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Abstract
In many biomedical and engineering studies, recurrent event data and gap times between

successive events are common and often more than one type of recurrent events is of interest. It is

well known that the proportional hazards model may not be appropriate for fitting survival times

in some settings. In the paper, we consider an additive hazards model for multiple type recurrent

gap times data to assess the effect of covariates. For inferences about regression coefficients and

baseline cumulative hazard functions, an estimating equation approach is developed. Furthermore,

we establish asymptotic properties of the proposed estimators.
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§1. Introduction

Recurrent event data arise frequently in many research areas when events of interest

can occur repeatedly over time for each subject. Examples of such recurrent event data

include infection occurrences among patients receiving transplants, bladder tumor recur-

rences, repeated purchases of a particular type of certain product and repeated failures

of a certain machine. Moreover, in many settings, several different but related types of

recurrent events may occur together and in these cases one faces multiple type recurrent

event data. Many authors have investigated the analysis of recurrent event data. For

example, for univariate recurrent event data, Prentice et al. (1981) and Anderson and Gill
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(1982) proposed conditional model methods while Wei et al. (1989) and Pepe and Cai

(1993) developed marginal model methods. The authors who considered the analysis of

multiple type recurrent event data include Spiekerman and Lin (1998), Clegg et al. (1999)

and Cai and Schaubel (2004).

In many applications, investigators are also interested in the gap time between suc-

cessive events. A number of methods have been proposed for analyzing such data. For

example, Lin et al. (1999), Wang and Chang (1999) and Peña et al. (2001) have developed

nonparametric methods to estimate the distribution of the gap times; Huang and Chen

(2003) and Sun et al. (2006) proposed the proportional hazards model and the additive

hazards model based on a renewal process to evaluate covariate effects, respectively. How-

ever, to our knowledge, there are few results for multiple type recurrent gap times data.

This paper focuses on the statistical analysis of such data.

To describe multiple type recurrent gap times data, suppose that there are K different

types of recurrent events of interest and a total of n subjects are observed. Let Tikj denote

the time from the (j− 1)th occurrence to the jth occurrence of the event of type k, where

i = 1, . . . , n; j = 1, 2, . . . and k = 1, . . . , K. That is, Tik1 + Tik2 + Tik1 + · · · + Tikj is the

time at which the event of type k occurs for the jth time of the ith subject. Denote the

time-independent covariates and the censoring time by Zik and Cik, respectively.

Suppose that {(Tik, Zik, Cik), i = 1, . . . , n} are n i.i.d. replicates of (Tk, Zk, Ck) for the

event of type k, where Tik = {Tikj : j = 1, 2, . . .}. We also assume that Tik is independent

of Cik, given Zik. Define an integer Mik, satisfying

Mik−1∑
j=1

Tikj ≤ Cik and
Mik∑
j=1

Tikj > Cik.

The observed data are (Tik1, . . . , TikMik−1;Zik;Cik). That is, the first Mik − 1 gap times

are completely observed, but TikMik
is censored at T+

ikMik
= Cik −

Mik−1∑
j=1

Tikj . Denote

∆ik = I(Mik > 1) and M∗
ik = max(Mik − 1, 1). Let

Xikj =





Tikj if ∆ik = 1;

T+
ikj if ∆ik = 0,

(1.1)

for j = 1, . . . , M∗
ik, where I(·) is the indicator function.

In some settings, the proportional hazards model may not fit the data very well. Lin

and Ying (1994) investigated the additive hazards model

λ(t|Zi) = λ0(t) + βT
0 Zi, (1.2)
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where λ0(t) is a baseline hazard function and β0 is an unspecified vector of parameter of

interest.

