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Abstract
In this paper, we prove a new central limit theorem for nonhomogeneous Markov chain by

using the martingale central limit theorem under the condition of convergence of transition prob-

ability matrices for nonhomogeneous Markov chain in Cesàro sense, which can not be implied by

Dobrushin’s work.
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§1. Introduction

Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values in state space

S = {1, 2, . . . , b} with initial distribution

µ = (µ(1), µ(2), . . . , µ(b)) (1.1)

and transition matrices

Pn = (pn(i, j)), i, j ∈ S, n ≥ 1, (1.2)

where pn(i, j) = P(Xn = j|Xn−1 = i). Then

p(x0, x1, . . . , xn) = µ(x0)
n∏

k=1

pk(xk−1, xk). (1.3)

For an arbitrary stochastic square matrix Q whose elements are qi,j we shall set the

ergodic δ-coefficient equal to

δ(Q) = sup
i,j∈S

∑
k∈S

[qi,k − qj,k]+,
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where [a]+ = max{0, a}. Also, define the related α-coefficient α(Q) = 1− δ(Q).

For the transition probability matrices {Pk : 1 ≤ k ≤ n}, let

αn = min
1≤k≤n

α(Pk).

In addition, let f be any function defined on S. We shall write

Sn =
n∑

k=1

f(Xk).

Denote the expectations and variances respectively as follows

E[Sn] =
n∑

k=1

E[f(Xk)]

and

V (Sn) = E[Sn]2 − (E[Sn])2.

Our goal of this work is to describe conditions on X and f under which the central

limit theorem holds for Sn. Our conditions are different from which given by Dobrushin

(1956) as the following lemma:

Lemma 1.1 Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values

in state space S = {1, 2, . . . , b} with initial distribution of equation (1.1) and transition

matrices of (1.2). Let f be any function defined on the state space S. If for all 1 ≤ i ≤ n,

the variances are bounded below, i.e.

V (f(Xi)) = E[f(Xi)]2 − (E[f(Xi)])2 > c > 0.

Then if

lim
n→∞n1/3αn = ∞, (1.4)

we have the standard normal convergence

Sn − E[Sn]√
V (Sn)

D⇒ N(0, 1), (1.5)

here and thereafter D⇒ denotes convergence in distribution.

The central limit theorem (CLT) for additive functionals of stationary, ergodic Markov

chains has been studied intensively during the last decades. A basic approach for proving

the CLT, initiated by Gordin and Lif̌sic (1978) and afterwards pursued by several au-

thors such as Derriennic and Lin (2001, 2003), Gordin and Holzmann (2004), Kipnis and

Varadhan (1986), Maxwell and Woodroofe (2000) and Woodroofe (1992), is to construct
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a martingale approximation to the partial sums. These are decomposed into a sum of

a martingale with stationary increments and a remainder term. After showing that the

remainder term is negligible in some suitable sense, asymptotic normality follows from

a martingale CLT. Recently, Holzmann (2005) also proved the central limit theorems by

this method of martingale approximations for continuous-time and discrete-time station-

ary Markov processes.

Nearly fifty years ago, Dobrushin (1956) proved in his thesis an important central

limit theorem for Markov chains in discrete time that are not necessarily homogeneous

in time. After Dobrushin’s work, some refinements and extensions of his central limit

theorem, some of which under more stringent assumptions, were proved by Statulyavichus

(1969) and Sarymsakov (1961). Based on Dobrushin’s work, Sethuraman and Varadhan

(2005) gave a shorter and different proof elucidating more assumptions by using martingale

approximation.

In this note, we will consider another central limit theorem for nonhomogeneous

Markov chains with finite state space in discrete time which can not be implied by Do-

brushin’s results. Our main result is as follows:

Theorem 1.1 Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values

in state space S = {1, 2, . . . , b} with initial distribution of (1.1) and transition matrices

of (1.2). Let f be any function defined on the state space S. Let P = (p(i, j))b×b be

another transition matrix and P irreducible, π = (π1, π2, . . . , πb) is the unique stationary

distribution determined by the transition matrix P . Suppose that

lim
n→∞

1
n

n∑
k=1

|pk(i, j)− p(i, j)| = 0, ∀ i, j ∈ S, (1.6)

and

θ =
∑
i∈S

π(i)
[
f2(i)−

( ∑
j∈S

f(j)p(i, j)
)2]

> 0. (1.7)

Furthermore, if the sequence of δ-coefficients satisfies

lim
n→∞

n∑
k=1

δ(Pk)
√

n
= 0, (1.8)

then we have
Sn − E[Sn]√

nθ

D⇒ N(0, 1), (1.9)

where D⇒ denotes the convergence in distribution.

