved by Theorem 3.1 and the consistency of Ĥ(t1, t2).

So to find a more efficient estimator, we only need to use(ṫ1, ṫ2) such that Ĥ(t1, t2)λ̂11(t1, t2)

hits its maximum value. In this case, the asymptotic variance of θ̂(ṫ1, ṫ2) may be smaller.

§4. Simulation Study

Simulation studies are conducted to examine the properties of the estimator θ̂(t1, t2).

We choose n=100 and n=200 to conduct 2000 simulations at each of θ = 1.2, 1.4, 1.6, 1.8

and 2.0 with data generated from

F (t1, t2) =
(
e(θ−1)t1 + e(θ−1)t2 − 1

)−1/(θ−1)
.

In addition, three types of censoring are explored:

1) No censoring.
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2) Both survival variables are independently censored at the fixed time C = 2, that

is we set C1 = C2 = 2 and this yields approximately 13.53% marginal censoring;

3) Two censoring variables are independently and identically distributed uniformly

over [0, 2.3], and this giving approximately 39.12% censorship on each marginal random

variable.

The probability of both survival variables being censored increases with θ varying

from 1.2 to 2.0. For example, for the first type of censoring, when θ = 1.2, P(T1 > C1,

T2 > C2) = 16.84%, for θ = 2.0, the probability is 20.68%.

In the simulation study, the bandwidth is hn = n−1/6, the kernel is selected to be the

Epanechnikov’s kernel which was used in Fermanian (1997),

K(1)(u) =
3

4
√

5

(
1− u2

5

)
I{u ∈ [−

√
5,
√

5]},

K(2)(u, v) =
( 3

4
√

5

)2(
1− u2

5

)(
1− v2

5

)
· I{u ∈ [−

√
5,
√

5]}I{v ∈ [−
√

5,
√

5]}.

From the formula of σ2(t1, t2), we know that to find an estimator with smaller vari-

ance, one only need to find (t1, t2) which maximize H(t1, t2)λ(t1, t2). However, H(t1, t2)

·λ(t1, t2) is unknown, we use (ṫ1, ṫ2) such that Ĥ(t1, t2)λ̂11(t1, t2) hits its maximum value.

Since

H(t1, t2)λ(t1, t2) = G(t1, t2)f(t1, t2),

in our example, G(t1, t2)f(t1, t2) is a decreasing function, so σ2(0, 0) is the maximum value,

and (ṫ1, ṫ2) is closing to (0, 0). The kernel function is symmetrical, so for θ̂1 , θ̂(ṫ1, ṫ2),

there is little observation since the left side of the point, and now only 60% of the sample

can be used to compute the kernel estimates. Here we also estimate the association

parameter at (t∗1, t
∗
2) = (median{X1j},median{X2j}) and the estimator is denoted by θ̂2.

The simulation results are displayed in Table 1.

In Table 1, “(θ̂1 + θ̂2)/2” refers the average of θ̂1 and θ̂2, “θ̃” stands for the two-stage

estimator of Glidden (2000). “Mean” denotes the mean of relating estimator from the

2000 simulations. “SD” is the standard error, for θ̂1, “SD” equals (nh2
n)−1/2σ̂(ṫ1, ṫ2), for

θ̂2, “SD” is equal to (nh2
n)−1/2σ̂(t∗1, t

∗
2). However, there isn’t the theoretical formula for

the variance of (θ̂1 + θ̂2)/2, we use sample standard deviation to compute its “SD”.

It can be seen from Table 1 that the standard error is decreasing with n increasing, all

estimators perform worse with the level of association increasing or the larger censoring

proportion. The bias of θ̂1 is a little bit larger than θ̂2 and θ̃, the reason is θ̂1 using

less sample as (ṫ1, ṫ2) approaches (0, 0). However, the sample standard deviation of θ̂1 is

noticeably smaller than the others, especially when θ is relatively large. The estimators θ̂2
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and θ̃ performs quite similar, when θ is small, their sample stand deviations differ little,

it seems θ̃ performs a little better. However with θ increasing, especially when θ = 2, the

“SD” of θ̂2 is smaller than θ̃. So the table indicates that our estimator performs robustly.

