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Abstract

In this paper, we prove a new central limit theorem for nonhomogeneous Markov chain by
using the martingale central limit theorem under the condition of convergence of transition prob-
ability matrices for nonhomogeneous Markov chain in Cesaro sense, which can not be implied by
Dobrushin’s work.
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8§1. Introduction

Let {X,,n > 0} be a nonhomogeneous Markov chain taking values in state space

S ={1,2,...,b} with initial distribution

po= (1), 1(2), ..., (b)) (1.1)

and transition matrices

where p,(i,j) = P(X,, = j|X5,—1 = ). Then
n

(0, 71, -+, 20) = p(x0) [T pr(Tr—1,28). (1.3)
k=1
For an arbitrary stochastic square matrix ) whose elements are ¢; ; we shall set the
ergodic d-coefficient equal to
5(Q) = sup Y- [qik — gl
1,jES keS
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where [a]T = max{0,a}. Also, define the related a-coefficient a(Q) =1 — §(Q).
For the transition probability matrices { P : 1 < k < n}, let

— mi P,).
Qn 1r§r}€1gna( %)

In addition, let f be any function defined on S. We shall write

and

Our goal of this work is to describe conditions on X and f under which the central
limit theorem holds for S,. Our conditions are different from which given by Dobrushin

(1956) as the following lemma:

Lemma 1.1 Let {X,,n > 0} be a nonhomogeneous Markov chain taking values
in state space S = {1,2,...,b} with initial distribution of equation (1.1) and transition
matrices of (1.2). Let f be any function defined on the state space S. If for all 1 <1i < n,

the variances are bounded below, i.e.

Then if

1/3

lim n'/®ay, = 00, (1.4)

n—oo
we have the standard normal convergence

Sy — E[Sy] o}

o N(0,1), (1.5)

here and thereafter 2 denotes convergence in distribution.

The central limit theorem (CLT) for additive functionals of stationary, ergodic Markov
chains has been studied intensively during the last decades. A basic approach for proving
the CLT, initiated by Gordin and Lifsic (1978) and afterwards pursued by several au-
thors such as Derriennic and Lin (2001, 2003), Gordin and Holzmann (2004), Kipnis and
Varadhan (1986), Maxwell and Woodroofe (2000) and Woodroofe (1992), is to construct
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a martingale approximation to the partial sums. These are decomposed into a sum of
a martingale with stationary increments and a remainder term. After showing that the
remainder term is negligible in some suitable sense, asymptotic normality follows from
a martingale CLT. Recently, Holzmann (2005) also proved the central limit theorems by
this method of martingale approximations for continuous-time and discrete-time station-
ary Markov processes.

Nearly fifty years ago, Dobrushin (1956) proved in his thesis an important central
limit theorem for Markov chains in discrete time that are not necessarily homogeneous
in time. After Dobrushin’s work, some refinements and extensions of his central limit
theorem, some of which under more stringent assumptions, were proved by Statulyavichus
(1969) and Sarymsakov (1961). Based on Dobrushin’s work, Sethuraman and Varadhan
(2005) gave a shorter and different proof elucidating more assumptions by using martingale
approximation.

In this note, we will consider another central limit theorem for nonhomogeneous
Markov chains with finite state space in discrete time which can not be implied by Do-

brushin’s results. Our main result is as follows:

Theorem 1.1 Let {X,,n > 0} be a nonhomogeneous Markov chain taking values
in state space S = {1,2,...,b} with initial distribution of (1.1) and transition matrices
of (1.2). Let f be any function defined on the state space S. Let P = (p(i,7))pxp be
another transition matrix and P irreducible, m = (71, 7o, ..., m) is the unique stationary
distribution determined by the transition matrix P. Suppose that

lim ﬁkZ lpk(i,j) —p(i,5)| =0,  Vi,jeS, (1.6)
=1

n—oo

and
. 2/. . 2
0= 5 =) |20~ (£ 1Gwiq) | >o0. (1.7)
i€S jes
Furthermore, if the sequence of §-coefficients satisfies

n

> 0(Py)
lim ":17 =0, (1.8)

then we have

Sy — E[Sn] D
SR BN, (1.9)

D e
where = denotes the convergence in distribution.

We will prove Theorem 1.1 in Section 3.
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Remark 1 If the transition probability matrix P is strictly positive and there exist
two different states s,t € S such that f(s) # f(t), thus it is easy to see that the inequality

(1.7) is assured by Jensen’s inequality of conditional expectation.

§2. Example

Here, we give an example in which the Dobrushin’s condition (1.4) is not satisfied,

but our conditions (1.6) and (1.8) are satisfied.

