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Abstract

This paper deals with asymptotical stability in probability in the large for stochastic bilinear
systems. Some new criteria for asymptotical stability of such systems have been established in the
inequality of mathematic expectation. A sufficient condition for bilinear stochastic jump systems
to be asymptotically stable in probability in the large in Markovian switching laws is derived in a
couple of Riccati-like inequalities by introducing a nonlinear state feedback controller. An illustra-
tive example shows the effectiveness of the method.
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81. Introduction

The stability-analysis of nonlinear stochastic jump systems has attracted much at-
tention in recent years. [1] investigated non-fragile control for a class of uncertain discrete
switched fuzzy systems with input delay in linear matrix inequalities (LMIs). Besides, the
system was robustly stable by the design of the average length of waiting time on the basis
of both the switching signal and the candidated controller™. Under the effect of certain
continuous excitation, robust H,, stabilization of uncertain impulsive switched systems

2l Moreover, asymptotical stability in probability for stochastic

was researched in LMIsl
nonlinear Markov jump systems was studied by designing backstepping controllerl. In
addition, the state-feedback controller was constructed by regarding Markovian switching
as constant such that the closed-loop system had a unique solution. Meantime, Ho, func-

tional filtering was constituted by the state-estimator for stochastic bilinear systems with
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multiplicative noises!¥. Stabilization was analyzed specifically in a class of networked im-
pulsive control systems®l. Recently, to ensure observability and controllability, an output-
feedback stabilizing controller for stochastic bilinear systems was proposed to make the
system globally be stable on conditions of noiseless or noisy respectively, where key tech-
niques were proposed by periodic switching of the controller and the dead-beat observer!”.
Bilinear stochastic jump systems play an important role in many practical systems, in-
cluding controlling of the aviation and chemical process, and even mapping-analysis of
gene.The asymptotical stability in probability in the large for stochastic jump systems
have good robustness and universality. However, asymptotical stability in probability in
the large for bilinear stochastic jump systems has not been absolutely investigated. In
the present paper, we consider asymptotical stability in probability for bilinear stochastic
jump systems with irreducible homogeneous Markovian switching. A nonlinear state feed-
back controller is primarily presented by periodic switching (Markovian switching laws) of
the controller and the dead-beat observer. The sufficient condition for bilinear stochastic
jump systems to be asymptotically stable in probability in the large via the candidated
controller is gained in a couple of Riccati-like inequalities. Finally, An illustrative example

displays the effectiveness of the method.

§2. Main Problem and Assumption

This paper is based on the underlying complete probability space, which is taken
to be the quartet (Q,F,F;, P) with a filtration ;. And F; is increasing monotonously
and right continuous, while Fy contains all P-null sets. Let r(¢) be a right continuous
homogeneous Markov process on the probability space, taking values in a finite state
space S = {0,1,2,...,N}. And there is generator I' = (v,4) nxn given by the following
probability distribution,

t+ o(t), if ;
Poalt) = PLr(s + 1) = glr(s) = py = 7O TPEE o
1+'7pqt+0(t)a if p=gq,

for any s,t > 0, where ,, > 0 is the transition rate from p to ¢q. If p = ¢, and then
N
satisfying vpq = — Y. Ypg-

q=1,q7#p
We consider the following stochastic bilinear system with the Markovian switching

law,

dz(t) = [A(r(t)) +u)N(r(t))]z(t)dt + J(r(t)x(t)dw(t), x(t) = ¢(t), t € [-h,0], (2.2)
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where z(t) € R" is the state, u(t) € R™ is the input control vector, w(t) is the general
Brownian motion. A(r(t)), N(r(t)),J(r(t)) are matrices of the appropriate dimension.

©(t) is a continuous differentiable vector-valued initial function on R.

Assumption 2.1 Markov process r(t) is independent of the Brownian motion
w(t).

Assumption 2.2  There is a symmetric positive definite matrix Q(r(¢)) in the
bilinear stochastic jump system (2.2). If 27 (#)[Q(r(t)) N (r(t)) + NT (r(t))Q(r(t))]z(t) = 0,
and then satisfying =7 (t)[Q(r(t))A(r(t)) + AT (r(1))Q(r(t))]z(t) < 0, for any z(t) # 0.

Therefore, the system is observable from the literature survey.

In this paper, one designs a nonlinear state feedback control law as follows

u(t) = =)&) sgn{e” (D[Q(r() A(r(t)) + AT (r(£))Q(r(1)IE(t)}
= —A(r(#)E(t) sgn(@(r (1)), (2.3)

where, £(t) = xz(t)/|lz(t)]l, @(r(t)) = €7 O)[Q(r)A(r(t) + AT (r(t))Q(r(t))IE(t), A(r(t))
is the constant related to r(t), and Q(r(t)) € Q,

Q = {Q(r®): R )A(r(®) + AT (r(t)Q(r(t)] <0,

[QUr(®))N(r(t)) + NT(r(£))Q(r(t))] = 0}, (2.4)
1 if > 0;

sgn(r) = ¢ 0 if z=0; (2.5)
~1  if z<0.