We will prove Theorem 1.1 in Section 3.

《
应

用
概

率
统

计
》

版
权

所
有



340 应用概率统计 第二十九卷

Remark 1 If the transition probability matrix P is strictly positive and there exist

two different states s, t ∈ S such that f(s) 6= f(t), thus it is easy to see that the inequality

(1.7) is assured by Jensen’s inequality of conditional expectation.

§2. Example

Here, we give an example in which the Dobrushin’s condition (1.4) is not satisfied,

but our conditions (1.6) and (1.8) are satisfied.

Example 1 Let S = {1, 2}, we consider the 2 × 2 transition matrices on S, for

k = 1, 2, . . ., let

Pn =






 1− 1/2k+1 1/2k+1

1/2k+1 1− 1/2k+1


 if n = 2k;


 1/2 1/2

1/2 1/2


 if n 6= 2k,

the δ-coefficients

δ(Pn) =





1− 1/2k if n = 2k;

0 if n 6= 2k,

so that the α-coefficients

α(Pn) =





1/2k if n = 2k;

1 if n 6= 2k.

On the one hand, let

P =

(
1/2 1/2

1/2 1/2

)
.

Obviously, P is ergodic, and its unique stationary distribution is π = (π(1), π(2)) =

(1/2, 1/2). Of course, for ∀n = 2, 3, . . ., there exists a positive integer number k such that

2k ≤ n < 2k+1.

For such number n, there is no difficulty to derive that

1
n

n∑
t=1

|pt(i, j)− p(i, j)| = 1
n

k∑
t=1

∣∣∣1
2
− 1

2t+1

∣∣∣ ≤ 1
2k

k

2
→ 0,

as n tends to infinity.
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On the other hand, for such the same number n, we have

αn = min
1≤t≤n

α(Pt) =
1
2k

.

Then we have

lim
n→∞n1/3αn = 0.

But

0 ≤

n∑
t=1

δ(Pt)
√

n
≤

k∑
t=1

(
1− 1

2t

)

√
2k

≤ k√
2k
→ 0, as n →∞.

That is, our conditions (1.6) and (1.8) hold, but the Dobrushin’s condition (1.4) is not

satisfied.

§3. Proof of Theorem 1.1

Denote

Dn = f(Xn)− E[f(Xn)|Xn−1], n ≥ 1, D0 = 0. (3.1)

Wn =
n∑

k=1

Dk. (3.2)

Let Fn = σ(Xk, 0 ≤ k ≤ n), obviously, {Wn,Fn, n ≥ 1} is a martingale, so that {Dn,Fn,

n ≥ 0} is the related martingale difference. For n = 1, 2, . . ., denote

V (Wn) =
n∑

k=1

E[D2
k|Fk−1],

and

v(Wn) = E[V (Wn)].

It is easy to see that

v(Wn) = E[W 2
n ] = E[V (Wn)].

In order to prove Theorem 1.1, we at first state the central limit theorem associated

with the stochastic sequence of {Wn}n≥1, which is a key step to prove our main result

Theorem 1.1.

Lemma 3.1 Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values

in state space S = {1, 2, . . . , b} with initial distribution of equation (1.1) and transition

matrices of (1.2). Let f be any function defined on the state space S. Let P = (p(i, j))b×b
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be another transition matrix and P irreducible, π = (π1, π2, . . . , πb) is the unique station-

ary distribution determined by the transition matrix P . Suppose that the conditions (1.6)

and (1.7) are satisfied and {Wn, n ≥ 0} is defined as equation (3.2), then we have

Wn√
nθ

D⇒ N(0, 1), (3.3)

where D⇒ denotes the convergence in distribution.

Our job to prove Lemma 3.1 is based on the following two important statements such

as Lemma 3.2 (see Brown (1971) or Hall and Heyde (1980)) and Lemma 3.3 (see Yang

(1998)).

Lemma 3.2 Let (Ω,F ,P) be a probability space and {Fn, n = 1, 2, . . .} an increas-

ing sequence of σ-algebras. Suppose that {Mn,Fn, n = 1, 2, . . .} is a martingale, denote its

related martingale difference by ξ0 = 0, ξn = Mn −Mn−1 (n = 1, 2, . . .). For n = 1, 2, . . .,

we denote

V (Mn) :=
n∑

j=1
E[ξ2

j |Fj−1],

v(Mn) := E[V (Mn)],

where F0 is the trivial σ-algebra. Suppose the following conditions are satisfied:

(i)
V (Mn)
v(Mn)

P⇒ 1, (3.4)

(ii) the Lindeberg condition holds, i.e. for any ε > 0,

lim
n→∞

n∑
j=1

E[ξ2
j I(|ξj | ≥ ε

√
v(Mn) )]

v(Mn)
= 0,

where I(·) denotes the indicator function.

