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Abstract
This paper deals with asymptotical stability in probability in the large for stochastic bilinear

systems. Some new criteria for asymptotical stability of such systems have been established in the

inequality of mathematic expectation. A sufficient condition for bilinear stochastic jump systems

to be asymptotically stable in probability in the large in Markovian switching laws is derived in a

couple of Riccati-like inequalities by introducing a nonlinear state feedback controller. An illustra-

tive example shows the effectiveness of the method.

Keywords: Stochastic bilinear systems, asymptotical stable in probability, Markovian

switching, feedback controller.

AMS Subject Classification: 93E15.

§1. Introduction

The stability-analysis of nonlinear stochastic jump systems has attracted much at-

tention in recent years. [1] investigated non-fragile control for a class of uncertain discrete

switched fuzzy systems with input delay in linear matrix inequalities (LMIs). Besides, the

system was robustly stable by the design of the average length of waiting time on the basis

of both the switching signal and the candidated controller[1]. Under the effect of certain

continuous excitation, robust H∞ stabilization of uncertain impulsive switched systems

was researched in LMIs[2]. Moreover, asymptotical stability in probability for stochastic

nonlinear Markov jump systems was studied by designing backstepping controller[3]. In

addition, the state-feedback controller was constructed by regarding Markovian switching

as constant such that the closed-loop system had a unique solution[3]. Meantime, H∞ func-

tional filtering was constituted by the state-estimator for stochastic bilinear systems with
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multiplicative noises[4]. Stabilization was analyzed specifically in a class of networked im-

pulsive control systems[6]. Recently, to ensure observability and controllability, an output-

feedback stabilizing controller for stochastic bilinear systems was proposed to make the

system globally be stable on conditions of noiseless or noisy respectively, where key tech-

niques were proposed by periodic switching of the controller and the dead-beat observer[7].

Bilinear stochastic jump systems play an important role in many practical systems, in-

cluding controlling of the aviation and chemical process, and even mapping-analysis of

gene.The asymptotical stability in probability in the large for stochastic jump systems

have good robustness and universality. However, asymptotical stability in probability in

the large for bilinear stochastic jump systems has not been absolutely investigated. In

the present paper, we consider asymptotical stability in probability for bilinear stochastic

jump systems with irreducible homogeneous Markovian switching. A nonlinear state feed-

back controller is primarily presented by periodic switching (Markovian switching laws) of

the controller and the dead-beat observer. The sufficient condition for bilinear stochastic

jump systems to be asymptotically stable in probability in the large via the candidated

controller is gained in a couple of Riccati-like inequalities. Finally, An illustrative example

displays the effectiveness of the method.

§2. Main Problem and Assumption

This paper is based on the underlying complete probability space, which is taken

to be the quartet (Ω,F ,Ft,P) with a filtration Ft. And Ft is increasing monotonously

and right continuous, while F0 contains all P-null sets. Let r(t) be a right continuous

homogeneous Markov process on the probability space, taking values in a finite state

space S = {0, 1, 2, . . . , N}. And there is generator Γ = (γpq)N×N given by the following

probability distribution,

Ppq(t) = P{r(s + t) = q|r(s) = p} =





γpqt + o(t), if p 6= q;

1 + γpqt + o(t), if p = q,
(2.1)

for any s, t ≥ 0, where γpq > 0 is the transition rate from p to q. If p = q, and then

satisfying γpq = −
N∑

q=1,q 6=p

γpq.

We consider the following stochastic bilinear system with the Markovian switching

law,

dx(t) = [A(r(t))+u(t)N(r(t))]x(t)dt+J(r(t))x(t)dw(t), x(t) = ϕ(t), t ∈ [−h, 0], (2.2)
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where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input control vector, w(t) is the general

Brownian motion. A(r(t)), N(r(t)), J(r(t)) are matrices of the appropriate dimension.

ϕ(t) is a continuous differentiable vector-valued initial function on R.

Assumption 2.1 Markov process r(t) is independent of the Brownian motion

w(t).

Assumption 2.2 There is a symmetric positive definite matrix Q(r(t)) in the

bilinear stochastic jump system (2.2). If xT (t)[Q(r(t))N(r(t))+NT (r(t))Q(r(t))]x(t) = 0,

and then satisfying xT (t)[Q(r(t))A(r(t)) + AT (r(t))Q(r(t))]x(t) < 0, for any x(t) 6= 0.

Therefore, the system is observable from the literature survey.