For single type recurrent gap times, Sun et al. (2006) proposed an estimating equation

U∗(β) = 0 of parameters β0 in model (1.2), where

U∗(β) =
∫ τ

0
Q(t)

{
Êij{Zi∆idI(Xij ≤ t)} − Êij{I(Xij ≥ t)Zi}

Êij{I(Xij ≥ t)}
dÊij{∆iI(Xij ≤ t)}

−
[
Êij{Z⊗2

i I(Xij ≥ t)} − (Êij{I(Xij ≥ t)Zi})⊗2

Êij{I(Xij ≥ t)}
]
βdt

}
,

with Êij = ÊiÊj , where Êi and Êj denote empirical averages over i = 1, . . . , n and j =

1, . . . , M∗
i , respectively; Xij and M∗

i is defined similarly as (1.1). Q(t) is a weight process.

Let β̂∗ denote the solution to U∗(β) = 0. The baseline cumulative hazard function

Λ0(t) =
∫ t

0
λ0(s)ds can be estimated by Λ̂0(t, β̂∗), where

Λ̂0(t, β̂∗) =
∫ t

0

dÊij{∆iI(Xij ≤ s)} − Êij{I(Xij ≤ s)β̂∗T Zids}
Êij{I(Xij ≥ s)}

.

In this article, we extend the aforementioned method to the additive hazards model

for multiple type recurrent gap times. A similar estimating equation is proposed for esti-

mation of the regression parameters and the cumulative hazards functions. The resultant

estimators are proven to be consistent and asymptotically normal.

In the next section, we present the model and the corresponding inference procedures

for multiple type recurrent gap times. The asymptotic properties of the proposed estima-

tors are established in Section 3. In Section 4, some remarks are given. The technical

proofs are contained in Appendix.

§2. Model and Methods

For multiple type recurrent gap times data, we consider the following additive hazards

model

λk(t|Zik) = λ0k(t) + βT
0 Zik, k = 1, 2, . . . , K, (2.1)

where λ0k(t) is an unspecified baseline hazard function and β0 is a p×1 vector of unknown

parameters of interest.

To present the inference procedure for the unknown parameters β0 and Λ0k(t) =∫ t

0
λ0k(s)ds, we need the following assumptions, which are similar to those in Huang
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and Chen (2003). Suppose that {(Xikj , j = 1, . . . , M∗
ik;∆ik;Zik), i = 1, . . . , n} are n

i.i.d. replicates of {Xk(j), j = 1, . . . , M∗
k ;∆k;Zk}, for k = 1, . . . , K. We also assume

that each individual recurrent process of the specific event recurrent event process is a

renewal process. That is, for given i and k, Tikj , j = 1, 2, . . . are i.i.d. This implies that

given Cik, Mik and T+
ikMik

, the observed complete gap times {Tikj , j = 1, . . . , Mik − 1} are

identically distributed. Since the first gap time is subject to independent censorship, the

exchangeability of observed complete gap times then suggests that we can treat the subset

{(Xikj , j = 1, . . . , M∗
ik;∆ik;Zik), i = 1, . . . , n} as clustered survival data. But, the cluster

size is informative and the censored gap time TikMik
is removed for Mik > 1.

Following the methods proposed in Cai and Schaubel (2004) and Sun et al. (2006),

we can formulate the estimating equation U(β) = 0 of the parameters β0, where

U(β) =
K∑

k=1

∫ τ

0
Q(t)

[
Êijk

{Zik∆ikdI(Xikj ≤ t)}

−Êijk
{I(Xikj ≥ t)Zik}

Êijk
{I(Xikj ≥ t)}

dÊijk
{∆ikI(Xikj ≤ t)}

− Êijk
{Z⊗2

ik I(Xikj ≥ t)}βdt +
(Êijk

{I(Xikj ≥ t)Zik})⊗2

Êijk
{I(Xikj ≥ t)}

βdt
]
, (2.2)

with Êijk
= ÊiÊjk

, where Êi denotes empirical averages over i = 1, . . . , n and Êjk
represents

the empirical averages over j = 1, . . . , M∗
ik for the type k of event. The constant τ in

(0,∞) is the study ending time, which satisfies P(Xk(1) ≥ τ) > 0. Q(t) is a weight process

that may depend on data.