Then we have
Mn√
v(Mn)

D⇒ N(0, 1), (3.5)

where P⇒ and D⇒ denote convergence in probability and in distribution respectively.

Let δi(·) be the Kronecker delta function, that is, δi(j) = δij , (i, j ∈ S). Denote

Ln(i) =
n−1∑
k=0

δi(Xk).
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Lemma 3.3 (The strong law of large numbers of nonhomogeneous Markov chain)

Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values in state space S =

{1, 2, . . . , b} with initial distribution of equation (1.1) and transition matrices of (1.2). Let

P = (p(i, j))b×b be a transition matrix and P irreducible. If (1.6) holds, then

lim
n→∞

1
n

Ln(i) = πi a.e., (3.6)

where π = (π1, π2, . . . , πb) is the unique stationary distribution determined by the transi-

tion matrix P .

Now let’s come to prove Lemma 3.1.

Proof of Lemma 3.1 Noting that by using Markov property and the property of

the conditional expectation again, we have

V (Wn)
n

=
1
n

n∑
k=1

E[D2
k|Fk−1]

=
1
n

n∑
k=1

{E[f2(Xk)|Xk−1]− (E[f(Xk)|Xk−1])2}

:= I1(n)− I2(n), (3.7)

where

I1(n) =
1
n

n∑
k=1

E[f2(Xk)|Xk−1]

=
∑
j∈S

∑
i∈S

f2(j)
1
n

n∑
k=1

pk(i, j)δi(Xk−1) (3.8)

and

I2(n) =
1
n

n∑
k=1

(E[f(Xk)|Xk−1])2

=
∑
i∈S

∑
j,l∈S

f(j)f(l)
1
n

n∑
k=1

pk(i, j)pk(i, l)δi(Xk−1). (3.9)

Noting that, on the one hand, by using equation (1.6) we can easily get

lim
n→∞

∣∣∣ 1
n

n∑
k=1

δi(Xk−1)(pk(i, j)− p(i, j))
∣∣∣ ≤ lim

n→∞
1
n

n∑
k=1

|pk(i, j)− p(i, j)| = 0,

thus we have

lim
n→∞

1
n

n∑
k=1

δi(Xk−1)pk(i, j) = lim
n→∞

1
n

n∑
k=1

δi(Xk−1)p(i, j)

= lim
n→∞

1
n

Ln(i)p(i, j)

= πip(i, j) a.e., (3.10)
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where the third equation holds because of (3.6). Combining equations (3.8) and (3.10),

we get

lim
n→∞ I1(n) =

∑
j∈S

∑
i∈S

πip(i, j)f2(j)

=
∑
i∈S

πif
2(i) a.e., (3.11)

where the second equation holds since πP = π. On the other hand we claim that

lim
n→∞ I2(n) =

∑
i∈S

πi

[ ∑
j∈S

f(j)p(i, j)
]2

a.e.. (3.12)

In fact, by using equation (1.6) again, denote

M = sup
j∈S

f(j). (3.13)

We can approximate I2(n) according to the following procedure
∣∣∣I2(n)− ∑

i∈S

∑
j,l∈S

f(j)f(l)
1
n

n∑
k=1

p(i, j)p(i, l)δi(Xk−1)
∣∣∣

≤ M2 ∑
i∈S

∑
j,l∈S

1
n

n∑
k=1

|pk(i, j)pk(i, l)− p(i, j)p(i, l)|

≤ M2 ∑
i∈S

∑
j,l∈S

n∑
k=1

|pk(i, j)− p(i, j)|pk(i, l) +
n∑

k=1

|pk(i, l)− p(i, l)|p(i, j)

n

≤ M2 ∑
i∈S

∑
j,l∈S

n∑
k=1

|pk(i, j)− p(i, j)|+
n∑

k=1

|pk(i, l)− p(i, l)|
n

→ 0, as n →∞.

Thus by using Lemma 3.3 again, we obtain

lim
n→∞ I2(n) =

∑
i∈S

∑
j,l∈S

f(j)f(l)p(i, j)p(i, l)
1
n

n∑
k=1

δi(Xk−1)

=
∑
i∈S

∑
j,l∈S

πif(j)f(l)p(i, j)p(i, l) a.e.