In this paper, one designs a nonlinear state feedback control law as follows

u(t) = −λ(r(t))ξ(t) sgn{ξT (t)[Q(r(t))A(r(t)) + AT (r(t))Q(r(t))]ξ(t)}
= −λ(r(t))ξ(t) sgn(Φ(r(t))), (2.3)

where, ξ(t) = x(t)/‖x(t)‖, Φ(r(t)) = ξT (t)[Q(r(t))A(r(t)) + AT (r(t))Q(r(t))]ξ(t), λ(r(t))

is the constant related to r(t), and Q(r(t)) ∈ Q,

Q = {Q(r(t)) : [Q(r(t))A(r(t)) + AT (r(t))Q(r(t))] < 0,

[Q(r(t))N(r(t)) + NT (r(t))Q(r(t))] = 0}, (2.4)

sgn(x) =





1 if x > 0;

0 if x = 0;

−1 if x < 0.

(2.5)

Assumption 2.2 illustrates non-empty sets of Q. The design of nonlinear state feedback

controller (2.3) makes unstable part (bilinear section) of the system separated from the

original system.

Assumption 2.3 Non-singular matrix A(r(t)) is Schur stable, meaning all the

eigenvalues of A(r(t)) lies in the unit disk.

General stochastic differential equation:

dx(t) = f(x(t), t, r(t))dt + g(x(t), t, r(t))dw(t), (2.6)

where, the following analysis is imposed on the Borel measurable functions f : Rn ×
R+ × S → Rn and g : Rn × R+ × S → Rn×p. Both f and g are locally Lipschitz in

x ∈ Rn for all τ ≥ 0, namely, for any R > 0, there is a constant CR ≥ 0 such that
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|f(x1, τ, p) − f(x2, τ, p)| + |g(x1, τ, p) − g(x2, τ, p)| ≤ CR|x1 − x2| for any (τ, p) ∈ R+ × S

and (x1, x2) ∈ UR = {ξ : |ξ| ≤ R}. Moreover, f(0, τ, p) = g(0, τ, p) = 0.

For V (x, t, r(t)) ∈ C2,1(Rn × R+ × S;R+), C2,1(Rn × R+ × S;R+) expresses all

non-negative continuous function on Rn × R+ × S. V (x, t, r(t)) is continuously twice

differentiable in x(t) and once differentiable in t.

L2
F0

([−h, 0];Rn) denotes all F0 measurable function set of stochastic variables ξ =

{ξ(θ) : −h ≤ θ ≤ 0} on C([−h, 0];Rn) and satisfying E{|ξ(θ)|p : −h ≤ θ ≤ 0} < ∞. τ1, τ2

be bounded stopping times, for 0 ≤ τ1 ≤ τ2. If both V (x, t, r(t)) and =V (x, t, r(t)) are

bounded on t ∈ [τ1, τ2] a.s. where, =V (x, t, r(t)) satisfies Itô’s formula conditions, there

exists

E{V (x, τ2, r(τ2))− V (x, τ1, r(τ1))} = E

∫ τ2

τ1

=V (x, t, r(t))dt. (2.7)

Definition 2.1 [5] The equilibrium of x(t) = 0 is said to be 1) (weakly) stable in

probability, for each ε > 0, δ > 0, there is an r such that if t > t0, |x0| < r and i0 ∈ S,

and then P{|x(t, ξ)| > ε} < δ.

2) asymptotically stable in probability in the large if it is stable in probability and,

for every ε > 0, x0 ∈ Rn and i0 ∈ S, there exists lim
t→∞P{|x(t, ξ)| > ε} = 0.

§3. The Main Results and Proofs

Lemma 3.1 [2] A given symmetric positive definite matrix P and arbitrary sym-

metric matrix Q, there is λmin(P−1Q)xT Px ≤ xT Qx ≤ λmax(P−1Q)xT Px for any vector

x ∈ L2
F0

([−h, 0];Rn).

Lemma 3.2 [3] Assume that for bilinear stochastic jump system (2.2) has a unique

equilibrium solution almost surely sense in t ∈ [t0,∞), and then under the control law

(2.3), the existence of positive definite function V ∈ C2,1(Rn ×R+ × S;R+), where c > 0

and the matrix of D > 0, such that the following formula is hold for the system (2.2)

E{V (x, t, r(t))} ≤ De−c(t−t0), (3.1)

V R = sup
t≥t0,|x|<R

V (x, t, r(t)) → 0 ⇔ R → 0, (3.2)

for each x0 ∈ Rn and i0 ∈ S, the equilibrium x(t) = 0 of bilinear stochastic jump system

(2.2) is asymptotically stable in probability in the large.