Example 1 Let S = {1,2}, we consider the 2 x 2 transition matrices on S, for
k=1,2,..., let

1-1 2k;+1 1 2k+1
/ / if n =2k
1 2k+1 1-1 2k+1
R AN /
1/2 1/2
/ / if n#2F,
1/2 1/2

the d-coefficients
1—1/28  if n =2k

6(Pn) =
0 if n #2F
so that the a-coefficients
12k if n =2k
a(P,) =
1 if n 2k,
On the one hand, let
1/2 1/2
P = / / .
1/2 1/2
Obviously, P is ergodic, and its unique stationary distribution is 7 = (7(1),7(2)) =

(1/2,1/2). Of course, for Vn = 2,3, ..., there exists a positive integer number k such that
2k < < 2FFL,

For such number n, there is no difficulty to derive that

n 1 1 1 1k
N N R K 0
t; ‘pt(zaj) p(’:])‘ ntzzl ’2 2t+1’ = 9k 9 — Y,

SHES

as n tends to infinity.
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On the other hand, for such the same number n, we have

1
on =2, ) =

Then we have

But .
Se) % (1-5)

=1 t=1
< < —0,
Vi NCTRRVGT:
That is, our conditions (1.6) and (1.8) hold, but the Dobrushin’s condition (1.4) is not
satisfied.

0< as n — oo.

§3. Proof of Theorem 1.1

Denote

Dy, = f(Xn) - E[f(Xn)’Xn—l]a n=>1, Dy = 0. (31>
Wo=3 Dy (32)
k=1

Let F,, = 0(X,0 < k < n), obviously, {W,,, Fn,,n > 1} is a martingale, so that {D,,, F,,
n > 0} is the related martingale difference. For n = 1,2, ..., denote

vmmzéﬂ%vpm

and

It is easy to see that

U(Wn) = E[Wﬁ] = E[V(Wn)]

In order to prove Theorem 1.1, we at first state the central limit theorem associated
with the stochastic sequence of {W),},>1, which is a key step to prove our main result
Theorem 1.1.

Lemma 3.1 Let {X,,n > 0} be a nonhomogeneous Markov chain taking values
in state space S = {1,2,...,b} with initial distribution of equation (1.1) and transition

matrices of (1.2). Let f be any function defined on the state space S. Let P = (p(%,7))bxb
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be another transition matrix and P irreducible, m = (my,m2,...,mp) is the unique station-
ary distribution determined by the transition matrix P. Suppose that the conditions (1.6)
and (1.7) are satisfied and {W,,,n > 0} is defined as equation (3.2), then we have

W,

N 2 N(0,1), (3.3)

D e
where = denotes the convergence in distribution.

Our job to prove Lemma 3.1 is based on the following two important statements such
as Lemma 3.2 (see Brown (1971) or Hall and Heyde (1980)) and Lemma 3.3 (see Yang
(1998)).

Lemma 3.2 Let (2, F,P) be a probability space and {F,,n =1,2,...} an increas-
ing sequence of o-algebras. Suppose that {M,,, F,,,n = 1,2,...} is a martingale, denote its
related martingale difference by §y =0, &, = M,, — M,,_1(n=1,2,...). Forn=1,2,...,

we denote
V) = 3 EEIF ],
j=1
v(My) == E[V(M,)],

where Fy is the trivial o-algebra. Suppose the following conditions are satisfied:

(1)

V(M,) p
1 3.4
’U(Mn) = ? ( )
(ii) the Lindeberg condition holds, i.e. for any € > 0,
) EIEHI(I5] > ev/v(My) )]
lim = =0,
i o(0,)
where I(-) denotes the indicator function.
Then we have
M,
——_ 2 N(0,1), (3.5)
v(My)

where = and 2 denote convergence in probability and in distribution respectively.

Let 0;(-) be the Kronecker delta function, that is, d;(j) = d;j, (4,7 € S). Denote

n—1

L,(i) = > 6i(Xg).

k=0
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Lemma 3.3 (The strong law of large numbers of nonhomogeneous Markov chain)
Let {X,,n > 0} be a nonhomogeneous Markov chain taking values in state space S =
{1,2,...,b} with initial distribution of equation (1.1) and transition matrices of (1.2). Let
P = (p(7,7))bxp be a transition matrix and P irreducible. If (1.6) holds, then

1

lim —L,(i) =m a.e., (3.6)
n—oo N
where 7 = (71,72, ..., m) is the unique stationary distribution determined by the transi-

tion matrix P.

Now let’s come to prove Lemma 3.1.