If we only use the time to the first occurrence of each event {(Xik1;∆ik;Zik), i =

1, . . . , n}, an alternative but less efficient estimator of β0 is obtained. The estimating

equation U1(β) is defined by

U1(β) =
K∑

k=1

∫ τ

0
Q(t)

[
Êi{Zik∆ikdI(Xik1 ≤ t)}

−Êi{I(Xik1 ≥ t)Zik}
Êi{I(Xik1 ≥ t)}

dÊi{∆ikI(Xik1 ≤ t)}

− Êi{Z⊗2
ik I(Xik1 ≥ t)}βdt +

(Êi{I(Xik1 ≥ t)Zik})⊗2

Êi{I(Xik1 ≥ t)}
βdt

]
.

Denote L̂k(t) = Êijk
{∆ikI(Xikj ≤ t)}, Ĝ0k(t) = Êijk

{I(Xikj ≥ t)} and Ĝ1k(t) =

Êijk
{I(Xikj ≥ t)Zik}. Let β̂ be the solution to U(β) = 0. By some simple algebra
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manipulation, β̂ has the following closed form

β̂ =
{ K∑

k=1

∫ τ

0
Q(t)

(
Êijk

{Z⊗2
ik I(Xikj ≥ t)} − (Êijk

{I(Xikj ≥ t)Zik})⊗2

Êijk
{I(Xikj ≥ t)}

)
dt

}−1

×
[ K∑

k=1

∫ τ

0
Q(t)

(
Êijk

{Zik∆ikdI(Xikj ≤ t)}

−Êijk
{I(Xikj ≥ t)Zik}

Êijk
{I(Xikj ≥ t)}

dÊij{∆ikI(Xikj ≤ t)}
)]

.

Let β̂1 be the solution to U1(β) = 0. Similar to β̂, β̂1 also has a closed form. As expected,

Theorem 3.3 in Section 3 shows that β̂ is more efficient than β̂1. That is, the asymptotic

variance of β̂ is smaller than that of β̂1.

For the event of type k, we can obtain the Breslow-Aalen type estimator of Λ0k(t),

given by

Λ̂0k(t, β̂) =
∫ t

0

dÊijk
{∆ikI(Xikj ≤ u)} − Êijk

{I(Xikj ≥ u)β̂T Zik}
Êijk

{I(Xikj ≥ u)}
.

If the first occurrence of type-k event is only used, an alternative but less efficient estimator

of Λ0k(t) is

Λ̂(1)
0k (t, β̂1) =

∫ t

0

dÊi{∆ikI(Xik1 ≤ u)} − Êi{I(Xik1 ≥ u)β̂T
1 Zik}

Êi{I(Xik1 ≥ u)}
.

Similarly, we can show that Λ̂0k(t, β̂) is more efficient than Λ̂(1)
0k (t, β̂1).

§3. Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed estimators.

For simplicity, denote Lk(t) = E{∆kI(Xk(1) ≤ t)}, G0k(t, β) = E{I(Xk(1) ≥ t)} and

G1k(t, β) = E{I(Xk(1) ≥ t)Zk}. We need first to assume that the following regularity

conditions hold:

(C1) Q(t) has bounded variation and converges almost surely to a nonrandom function

q(t) uniformly over t ∈ [0, τ ].

(C2) For each k, E‖Zk‖ ≤ M , where M is a nonrandom constant.

(C3) A is nonsingular, where

A =
K∑

k=1

∫ τ

0
q(t)

(
E{Z⊗2

k I(Xk(1) ≥ t)} − G1k(t)⊗2

G0k(t)

)
dt.

To establish the asymptotic properties of β̂, we need first to investigate the asymptotic

properties of n1/2U(β0).
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Theorem 3.1 Under the conditions (C1)-(C2), n1/2U(β0) is asymptotically nor-

mal with zero mean and covariance matrix

Σ = E
[( K∑

k=1

Êjk
{Φ(Xkj ,∆k, Zk)}

)⊗2]
,

where v⊗2 = vvT for a column vector v, and

Φ(Xikj ,∆ik, Zik) =
∫ τ

0
q(t)

(
Zik − G1k(t)

G0k(t)

)[
∆ikdI(Xikj ≤ t)− I(Xikj ≥ t)

G0k(t)
dLk(t)

− I(Xikj ≥ t)βT
0

(
Zik − G1k(t)

G0k(t)

)
dt

]
.

