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Abstract

In many biomedical and engineering studies, recurrent event data and gap times between
successive events are common and often more than one type of recurrent events is of interest. It is
well known that the proportional hazards model may not be appropriate for fitting survival times
in some settings. In the paper, we consider an additive hazards model for multiple type recurrent
gap times data to assess the effect of covariates. For inferences about regression coefficients and
baseline cumulative hazard functions, an estimating equation approach is developed. Furthermore,
we establish asymptotic properties of the proposed estimators.
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8§1. Introduction

Recurrent event data arise frequently in many research areas when events of interest
can occur repeatedly over time for each subject. Examples of such recurrent event data
include infection occurrences among patients receiving transplants, bladder tumor recur-
rences, repeated purchases of a particular type of certain product and repeated failures
of a certain machine. Moreover, in many settings, several different but related types of
recurrent events may occur together and in these cases one faces multiple type recurrent
event data. Many authors have investigated the analysis of recurrent event data. For

example, for univariate recurrent event data, Prentice et al. (1981) and Anderson and Gill
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(1982) proposed conditional model methods while Wei et al. (1989) and Pepe and Cai
(1993) developed marginal model methods. The authors who considered the analysis of
multiple type recurrent event data include Spiekerman and Lin (1998), Clegg et al. (1999)
and Cai and Schaubel (2004).

In many applications, investigators are also interested in the gap time between suc-
cessive events. A number of methods have been proposed for analyzing such data. For
example, Lin et al. (1999), Wang and Chang (1999) and Pena et al. (2001) have developed
nonparametric methods to estimate the distribution of the gap times; Huang and Chen
(2003) and Sun et al. (2006) proposed the proportional hazards model and the additive
hazards model based on a renewal process to evaluate covariate effects, respectively. How-
ever, to our knowledge, there are few results for multiple type recurrent gap times data.
This paper focuses on the statistical analysis of such data.

To describe multiple type recurrent gap times data, suppose that there are K different
types of recurrent events of interest and a total of n subjects are observed. Let Tj;; denote
the time from the (j — 1)th occurrence to the jth occurrence of the event of type k, where
i=1,...,n;j=1,2,...and k =1,..., K. That is, Tjx1 + Tixz + Tix1 + - - - + Tix; is the
time at which the event of type k occurs for the jth time of the ith subject. Denote the
time-independent covariates and the censoring time by Z;; and Cji, respectively.

Suppose that {(Tik, Zik, Cix),? = 1,...,n} are n i.i.d. replicates of (T, Zy, Cy) for the
event of type k, where T, = {Ti; : j = 1,2,...}. We also assume that Tj;, is independent
of Cji, given Z;. Define an integer M;;, satisfying

My, —1 My,
Ty < Ci, and Tirj > Cig.

Jj=1 Jj=1

The observed data are (Tig1, ..., Tikn,,—1; Zik; Cir;). That is, the first M;; — 1 gap times

M—1
are completely observed, but Tj;az, is censored at T;k_;Mk =Cix — > Tir;. Denote
1 ]:1

A = I(Mik > 1) and M;;v = max(Mik -1, 1). Let

Ty i Ay =14

Xikg =9, _ (1.1)

le] if Azk = 0,

for j =1,..., M}, where I(-) is the indicator function.

In some settings, the proportional hazards model may not fit the data very well. Lin

and Ying (1994) investigated the additive hazards model

At Z:) = Mo(t) + L Z;, (1.2)
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where A\g(t) is a baseline hazard function and fy is an unspecified vector of parameter of
interest.

For single type recurrent gap times, Sun et al. (2006) proposed an estimating equation
U*(B) = 0 of parameters 3y in model (1.2), where

E I 207 4o o 1(x, < 1))
E{I(Xi; = 1)}

_ [é,-{z;@%(xij >t)} - (E%IZ(&Z Zg)@}ﬁdt}’

U (5) = /OTQ(t){aj{ZiAidI(Xijgt)}_

with gij = agj, where fj’z and EJ denote empirical averages over ¢ = 1,...,n and j =
1,..., M}, respectively; X;; and M is defined similarly as (1.1). Q(t) is a weight process.
Let B* denote the solution to U*(3) = 0. The baseline cumulative hazard function

t
Ao(t) = / Ao(s)ds can be estimated by Ag(t, 3%), where
0

Ro(t, F) = /t € { AT (X, <)} - Eq{I(Xy < S)B*TZz'dS}.
0 Eii{l(Xij = s)}

In this article, we extend the aforementioned method to the additive hazards model
for multiple type recurrent gap times. A similar estimating equation is proposed for esti-
mation of the regression parameters and the cumulative hazards functions. The resultant
estimators are proven to be consistent and asymptotically normal.