Table 1 Summary of simulation results

θ n Cens.
θ̂1 θ̂2 (θ̂1 + θ̂2)/2 θ̃

Mean SD Mean SD Mean SD Mean SD

1.20

0.0% 1.25 0.10 1.19 0.18 1.22 0.12 1.21 0.14

100 13.53% 1.26 0.12 1.22 0.19 1.22 0.13 1.21 0.14

39.12% 1.15 0.15 1.22 0.20 1.23 0.15 1.22 0.18

0.0% 1.23 0.08 1.21 0.11 1.21 0.08 1.20 0.10

200 13.53% 1.22 0.10 1.21 0.13 1.21 0.10 1.21 0.10

39.12% 1.18 0.15 1.19 0.15 1.22 0.13 1.21 0.13

1.40

0.0% 1.37 0.07 1.42 0.16 1.41 0.10 1.42 0.16

100 13.53% 1.45 0.13 1.43 0.18 1.43 0.14 1.44 0.16

39.12% 1.33 0.17 1.45 0.23 1.43 0.18 1.46 0.20

0.0% 1.42 0.06 1.39 0.14 1.41 0.09 1.40 0.14

200 13.53% 1.42 0.11 1.41 0.17 1.41 0.12 1.41 0.15

39.12% 1.43 0.15 1.41 0.18 1.41 0.12 1.41 0.16

1.60

0.0% 1.57 0.08 1.58 0.18 1.58 0.12 1.62 0.20

100 13.53% 1.63 0.15 1.62 0.23 1.62 0.17 1.63 0.22

39.12% 1.66 0.17 1.64 0.26 1.64 0.20 1.65 0.27

0.0% 1.62 0.06 1.60 0.14 1.61 0.09 1.60 0.15

200 13.53% 1.58 0.13 1.61 0.18 1.61 0.14 1.61 0.17

39.12% 1.64 0.16 1.59 0.21 1.61 0.17 1.61 0.19

1.80

0.0% 1.77 0.08 1.81 0.20 1.78 0.13 1.82 0.22

100 13.53% 1.85 0.16 1.78 0.23 1.82 0.18 1.84 0.26

39.12% 1.87 0.18 1.85 0.25 1.83 0.20 1.83 0.29

0.0% 1.78 0.07 1.80 0.16 1.79 0.12 1.81 0.18

200 13.53% 1.82 0.15 1.79 0.19 1.81 0.15 1.81 0.20

39.12% 1.83 0.16 1.78 0.23 1.81 0.18 1.82 0.24

2.00

0.0% 2.05 0.12 1.97 0.22 2.02 0.16 1.97 0.24

100 13.53% 2.05 0.17 2.03 0.25 2.03 0.19 2.04 0.27

39.12% 2.07 0.20 2.04 0.31 2.04 0.24 2.04 0.32

0.0% 2.05 0.14 2.02 0.18 2.01 0.14 1.98 0.19

200 13.53% 2.04 0.16 1.97 0.23 2.03 0.18 2.03 0.24

39.12% 2.04 0.18 2.03 0.25 2.03 0.20 2.03 0.26
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The estimator θ̂(t1, t2) is a function of (t1, t2), so if we want, we can estimate the

association parameter in many points. Considering the more information we use, perhaps

the estimator will be more accurate, thus a weighted estimator
∑

(t1,t2)

w(t1, t2)θ̂(t1, t2) is a

better choice. In Table 1, “(θ̂1 + θ̂2)/2” is a simple weighted estimator, comparing the bias

and standard error with θ̃, we can see that the simple weighted estimator performs better

than θ̃, especially the difference between their “SD” becomes larger with θ increasing.

However, the choice of weight w(t1, t2) needs further investigation.