The proof is provided in Appendix. By the uniform strong law of large numbers

(Pollard, 1990), the covariance matrix Σ can be consistently estimated by

Σ̂ = Êi

{( K∑
k=1

Êjk
{Φ̂(Xikj ,∆ik, Zik)}

)⊗2}

and

Φ̂(Xikj ,∆ik, Zik) =
∫ τ

0
Q(t)

(
Zik − Ĝ1k(t)

Ĝ0k(t)

){
∆ikdI(Xikj ≤ t)− I(Xikj ≥ t)

Ĝ0k(t)
dL̂k(t)

− I(Xikj ≥ t)β̂T
(
Zik − Ĝ1k(t)

Ĝ0k(t)

)
dt

}
.

Theorem 3.2 Under the conditions (C1)-(C3), β̂ is a consistent estimator of β0.

Moreover, n1/2(β̂ − β0)
D−→ N (0, A−1ΣA−1), where D−→ denotes convergence in distribu-

tion.

The asymptotic variance matrix A−1ΣA−1 can be consistently estimated by Ω̂ =

Â−1Σ̂Â−1, where

Â =
K∑

k=1

∫ τ

0
Q(t)

(
Êijk

{Z⊗2
ik I(Xikj ≥ t)} − (Êijk

{I(Xikj ≥ t)Zik})⊗2

Êij{I(Xikj ≥ t)}
)
dt.

The following Theorem 3.3 shows the asymptotic variance of β̂ is smaller than that

of β̂1.

Theorem 3.3 If the conditions (C1)-(C3) hold. Then β̂ is more efficient than β̂1.

The asymptotic properties of the estimators of the cumulative baseline hazards func-

tions Λ0(t) =
∫ t

0
λ0(s)ds for k ∈ {1, 2, . . . , K}, are summarized in the following theorem.
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Theorem 3.4 Under the conditions (C1)-(C3), Λ̂0k(t, β̂) is consistent to Λ0k(t)

uniformly in t ∈ [0, τ ], i.e., sup
t∈[0,τ ]

|Λ̂0k(t, β̂)− Λ0k(t)| → 0 almost surely. Moreover,

√
n(Λ̂0k(t, β̂) − Λ0k(t)) converges weakly to a zero-mean Gaussian process with covari-

ance function

Γk(s, t) = E
[Êjk

{Ψk(s,Xkj ,∆k, Zk)}Êjk
{Ψk(t,Xkj ,∆k, Zk)}

]
,

where

Ψk(t,Xikj ,∆ik, Zik) = −CT
k (t)A−1

( K∑
m=1

Êjm{Φ(t,Ximj ,∆im, Zim)}
)

+
∫ t

0

d∆ikI(Xikj ≤ u)− I(Xikj ≥ u)βT
0 Zikdu

G0k(u)

−
∫ t

0

I(Xikj ≥ u)dLk(u)− I(Xikj ≥ u)βT
0 G1k(u)du

G0k(u)2

and

Ck(t) =
∫ t

0

G1k(u)
G0k(u)

du.

The covariance function can be consistently estimated by replacing limiting quantities

with their empirical counterparts, i.e.,

Γ̂k(s, t) = Êi

{Êjk
{Ψ̂k(s,Xikj ,∆ik, Zik)}Êjk

{Ψ̂k(t,Xikj ,∆ik, Zik)}
}
,

for k ∈ {1, 2, . . . , K}, where

Ψ̂k(t,Xikj ,∆ik, Zik) = − ĈT
k (t)Â−1

K∑
m=1

Êjm{Φ̂(t,Ximj ,∆im, Zim)}

+
∫ t

0

d∆ikI(Xikj ≤ u)− I(Xikj ≥ u)β̂T Zikdu

Ĝ0k(u)

−
∫ t

0

I(Xikj ≥ u)dL̂k(u)− I(Xikj ≥ u)β̂T Ĝ1k(u)du

Ĝ0k(u)2

and

Ĉk(t) =
∫ t

0

Ĝ1k(u)

Ĝ0k(u)
du.