In the next section, we present the model and the corresponding inference procedures
for multiple type recurrent gap times. The asymptotic properties of the proposed estima-
tors are established in Section 3. In Section 4, some remarks are given. The technical

proofs are contained in Appendix.

82. Model and Methods

For multiple type recurrent gap times data, we consider the following additive hazards
model
MNe(tZi) = dow(t) + 8L Ziye, k=1,2,...,K, (2.1)

where A\gx(t) is an unspecified baseline hazard function and [y is a p x 1 vector of unknown
parameters of interest.

To present the inference procedure for the unknown parameters By and Agg(t) =

t
/ Aok(s)ds, we need the following assumptions, which are similar to those in Huang
0
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and Chen (2003). Suppose that {(X;,7 = 1,..., M} ;A Zix),i = 1,...,n} are n
iid. replicates of {Xy;y,J = 1,..., M Ap; Zy}, for kb = 1,..., K. We also assume
that each individual recurrent process of the specific event recurrent event process is a
renewal process. That is, for given ¢ and k, Tj;, 7 = 1,2,... are i.i.d. This implies that
given Cj,, M;, and T‘iZMik’ the observed complete gap times {Tjx;,j = 1,..., M, — 1} are
identically distributed. Since the first gap time is subject to independent censorship, the
exchangeability of observed complete gap times then suggests that we can treat the subset
{(Xikj, g =1,..., M}; Ni; Zir,), i = 1,...,n} as clustered survival data. But, the cluster
size is informative and the censored gap time Tjjaz,, is removed for My, > 1.

Following the methods proposed in Cai and Schaubel (2004) and Sun et al. (2006),

we can formulate the estimating equation U(3) = 0 of the parameters [y, where

K [T R
UE) = 3 | Q[ {ZnandI (X < 0)
k=1J0

5@" (X > t)Z; ~
B JAk{ (Xirj = t)Zin} d&ij { Airl (Xigj < 1)}
&jk{I(Xikj > t)}

(Eij A (X = ) Zin )™

— & {2321 (X > 1)} Bdt + ~2 gdt|,  (2.2)

o Eij A (Xiny 2 1)}
with gz‘jk = EZ Ajk, where EA} denotes empirical averages over : = 1,...,n and é\]k represents
the empirical averages over j = 1,..., M} for the type k of event. The constant 7 in

(0,00) is the study ending time, which satisfies P(Xj,1y > 7) > 0. Q(t) is a weight process
that may depend on data.
If we only use the time to the first occurrence of each event {(X;x1;Aw; Zix),i =

1,...,n}, an alternative but less efficient estimator of 3y is obtained. The estimating

equation Uy () is defined by

K T ~
0B = % [ e[EZudnd (X <)
k=1J0

_&iI(Xm = ) Zu} AE{ A (X < 1)}
E{I(Xik1 > 1)}

_Frae2rx (EAI (X1 > 1) Za )
EZPI(Xun 2 0}t + = 2o = at|.

Denote Li(t) = Eij {Ail(Xir; < 1)}, Gon(t) = & {I(Xin; > )} and Gii(t) =

ajk{I(Xikj > t)Zix}. Let B be the solution to U(B) = 0. By some simple algebra
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manipulation, 3 has the following closed form

(g {I(Xinj > t)Zik})®2)dt}_1

- 5 o2 v _
= {x ) a0(EzrC 2 0) G ll(Xny > 0}

K T ~
X [ S Q@) (&'jk{ZikAikdI(Xikj <t)}
k=1.Jo

Eij A (Xik; > 1)}

Let 31 be the solution to Uy () = 0. Similar to B, 31 also has a closed form. As expected,
Theorem 3.3 in Section 3 shows that B is more efficient than [?1. That is, the asymptotic
variance of B is smaller than that of 31.

For the event of type k, we can obtain the Breslow-Aalen type estimator of Agg(t),

given by

Roct.B) /t A&, {AikI(XiijS u)} — (S/’\ijk{_[(Xikj > U)ETsz}
0 Eiji {1 (Xikj > u)}

If the first occurrence of type-k event is only used, an alternative but less efficient estimator

of Aok(t) is

AV G = /t AE{ AT (Xip § w)} — E{I(Xim > U)B?sz}
o 0 E{I( X > )}

Similarly, we can show that Agy(t, E) is more efficient than K&) (t, Bl)

§3. Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed estimators.
For simplicity, denote Li(t) = E{ArI(Xp) < 1)}, Gok(t,3) = E{I(Xyn) = t)} and
Gik(t,8) = E{I(Xy) > t)Z}. We need first to assume that the following regularity
conditions hold:

(C1) Q(t) has bounded variation and converges almost surely to a nonrandom function
q(t) uniformly over ¢ € [0, 7).