Assumption 2.2 illustrates non-empty sets of Q. The design of nonlinear state feedback
controller (2.3) makes unstable part (bilinear section) of the system separated from the

original system.

Assumption 2.3  Non-singular matrix A(r(¢)) is Schur stable, meaning all the

eigenvalues of A(r(t)) lies in the unit disk.

General stochastic differential equation:

dz(t) = f(z(t),t,r(t))dt + g(x(t),t,r(t))dw(t), (2.6)

where, the following analysis is imposed on the Borel measurable functions f : R™ x
Ry xS — R"and g : R" x Ry x§ — R™P. Both f and g are locally Lipschitz in
x € R" for all 7 > 0, namely, for any R > 0, there is a constant C'r > 0 such that
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F(e1,7,0) — £ 7,0 + 91, 7,5) — (2, 7,p)| < Crlars — 22| for any (r,p) € Ry x §
and (z1,x2) € Ug = {£ : || < R}. Moreover, f(0,7,p) = ¢g(0,7,p) = 0.

For V(z,t,7(t)) € C*Y(R" x Ry x S;Ry), C*Y(R™ x Ry x S;R,) expresses all
non-negative continuous function on R"™ x Ry x S. V(z,t,r(t)) is continuously twice
differentiable in x(t) and once differentiable in ¢.

L%, ([=h,0]; R") denotes all Fy measurable function set of stochastic variables & =
{&(0) : =h < 0 <0} on C([—h,0]; R™) and satisfying E{|{(0)[P : —h < 0 <0} < c0. 71, T2
be bounded stopping times, for 0 < 7 < 7. If both V(x,t,7(t)) and SV (z,t,7(t)) are
bounded on ¢ € [11, 7o) a.s. where, SV (x,t,7(t)) satisfies It6’s formula conditions, there

exists

E{V(z,m2,7(12)) — V(x,71,7(11))} = E/T2 SV (x,t,r(t))dt. (2.7)

T1
Definition 2.1  The equilibrium of z(t) = 0 is said to be 1) (weakly) stable in
probability, for each € > 0, § > 0, there is an r such that if t > tg, |xg] < r and ig € S,
and then P{|z(¢,&)| > e} < §.
2) asymptotically stable in probability in the large if it is stable in probability and,
for every € > 0, zp € R™ and iy € S, there exists tliglo P{lz(t,&)| >} =0.

8§3. The Main Results and Proofs

Lemma 3.121 A given symmetric positive definite matrix P and arbitrary sym-
metric matrix Q, there is Apin(P7'Q)2” Pz < 27 Qx < Mpax(P~1Q)2” Px for any vector
x € L ([—h,0]; R").

Lemma 3.23]  Assume that for bilinear stochastic jump system (2.2) has a unique
equilibrium solution almost surely sense in ¢ € [tg,00), and then under the control law
(2.3), the existence of positive definite function V € C*!(R" x Ry x S; Ry ), where ¢ > 0
and the matrix of D > 0, such that the following formula is hold for the system (2.2)

E{V (x,t,7(t))} < De i), (3.1)
Vr= sup V(z,t,7(t)) =0< R—0, (3.2)
t>to,|z|<R

for each xg € R™ and iy € S, the equilibrium z(¢) = 0 of bilinear stochastic jump system
(2.2) is asymptotically stable in probability in the large.

Lemma 3.30)  The character of f and g is hold for system (2.1)-(2.3). For any
[ > 0, define the first exit time 7; as n; = inf{t : t > to, |x(t)| > {}. Assume that there
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exists a positive function V(z,t,r(t)) € C*'(R" x Ry x S;Ry) and parameters d and
D > 0, such that
E{V (z,m At,r(m At))} < De dmnt=to),

R—o00o=Vrp= inf V(x,tr(t)— oco.
t2t0,|$‘>R

Then, for every x(ty) = xg € R™ and r(tyg) = ip € S, there exists a solution z(t) =
x(xo, 103 t,7(t)), unique up to equivalence of system (2.2).

Lemma 3.48  Given M, N and p > 0, there exists p > 0, such that
(MyN)T 2T P 4 Px(MyN) < pa® P2z + p~*MT My" NT Ny
for any vector z,y € L%, ([—h,0]; R").

Lemma 3.51%  Given constant matrices Qy, Qo, Qg, If QO = QF and 0 < Qp = QF,
then Q; + Q305103 < 0, if and only if

0 of
Q; —Q

< 0.

LetA(i) = A;, N(i) = Ny, J(i) = J;, Qi) = Q4,1 € S.