The asymptotic properties of β̂1 and Λ̂(1)
0k (t, β̂1) can similarly obtained, so we omit

them.
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§4. Concluding Remarks

In this paper, we have studied an additive hazards model for multiple type recurrent

gap times. An estimating equation approach is used to estimate the regression parameters

and the cumulative hazard functions. We establish asymptotic properties of the proposed

estimators.

The additive mean model is another common and useful model for recurrent event

data. The proposed method in this paper can be extended to the additive mean model.

Our method is motivated by Cai and Schaubel (2004) and Sun et al. (2006). Thus, this

extension is simple by using an estimating equation similar to one in Cai and Schaubel

(2004) or (2.2).

In this paper, we consider time-independent covariates and the proposed inference

approach is based on the assumption that gap times are exchangeable. That is, the

observed complete gap times are identically distributed. When the covariates are time-

dependent, the proposed inference approach is still applicable, as long as the gap times

are assumed to be exchangeable. However, difficulties arise if the exchangeability is no

longer available. More discussions on the exchangeability can be found in Wang and

Chang (1999). In addition, how to choose of a weight process Q(t) to obtain the most

efficient estimator for β is a challenging problem. Further researches are needed to select

the weight process Q(t).

Appendix: Proofs of Asymptotic Properties

Proof of Theorem 3.1 By Taylor expansion, we have

n1/2U(β0) = n1/2
K∑

k=1

{∫ τ

0
q(t)

[
Êijk

{∆ikZikdI(Xikj ≤ t)} − G1k(t)
G0k(t)

dL̂k(t)

−Ĝ1k(t)
G0k(t)

dLk(t) +
G1k(t)Ĝ0k(t)

G0k(t)2
dLk(t)− Êijk

{Z⊗2
ik I(Xikj ≥ t)}β0dt

+
(Ĝ1k(t)G1k(t)T

G0k(t)
+

G1k(t)Ĝ1k(t)T

G0k(t)
− G1k(t)⊗2Ĝ0k(t)

G0k(t)2
)
β0dt

]}
+ op(1)

= n−1/2
n∑

i=1

K∑
k=1

Êjk
{Φ(Xikj ,∆ik, Zik)}+ op(1). (A.1)

Note that
K∑

k=1

Êjk
{Φ(Xikj ,∆ik, Zik)} are i.i.d. zero-mean random vectors for i = 1, . . . , n.

By the multivariate central limit theorem, n1/2U(β0) converges in distribution to a normal
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variable with mean zero and variance matrix Σ, which can be consistently estimated by

Σ̂ = Êi

{( K∑
k=1

Êjk
{Φ̂(Xikj ,∆ik, Zik)}

)⊗2}
. ¤

Proof of Theorem 3.2 By the uniform strong law of large numbers, it can be

show that Â converges to A and U(β0) → 0 almost surely. Since β̂ − β0 = Â−1U(β0), β̂ is

consistent to β0. Note that

n1/2(β̂ − β0) = A−1n1/2U(β0) + op(1). (A.2)

Combining Theorem 3.1, we have n1/2(β̂−β0)
D−→ N (0, A−1ΣA−1). The covariance matrix

A−1ΣA−1 can be consistently estimated by Ω̂. ¤

Proof of Theorem 3.3 Under the conditions (C1)-(C3), as for β̂, we can show

that the asymptotic variance of β̂1 is

A−1E
[( K∑

k=1

Φ(Xk(1),∆k, Zk)
)⊗2]

A−1.