Lemma 3.3 [3] The character of f and g is hold for system (2.1)-(2.3). For any

l > 0, define the first exit time ηl as ηl = inf{t : t ≥ t0, |x(t)| ≥ l}. Assume that there
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exists a positive function V (x, t, r(t)) ∈ C2,1(Rn × R+ × S;R+) and parameters d and

D ≥ 0, such that

E{V (x, η1 ∧ t, r(η1 ∧ t))} ≤ De−d(η1∧t−t0),

R →∞⇒ VR = inf
t≥t0,|x|>R

V (x, t, r(t)) →∞.

Then, for every x(t0) = x0 ∈ Rn and r(t0) = i0 ∈ S, there exists a solution x(t) =

x(x0, i0; t, r(t)), unique up to equivalence of system (2.2).

Lemma 3.4 [8] Given M, N and p > 0, there exists µ > 0, such that

(MyN)T xT P + Px(MyN) ≤ µxT P 2x + µ−1MT MyT NT Ny

for any vector x, y ∈ L2
F0

([−h, 0];Rn).

Lemma 3.5 [10] Given constant matrices Ω1,Ω2,Ω3, If Ω1 = ΩT
1 and 0 < Ω2 = ΩT

2 ,

then Ω1 + ΩT
3 Ω−1

2 Ω3 < 0, if and only if
[

Ω1 ΩT
3

Ω3 −Ω2

]
< 0.

LetA(i) = Ai, N(i) = Ni, J(i) = Ji, Q(i) = Qi, i ∈ S.

Theorem 3.1 Suppose that all Assumptions 2.1-2.3 hold for the system (2.1)-

(2.3). If there are scalar µ > 0, c = λmin(−PiSi) > 0, and given positive definite matrix

Pi > 0, satisfy that

Si =




Θi NT
i λiPi

Ni −µI 0

λT
i Pi 0 −µ−1I


 < 0, (3.3)

where Θi = AT
i Pi + PiAi + JT

i PiJi +
n∑

j=1
γijPj . Then, the equilibrium x(t) = 0 of bilinear

stochastic jump system (2.2) is asymptotically stable in probability in the large.

Proof Choosing a Lyapunov function candidate

V (x, t, i) = xT (t)Pix(t). (3.4)

The stochastic derivative of V along a given trajectory of (2.2) is obtained from Itô’s

formula as follows:

d
dt

V (x(t), t, i) = =V (x(t), t, i)

= ([Ai − λiξ(t) sgn(Φ)Ni]x(t))T Pix(t) + xT (t)Pi[Ai − λiξ(t) sgn(Φ)Ni]x(t)

+xT (t)JT
i PiJix(t) +

N∑
j=1

γijPj + 2xT (t)PiJix(t)dw(t). (3.5)
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It follows from Lemma 3.4, there exists µ > 0, such that

NT
i ξT (t) sgn(Φi)λT

i Pi + Piλiξ
T (t) sgn(Φi)Ni

≤ µλT
i P T

i Piλi + µ−1 sgn(Φi)2NT
i ξT (t)ξ(t)Ni ≤ µλT

i P 2
i λi + µ−1NT

i Ni. (3.6)

Learning from the Lemma 3.5, (3.3) is equivalent to the following inequality

Si = AT
i Pi + PiAi + µλT

i P 2
i λi + µ−1NT

i Ni + JT
i PiJi +

N∑
j=1

γijPj < 0. (3.7)

The equality (3.5) is taken integral on interval [t0, t], t ∈ [t0,∞) taking expectations on

both sides of the equality and combining with (2.7), one gets

E

∫ t

t0

=V (x, t, r(t))dt = E{V (x, t, r(t))− V (x, t0, r(t0))}

≤ E{xT (t)Six(t)} = −E{xT (t)(−Si)x(t)}. (3.8)

According to the Lemma 3.1, one obtains

E

∫ t

t0

=V (x, t, r(t))dt ≤ E{xT (t)(−Si)x(t)}

≤ λmax[−(PiSi)]E{xT (t)(−Pi)x(t)}
≤ −λmin[−(PiSi)]E{xT (t)Pix(t)}
= −cE{V (x, t, r(t))}. (3.9)

According to the Lemma 3.2, (3.1) is set up by the differential knowledge, in which D =

ϕT Piϕ. Obviously, if

R → 0,

one gets

sup
t≥t0,|x|<R

V (x, t, r(t)) = sup
t≥t0,|x|<R

xT (t)Pix(t) → 0. (3.10)

Similarly, if

V R = sup
t≥t0,|x|<R

V (x, t, r(t)) → 0,

that is xT (t)Pix(t) → 0. Since Pi > 0, then x(t) → 0.

Lemma 3.3 state clearly that

R →∞⇒ VR = inf
t≥t0,|x|>R

V (x, r(t)) →∞. (3.11)

The expression of (3.11) is apparently implied that

R → 0.
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Moreover, one obtains

V R = sup
t≥t0,|x|<R

V (x, t, r(t)) → 0 ⇔ R → 0.