Theorem 3.1 Suppose that all Assumptions 2.1-2.3 hold for the system (2.1)-
(2.3). If there are scalar u > 0, ¢ = Apin(—F;S;) > 0, and given positive definite matrix
P; > 0, satisfy that

Si=| N —ul 0 |<0, (3.3)
MNpooo0 —ptl
where ©; = AT P, + PA; + JE P J; + Z 7 Pj. Then, the equilibrium x(¢) = 0 of bilinear

stochastic jump system (2.2) is asymptotlcally stable in probability in the large.

Proof Choosing a Lyapunov function candidate
V(x,t,i) = 1 (t)Pix(t). (3.4)

The stochastic derivative of V' along a given trajectory of (2.2) is obtained from Ito’s

formula as follows:

Ly (a(t), t,6) = SV (1), 1.1)

dt
= ([Ai = X€(t) sgn(P)NiJa(1) T Pi(t) + " (8) Pi[A; — A& (t) sgn(®@) N (t)
a7 () JF Py Jx(t) + fj Yi; Pj + 22T (t) Py Jiz(t)dw(t). (3.5)

j=1
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It follows from Lemma 3.4, there exists p > 0, such that

NEET () sgn(®) AL Py + PxeT (t) sgn(®;)N;
< pA BEPX 4 sgn(®:) N €T (SN < pA] PPN+ NI N (3.6)

Learning from the Lemma 3.5, (3.3) is equivalent to the following inequality
N
Si = AP, + P A; + u\] PP\ + p ' NI'N; + JFP.J; + 3 i Py < 0. (3.7)
j=1

The equality (3.5) is taken integral on interval [to,?], t € [tg,00) taking expectations on

both sides of the equality and combining with (2.7), one gets

E/t%V(x,t,r(t))dt = E{V(nt,r(t)) — V(z, to, 7(to)))

to

IN

E{z" (t)Siz(t)} = —E{a” (t)(=S;)z(t)}. (3.8)
According to the Lemma 3.1, one obtains

E/ SV (z,t,r(t)dt < E{zT(t)(=S)z(t)}

Amax|—(P;Si)|E{z" (t) (= Pi)x(t)}
—Amin[—(P:S:)|E{z” () Pz (t)}
CCE{V (@, (1)), (3.9)

IN A

According to the Lemma 3.2, (3.1) is set up by the differential knowledge, in which D =
©!' Pyp. Obviously, if

R — 0,
one gets
sup  V(z,t,r(t)) = sup zl(t)Piz(t) — 0. (3.10)
t>to,|z|<R t>to,|z|<R

Similarly, if

Vr= sup V(a,t,r(t))—0,
t2t0,|x|<R

that is 27 (t)P;z(t) — 0. Since P; > 0, then z(t) — 0.
Lemma 3.3 state clearly that

R Ve= inf V t . 3.11
— o0 = Vg s (w,7(t)) — o0 (3.11)

The expression of (3.11) is apparently implied that

R — 0.
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Moreover, one obtains

Vr= sup V(x,t,r(t)) —=0s R—0.
t2t0,|x\<R

Therefore, the equilibrium state of bilinear stochastic jump system (2.2) is asymptot-

ically stable in probability in the large. O

84. Simulation

We consider stochastic bilinear system (2.2) as follows:

da(t) = [A(r(t)) + w(t)N(r(t))]x(t)dt + J(r(t))z(t)dw(t),

system parameters are as follows:

1.5 1 —-0.01 0.1 —1 0
’ N; = ) Ji = .
0 —0.06 0.5 —0.4

A=
—0.5 25

Choose z1(0) =[0.3 —0.2], \; = 0.815, u = 0.095, ¢ = I(unit matrix), top = 0.1, U1 min =
—4 < u(t) < Ul max =5, ¢ = [0.8 1.6], one obtains from (3.3)

| 8.2636 0.2826
0.2826 5.3355 |
Numerical simulation shows that the system state eventually is driven to be the stable

equilibrium state (Figure 1).

Trajectories of State
T

0.4

x1(t)
——x2(t)|

0.3

State

—0.3}

04 | | | | | | |
0 10 20 30 40 50 60 70
ts

Figure 1 Trajectories of the state
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Numerical example displays the evolvement in the expectation of V function to be

rapidly converged to the definite zero-value (Figure 2).

the evolvement in the expectation of V function
15 T T T T T

05F 1

Vx(®).t)
o

15 . . .
0 5 10 15 20 25 30

t/s

Figure 2 The evolvement in the expectation of V' function

85. Conclusion

In this paper, some new criteria for the asymptotical stability of the jump system
have been established in the inequality of mathematic expectation of a Lyapunov function.
Sufficient conditions are derived in a couple of Riccati-like inequalities, such that bilinear
stochastic jump system is asymptotically stable in probability in the above-mentioned
controller. Finally, an example validates effectiveness of the proposed method. In the
future, an output feedback controller will be introduced to study asymptotically stable in

probability in the large for stochastic bilinear system.
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