=
∑
i∈S

πi

[ ∑
j∈S

f(j)p(i, j)
]2

a.e..

Therefore equation (3.12) is true. Combining (3.7), (3.11) and (3.12), we arrive at

lim
n→∞

V (Wn)
n

=
∑
i∈S

πi

[
f2(i)−

[ ∑
j∈S

f(j)p(i, j)
]2]

a.e., (3.14)

which implies that

lim
n→∞

V (Wn)
n

=
∑
i∈S

πi

[
f2(i)−

[ ∑
j∈S

f(j)p(i, j)
]2]

in probability. (3.15)
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Note that

V (Wn)
n

≤ max
1≤k≤n

E[D2
k|Xk−1]

= max
1≤k≤n

{E[f2(Xk)|Xk−1]− (E[f(Xk)|Xk−1])2}

≤ max
i∈S

f2(i), (3.16)

and S is a finite set, then the random sequence {V (Wn)/n, n ≥ 1} is uniformly integrable.

Combining above two facts, we arrive at by (1.7)

lim
n→∞

E[V (Wn)]
n

=
∑
i∈S

πi

[
f2(i)−

[ ∑
j∈S

f(j)p(i, j)
]2]

> 0.

Thus it follows that
V (Wn)
v(Wn)

P⇒ 1.

Similarly to the analysis of inequality (3.16), we also obtain that

{D2
n = [f(Xn)− E[f(Xn)|Xn−1]]2}

is uniformly integrable, so that

lim
n→∞

n∑
j=1

ED2
j I(|Dj | ≥ ε

√
n)

n
= 0,

which implies that the Lindeberg condition holds, then we can easily get our conclusion

(3.3) by using Lemma 3.2. Thus we complete the proof of Lemma 3.1. ¤

Now let’s come to prove our main result Theorem 1.1 based on Lemma 3.1.

Proof of Theorem 1.1 Noting that

Sn − E[Sn] = Wn +
n∑

k=1

[E[f(Xk)|Xk−1]− E[f(Xk)]]. (3.17)

Denote

P(Xk = j) = Pk(j), j ∈ S,

and M = sup
j∈S

f(j). Let’s come to evaluate the upper bound of |E[f(Xk)|Xk−1]−E[f(Xk)]|.
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In fact, by using the C-K formula of Markov chain we can get

|E[f(Xk)|Xk−1]− E[f(Xk)]| =
∣∣∣ ∑

j∈S

f(j)Pk(j|Xk−1)−
∑
j∈S

f(j)Pk(j)
∣∣∣

≤ sup
i

∣∣∣ ∑
j∈S

f(j)
[
Pk(j|i)−

∑
s

Pk−1(s)Pk(j|s)
]∣∣∣

≤ M sup
i

∑
j

∣∣∣Pk(j|i)−
∑
s

Pk−1(s)Pk(j|s)
∣∣∣

= M sup
i

∑
j

∣∣∣ ∑
s∈S

Pk−1(s)Pk(j|i)−
∑
s∈S

Pk−1(s)Pk(j|s)
∣∣∣

≤ M sup
i

∑
s

Pk−1(s) sup
s

∑
j∈S

|Pk(j|i)− Pk(j|s)|

= M sup
i,s

∑
j∈S

|Pk(j|i)− Pk(j|s)|

= 2Mδ(Pk), (3.18)

here

δ(Pk) = sup
i,s

∑
j∈S

[Pk(j|i)− Pk(j|s)]+ =
1
2

sup
i,s

∑
j∈S

|Pk(j|i)− Pk(j|s)|.

Applying condition (1.8), we get

lim
n→∞

n∑
k=1

[E[f(Xk)|Xk−1]− E[f(Xk)]]
√

n
= 0. (3.19)

Then, by using (1.7), (3.3), (3.17) and (3.19), we can arrive at our conclusion (1.9). Thus

the proof of Theorem 1.1 is completed. ¤
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非齐次马氏链的中心极限定理

黄辉林

(温州大学数学与信息科学学院, 温州, 325035)

杨卫国 石志岩

(江苏大学理学院, 镇江, 212013)

本文将针对非齐次马氏链的转移矩阵列在Cesàro收敛意义下, 利用鞅的中心极限定理证明一个不同于

Dobrushin结果的非齐次马氏链的中心极限定理.

关键词: 非齐次马氏链, 中心极限定理, 鞅.

学科分类号: O211.6, O211.4.
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