(C2) For each k, E||Zk|| < M, where M is a nonrandom constant.

(C3) A is nonsingular, where

B K T G k(t>®2
A= [ a0 (100 2 0) - G )

To establish the asymptotic properties of E, we need first to investigate the asymptotic

properties of n'/2U (o).
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Theorem 3.1  Under the conditions (C1)-(C2), n'/2U(3) is asymptotically nor-

mal with zero mean and covariance matrix
K ®2
2 =E[( 2 &de(Xu, A Z0)}) ]
k=1

where v¥2 = voT for a column vector v, and

i G ikj =
O(Xinj, Aik, Zi)) = /0 q(t) (Zi - G;:Eg) [AikdI(Xikj <t)— Wde(t)
—I(Xuj > )55 <Z¢k - g;ngdt}

The proof is provided in Appendix. By the uniform strong law of large numbers

(Pollard, 1990), the covariance matrix ¥ can be consistently estimated by

2= a{( 35 8 @06 A7) )

and

I(Xj; >t) -~
G\Ok (t) de’ (t)

~ Gor(t)

&\)(Xikjy Aig, Ziy,) = /OT Q(t)<Zik élk(t)){AikdI(Xikj <t)—
—I(Xixj > t)BT(Zi - g[l):gi;)dt}

Theorem 3.2 Under the conditions (C1)-(C3), 3 is a consistent estimator of .
Moreover, n'/? (B — Bo) 2, N(0,A~'Y A7), where L, denotes convergence in distribu-
tion.

The asymptotic variance matrix A~!XA~! can be consistently estimated by Q =
A\_lig_l, where

(Ej AT (X ik > t)Zik})@)dt.

Aoy /TQ(t)(é- (Z520(X; > 1)} —
k=1.Jo kLT = Ei{I(Xunj > 1)}

The following Theorem 3.3 shows the asymptotic variance of 3 is smaller than that
of Bl‘

Theorem 3.3 If the conditions (C1)-(C3) hold. Then 3 is more efficient than f3;.

The asymptotic properties of the estimators of the cumulative baseline hazards func-

t
tions Ag(t) = / Xo(s)ds for k € {1,2,..., K}, are summarized in the following theorem.
0
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Theorem 3.4 Under the conditions (C1)-(C3), Agx(t, 3) is consistent to Agy(t)

uniformly in ¢ € [0,7], ie., sup |Agk(t, E)—A()k(tﬂ — 0 almost surely. Moreover,
te(0,7]

V(Aok(t, B) — Aoi(t)) converges weakly to a zero-mean Gaussian process with covari-

ance function

Ti(s,t) = E[Ej, {Uk(s, Xij, A, Z2)}E5 {Wk(t, Xij, Aks Zi)}]

where
T K
Wit Xk Diw Zin) = —Cp (t ( Z i AP (s Ximgs Dim, Zim)}>
/ “fI X ) I(szg > U)ﬁo lkdu
Gox(u)
/ Xikj > u )dLy(u) — I(Xikj > U)ﬁgle(u)du
Gok(u)?
and
t
le(u)
Ci(t) = du.
k() o Gor(u)

The covariance function can be consistently estimated by replacing limiting quantities

with their empirical counterparts, i.e.,

~

Ii(s,t) = gz‘{gjk{@k(& Xikj, Aik, Zi) Y& {W(t, Xikj, Dik, Zik) } }»

for k € {1,2,..., K}, where

~ ~ ~ K . <
\Ijk(taXikj7Aik7Z’ik) = - g(t)A_l Z g]m{CI)<t sz]yAzmasz)}

Q.

Al (Xij < u) — I( Xy > u) 37 Zipdu
Gor(u)

EI(Xikg > w)dLg(u) — I( X > u) 57 Grg(u)du

éok(u)Q

S— S

and

SN
~ G
Cr(t) = / Cukv) g,
0 Gok(u)
The asymptotic properties of Bl and K&) (t, Bl) can similarly obtained, so we omit

them.
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84. Concluding Remarks

In this paper, we have studied an additive hazards model for multiple type recurrent
gap times. An estimating equation approach is used to estimate the regression parameters
and the cumulative hazard functions. We establish asymptotic properties of the proposed
estimators.

The additive mean model is another common and useful model for recurrent event
data. The proposed method in this paper can be extended to the additive mean model.
Our method is motivated by Cai and Schaubel (2004) and Sun et al. (2006). Thus, this
extension is simple by using an estimating equation similar to one in Cai and Schaubel
(2004) or (2.2).