Therefore, the equilibrium state of bilinear stochastic jump system (2.2) is asymptot-

ically stable in probability in the large. ¤

§4. Simulation

We consider stochastic bilinear system (2.2) as follows:

dx(t) = [A(r(t)) + u(t)N(r(t))]x(t)dt + J(r(t))x(t)dw(t),

system parameters are as follows:

Ai =

[
1.5 1

−0.5 2.5

]
, Ni =

[
−0.01 0.1

0 −0.06

]
, Ji =

[
−1 0

0.5 −0.4

]
.

Choose x1(0) = [0.3 − 0.2], λi = 0.815, µ = 0.095, ϕ = I(unit matrix), t0 = 0.1, u1min =

−4 ≤ u(t) ≤ u1max = 5, c = [0.8 1.6], one obtains from (3.3)

Pi =

[
8.2636 0.2826

0.2826 5.3355

]
.

Numerical simulation shows that the system state eventually is driven to be the stable

equilibrium state (Figure 1).
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Figure 1 Trajectories of the state
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Numerical example displays the evolvement in the expectation of V function to be

rapidly converged to the definite zero-value (Figure 2).
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Figure 2 The evolvement in the expectation of V function

§5. Conclusion

In this paper, some new criteria for the asymptotical stability of the jump system

have been established in the inequality of mathematic expectation of a Lyapunov function.

Sufficient conditions are derived in a couple of Riccati-like inequalities, such that bilinear

stochastic jump system is asymptotically stable in probability in the above-mentioned

controller. Finally, an example validates effectiveness of the proposed method. In the

future, an output feedback controller will be introduced to study asymptotically stable in

probability in the large for stochastic bilinear system.

References

[1] Du, H.B., Lin, X.Z. and Li, S.H., Robust exponential stabilization for a class of uncertain switched

systems with input delay, Control and Decision, 24(9)(2009), 1316–1320.

[2] Xu, H.L., Liu, X.Z. and Teo, K.L., Robust H∞ stabilization with definite attenuance of an uncertain

impulsive switched system, The ANZIAM Journal, 46(4)(2005), 471–484.

[3] Wu, Z.J., Xie, X.J., Shi, P. and Xia, Y.Q., Backstepping controller design for a class of stochastic

nonlinear systems with Markovian switching, Automatica, 45(4)(2009), 997–1004.

《
应
用
概
率
统
计
》
版
权
所
有



第四期 丁芳清 焦贤发 徐启敏: Markov切换随机双线性系统依概率渐进稳定性 413

[4] Halabi, S., Souley Ali, H., Rafaralahy, H. and Zasadzinski, M., H∞ functional filtering for stochastic

bilinear systems with multiplicative noises, Automatica, 45(4)(2009), 1038–1045.

[5] Liu, S.J., Zhang, J.F. and Jiang, Z.P., Decentralized adaptive output-feedback stabilization for large-

scale stochastic nonlinear systems, Automatica, 43(2)(2007), 238–251.

[6] Guan, Z.H., Huang, J. and Chen, G.R., Stability analysis of networked impulsive control systems,

Proceedings of the 25th Chinese Control Conference, 7–11, 2006.

[7] Hanba, S. and Miyasato, Y., Output feedback stabilization of bilinear systems using dead-beat ob-

servers, Automatica, 37(6)(2001), 915–920.

[8] Wang, Y., Xie, L. and de Souza, C.E., Robust control of a class of uncertain nonlinear systems,

Systems & Control Letters, 19(2)(1992), 139–149.

[9] Khas’minskii, R.Z., Stochastic Stability of Nonlinear Uncertain Systems, New York, Springer, 1980.

[10] Li, H. and Fu, M., A linear matrix inequality approach to robust H∞ filtering, IEEE Transactions

on Signal Processing, 45(9)(1997), 2338–2350.

Markov切换随机双线性系统依概率渐进稳定性

丁芳清1,2 焦贤发1 徐启敏1

(1合肥工业大学数学学院, 合肥, 230009; 2合肥学院数学与物理系, 合肥, 230601)

本文研究随机双线性系统大范围渐进稳定性. 利用数学期望不等式给出了随机双线性系统渐进稳定的新

标准. 设计了一种非线性状态反馈控制器, 利用类Riccati不等式推出了Markov切换随机双线性系统大范围依

概率渐进稳定的充分条件. 数值算例表明本文提出的方法是可行的.

关键词: 随机双线性系统, 依概率渐进稳定, Markov切换, 反馈控制器.

学科分类号: O211.6.
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