Proof of Lemma 3.1 Noting that by using Markov property and the property of
the conditional expectation again, we have

V(Wn)

E[DR|Fr—1]

M=

3
I

SIl= 3=

{ELf?(Xe) | Xe—1] — (ELf (Xi)| Xe-1])?}

i
~

-

— El
CNIINE
|

5

—

S

N—

—

w

\]

N—

where

Il(n) =

and

Bn) = - S ()X 1))
- FONFWO S prli, 3)pii,1)6:(Xin). (3.9)

i€S jles N k=1

Noting that, on the one hand, by using equation (1.6) we can easily get

. 12 .. .. R .. ..
lim | = > 04(Xp—1)(pr(4,7) — p(i,5))| < lim — >~ |pr(i,7) — p(i,5)] =0,
n—oo N 7 n—o0 N —1

thus we have

.1z . .1z o
lim — > 6;(Xe—1)pr(d,7) = lim — > 6;(Xex—1)p(3, )
n—oo n k=1 n—oo 1 k=1

1 N
= lim —L,(i)p(i, j)
n—oo n

= mp(i,)) a.e., (3.10)
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where the third equation holds because of (3.6). Combining equations (3.8) and (3.10),
we get

lim fi(n) = X 3 mp(i,)f*()

n—00 jesics

= Ymf) ae, (3.11)

€S
where the second equation holds since 7P = 7. On the other hand we claim that
2
lim L(n) = S | S F(G)pi, j)] a.e.. (3.12)
n—oo i€S jES

In fact, by using equation (1.6) again, denote

M = sup f(j). (3.13)
JjES

We can approximate I2(n) according to the following procedure

Bn) = £ X FG)0) 3 pli. w0 D8(Xim1)

1€S j5,les

12 . . .
< MY S =3 k(i d)pk(is 1) — pli, 5)p(i, 1)
i€Sjles T k=1

é 1pk(i, 7) — (i ) [pi(i, 1) + él 1pr(i, 1) — p(i, D Ip(i. )

S M2Z Z k=1
i€S jIES n
n n
> (i, ) — (s )|+ 32 [pk(is ) — p(i,1)]
< MEY Y = =1 — 0, as n — oo.
i€S j,les n

Thus by using Lemma 3.3 again, we obtain

Tim b(n) = X 5 FG)Op( (D 36X )
€S8 j,les =1
= ¥ ¥ mf)FOpl e, ae.
€S j,lesS
= Sw[ S o] ae.
€S jES

Therefore equation (3.12) is true. Combining (3.7), (3.11) and (3.12), we arrive at

i SO 5 20 - [ 50w e (3.14)
€S j€eSs
which implies that
nILIEoV(nW =Y m [f2(z') - [Z f(j)p(z',j)ﬁ in probability. (3.15)
€S jeS
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Note that

IN

E[D?|X,_
- max (Dl Xk—1]

= max {E[/*(X0)| Xe] = (B[ (X0)|Xe1])?)

< max 20), (3.16)

and S is a finite set, then the random sequence {V(W,,)/n,n > 1} is uniformly integrable.

Combining above two facts, we arrive at by (1.7)

i SV 52 - [ sG] ] > 0

n—0oo n i€es { jes

Thus it follows that

Similarly to the analysis of inequality (3.16), we also obtain that

{D721 = [f(Xn) - E[f(Xn)|Xn71H2}

is uniformly integrable, so that

n
ED2I(|D;| 2 ey/)
]:

lim =0,
n—oo n

which implies that the Lindeberg condition holds, then we can easily get our conclusion

(3.3) by using Lemma 3.2. Thus we complete the proof of Lemma 3.1. O

Now let’s come to prove our main result Theorem 1.1 based on Lemma 3.1.

Proof of Theorem 1.1 Noting that
S — ElSa] = Wart+ 32 [ELF(X0)] Xe-1] — ELF(X0)]] (3.17)

Denote

P(Xk=j)=h:(j), J€S,

and M = sup f(j). Let’s come to evaluate the upper bound of |E[f(Xy)| Xx—1] —E[f(Xk)]|.
jes
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In fact, by using the C-K formula of Markov chain we can get

|E[f (X&) Xr—1] — E[f(Xi)]]

> FOPGIXe1) = X FGPG)

jeS JjeSs
< swp| 5GP - DP9 R1)]|
< MSgp?‘P;ﬂ(jﬁ)gpk—l(S)Pk(ﬂs)‘
= MSt;p; P Pk_l(S)Pk(j!i)—S%Pk—l(S)Pk(ﬂS)’
< Msup3 Pia(s) Sgpgs | P (3li) = Pr(jls)]
= Ms;}f]%\Pk(j\i) — Pu(js)|
= 2M5(Py), (3.18)

here

(P = sup 3 [Pu(G1) = PiGls)]* = 550 3 PG — PGl

Applying condition (1.8), we get

> [E[f (X[ X—1] — E[f(Xp)]]
Jim =1 NG =0. (3.19)
Then, by using (1.7), (3.3), (3.17) and (3.19), we can arrive at our conclusion (1.9). Thus
the proof of Theorem 1.1 is completed. O
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