In this paper, we consider time-independent covariates and the proposed inference
approach is based on the assumption that gap times are exchangeable. That is, the
observed complete gap times are identically distributed. When the covariates are time-
dependent, the proposed inference approach is still applicable, as long as the gap times
are assumed to be exchangeable. However, difficulties arise if the exchangeability is no
longer available. More discussions on the exchangeability can be found in Wang and
Chang (1999). In addition, how to choose of a weight process Q(t) to obtain the most
efficient estimator for § is a challenging problem. Further researches are needed to select

the weight process Q(t).

Appendix: Proofs of Asymptotic Properties

Proof of Theorem 3.1 By Taylor expansion, we have

Gik(t) ~
Gor(?) dL(t)

K T N
n'2U(Bo) = n'/?y {/ q(t) [gijk{AikZikdI(Xikj <t)} -
k=1 0

(1) G (t)Gor (1) 2 e
- dLg(t L AL (t) — & A2 T ( Xy >t dt
GOk(t) k( )+ GOk(t)Q k( ) ]k{ ik ( kj )}ﬁo
Gu(t)Gu®)” | Gu®)Gu()T  Gu(t)*2Gop(t)
— de 1
( Gok(t) Gok(t) Gox(t)? )50 }}—i— op(1)
n K __
= n 2SN E{ (X, Ains Zin) } + 0p(1). (A1)
i=1k=1
K
Note that ) &, {P(Xikj, Aik, Zir)} are i.i.d. zero-mean random vectors for i = 1,...,n.
k=1

By the multivariate central limit theorem, n'/2U () converges in distribution to a normal
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variable with mean zero and variance matrix 3, which can be consistently estimated by

izg‘i{(élé\'jk{&)(Xikj,AikaZi )}>®2}- U

Proof of Theorem 3.2 By the uniform strong law of large numbers, it can be

show that A converges to A and U(fy) — 0 almost surely. Since B — B = AU (bo), B is
consistent to Fy. Note that

n'2(B = By) = A" 'nM2U(By) + 0p(1). (A.2)

Combining Theorem 3.1, we have nl/Q(B—ﬁo) L, N(0, A='$ A7), The covariance matrix

A7 A7 can be consistently estimated by Q. O

Proof of Theorem 3.3  Under the conditions (C1)-(C3), as for 3, we can show

that the asymptotic variance of 31 is
K ®2
AilE[< > @(Xk(l);AlmZk)> }Ail.
k=1

For each k, since
(D(Xj, Dk, Zk) — &5, {P( Xy, Ak, Z1) )%}
O(Xpj, Ak Z4) %2} — (E5,{®(Xij, A, Z1) P2,

& {
= 54

we obtain
E[(E,{P(Xuy, Ak, Zi) NP2 < E[@( Xy 1), ik, Zit)¥?).
K ®2
Note that ¥ = E[( S & {0( X, Ak,Zk)}) } By (A.3), we have
k=1

L= E[kgk gjkl{q)(Xkﬂ?AkuZk1)}‘§}k2{q)(Xk2j7Ak2vzk2)T}}
17k2
XKz 2
+HE[ 2 (Gl @y, Ax 20D
K
< E k%é:k q)(X/ﬁ(l)aAk’UZkl)q)(XkQ(l)?AkzaZICQ)T:| +E[kEI(@(Xk(l)aAkazk))®2:|
1#k2 =
K ®2}

_ E[(kZ::l@(Xk(l),Ak,Zk))

Thus, the asymptotic variance of B is smaller than that of Bl- That is, [/3\ is more efficient

than Bl. O
Proof of Theorem 3.4  In model (2.1), Agx(t) can be rewritten as

B b ALy (u) — B Gig(u)du
Aow(t) = /0 e .
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Using uniform strong law of large numbers, we obtain that Kok(t, B) converges almost

surely to Agg(t) uniformly in ¢ € [0, 7]. By Taylor expansion and combining (A.1)-(A.2),

we have

Vi(Aor(t, B) — Aor(1) = Vn(Aok(t, B) — Aok(t, Bo)) + vr(Aok(t, Bo) — Aok(t))
{ [T Gulw)

d T —~
Gt u| /(B — o)

L AL (t) — BT Gip(u)
+\/ﬁ</0 Gok(u)
¢ @ k(u)de(t) — ,BTG k(u)@ k(u)du
_/0 - Gok(()u); ° ) + 0p(1)

= n7 12 Zjlgjk{\llk(tyXikja Aik, Zig) } + 0p(1).

The finite dimensional normality of /7 (Aox(t, B) — Agi(t)) can be obtain, by the multi-

variate central limit theorem. Using the empirical process theory (Pollard, 1990), we can
obtain that Wy (¢, X, Aik, Zi) is tight. Thus, \/ﬁ(Kok(t, B) — Aok (t)) converges weakly to

a zero-mean Gaussian process with covariance function I'x(s,t), which can be consistently

estimated by fk(s, t). O
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