For each k, since

Êjk

{
(Φ(Xkj ,∆k, Zk)− Êjk

{Φ(Xkj ,∆k, Zk)})⊗2
}

= Êjk
{Φ(Xkj ,∆k, Zk)⊗2} − (Êjk

{Φ(Xkj ,∆k, Zk)})⊗2,

we obtain

E[(Êjk
{Φ(Xkj ,∆k, Zk)})⊗2] ≤ E[Φ(Xk(1),∆ik, Zik)⊗2]. (A.3)

Note that Σ = E
[( K∑

k=1

Êjk
{Φ(Xkj ,∆k, Zk)}

)⊗2]
. By (A.3), we have

Σ = E
[ ∑

k1 6=k2

Êjk1
{Φ(Xk1j ,∆k1 , Zk1)}Êjk2

{Φ(Xk2j ,∆k2 , Zk2)
T }

]

+E
[ K∑

k=1

(Êjk
{Φ(Xkj ,∆k, Zk)})⊗2

]

≤ E
[ ∑

k1 6=k2

Φ(Xk1(1),∆k1 , Zk1)Φ(Xk2(1),∆k2 , Zk2)
T
]

+ E
[ K∑

k=1

(Φ(Xk(1),∆k, Zk))⊗2
]

= E
[( K∑

k=1

Φ(Xk(1),∆k, Zk)
)⊗2]

.

Thus, the asymptotic variance of β̂ is smaller than that of β̂1. That is, β̂ is more efficient

than β̂1. ¤

Proof of Theorem 3.4 In model (2.1), Λ0k(t) can be rewritten as

Λ0k(t) =
∫ t

0

dLk(u)− βT
0 G1k(u)du

G0k(u)
.
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Using uniform strong law of large numbers, we obtain that Λ̂0k(t, β̂) converges almost

surely to Λ0k(t) uniformly in t ∈ [0, τ ]. By Taylor expansion and combining (A.1)-(A.2),

we have

√
n(Λ̂0k(t, β̂)− Λ0k(t)) =

√
n(Λ̂0k(t, β̂)− Λ̂0k(t, β0)) +

√
n(Λ̂0k(t, β0)− Λ0k(t))

=
[
−

∫ t

0

G1k(u)
G0k(u)

du
]T√

n(β̂ − β0)

+
√

n
( ∫ t

0

dL̂k(t)− βT
0 Ĝ1k(u)

G0k(u)

−
∫ t

0

Ĝ0k(u)dLk(t)− βT
0 G1k(u)Ĝ0k(u)du

G0k(u)2
)

+ op(1)

= n−1/2
n∑

i=1
Êjk
{Ψk(t,Xikj ,∆ik, Zik)}+ op(1).

The finite dimensional normality of
√

n(Λ̂0k(t, β̂) − Λ0k(t)) can be obtain, by the multi-

variate central limit theorem. Using the empirical process theory (Pollard, 1990), we can

obtain that Ψk(t,Xikj ,∆ik, Zik) is tight. Thus,
√

n(Λ̂0k(t, β̂)−Λ0k(t)) converges weakly to

a zero-mean Gaussian process with covariance function Γk(s, t), which can be consistently

estimated by Γ̂k(s, t). ¤
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多类型复发事件间隔时间下可加危险率模型

刘吉彩1 张日权1,2 刘焕彬3

(1华东师范大学金融与统计学院, 上海, 200241; 2山西大同大学数学系, 大同, 037009)

(3黄冈师范学院数学与计算机科学学院, 黄冈, 438000)

在许多的生物医学和工程研究中, 多类型复发事件的间隔时间数据是很常见的. 众所周知, 比例危险率模

型在一些情况下不能很好拟合生存数据. 本文, 在多类型复发事件的间隔时间数据下, 我们利用可加危险率模

型来研究协变量对生存时间的影响程度. 我们采用估计方程方法获得回归系数和基准累积危险率函数估计. 并

且, 我们建立了所提估计的渐近分布.

关键词: 可加危险率模型, 间隔时间, 多类型复发事件, 估计方程, 多元生存分析.
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