§5. Conclusion

This paper applies the results of Fermanian (1997) and derives a ratio estimator of

the association parameter θ in Clayton model, then the new estimator is shown to be

consistent and asymptotically normal. Simulation studies indicate that our estimator is

effective.

Since θ̂(t1, t2) is a function of (t1, t2), we need to choose an appropriate point to give

a good estimator. Simulation results tell us the appropriate point can be (ṫ1, ṫ2), however

if (ṫ1, ṫ2) is closing to (0, 0), the bias of estimator is large, in the situation, one need to

choose other points to estimate parameter in terms of the balance between bias and stand

deviation. Simulation results tell us that a weighted estimator is a good choice, thought

the weight needs further study.

Oakes (1989) introduced a local association parameter

θ∗(t1, t2) =
f(t1, t2)F (t1, t2)∫ ∞

t1

f(u, t2)du

∫ ∞

t2

f(t1, v)dv

.

Since θ∗(t1, t2) is a function of (t1, t2) rather than a constant, so our θ̂(t1, t2) can also be

used to estimate θ∗(t1, t2).
In addition, as we know, the problem of estimating of bivariate survivor function

F (t1, t2) = P(T1 > t1, T2 > t2) when the data are subject to censoring in either or both

components is surprisingly difficult. Various proposals for the estimation have been made.

However, the estimators suffer the drawback that the estimates are not survival functions

because they are not monotone. But if the Clayton model holds, then we can use

F̂ (t1, t2) =
[( 1

F̂1(t1)

)θ̂(t1,t2)−1
+

( 1

F̂2(t2)

)θ̂(t1,t2)−1
− 1

]−1/[θ̂(t1,t2)−1]

as an estimator of F (t1, t2), where F̂1(t1), F̂2(t2) are the Kaplan-Meier estimators of the

marginal survival functions F1(t1) and F2(t2).

《
应

用
概

率
统

计
》

版
权

所
用



306 应用概率统计 第二十九卷

References

[1] Clayton, D.G., A model for association in bivariate life tables and its application in epidemiological

studies of familial tendency in chronic disease incidence, Biometrika, 65(1)(1978), 141–151.

[2] Emura, T., Lin, C.W. and Wang, W.J., A goodness-of-fit test for Archimedean copula models in the

presence of right censoring, Computational Statistics & Data Analysis, 54(12)(2010), 3033–3043.

[3] Fermanian, J.D., Multivariate hazard rates under random censorship, Journal of Multivariate Anal-

ysis, 62(2)(1997), 273–309.

[4] Genest, C., Ghoudi, K. and Rivest, L.-P., A semiparametric estimation procedure of dependence

parameters in multivariate families of distributions, Biometrika, 82(3)(1995), 543–552.

[5] Glidden, D.V., A two-stage estimator of the dependence parameter for the Clayton-Oakes model,

Lifetime Data Analysis, 6(2)(2000), 141–156.

[6] Ghosh, D., Semiparametric inference for surrogate endpoints with bivariate censored data, Biometrics,

64(1)(2008), 149–156.

[7] Nan, B., Lin, X.H., Lisabeth, L.D. and Harlow, S.D., Piecewise constant cross-ratio estimation for

association of age at a marker event and age at menopause, Journal of the American Statistical

Association, 101(473)(2006), 65–77.

[8] Oakes, D., Semiparametric inference in a model for association in bivanate survival data, Biometrika,

73(2)(1986), 353–361.

[9] Oakes, D., Bivariate survival models induced by frailties, Journal of the American Statistical Associ-

ation, 84(406)(1989), 487–493.

[10] Shih, J.H. and Louis, T.A., Inferences on the association parameter in copula models for bivariate

survival data, Biometrics, 51(4)(1995), 1384–1399.

一种估计Clayton模型中关联参数的方法
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在右删失情形下, 基于二元风险函数的核估计, 我们对Clayton模型中的关联参数给出了一种新的估计方

法. 新的估计量具有相合性和渐近分布, 随机模拟也显示这种估计方法是非常有效的.

关键词: 右删失, Clayton模型, 关联参数, 渐近理论.
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