
应用概率统计 第二十九卷
第五期 2013年10月

Chinese Journal of Applied Probability
and Statistics Vol.29 No.5 Oct. 2013

Asymptotic Ruin Probability for Cox Risk Model with

Variable Premium Rate and Constant Interest Force ∗

Xu Lin Wu Liyuan Zhu Dongjin

(School of Mathematics and Computer Science, Anhui Normal University, Wuhu, 241003)

Abstract
This paper focuses on ruin probability for Cox model with variable premium rate and constant

investment return when the claims have heavy tailed distribution. By considering the “skeleton

process” of Cox risk model, a recursive equation for finite time ruin probabilities are derived in

terms of “renewal techniques” and asymptotic estimation for finite time ruin probabilities and ul-

timate ruin probability are obtained by inductive method.
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§1. Introduction

Ruin probability is of great importance in risk theory. A good deal of literatures
have been presented for solving the ruin probability in classical risk model and some of
its generalizations, such as renewal risk model, risk model perturbed diffusions etc., see
Asmussen (2000) for comprehensive introduction to this aspect. In the past twenty years,
the continuous-time risk processes with interest force or stochastic return on investment
received great concern. For example, Cai and Dickson (2002, 2003), Cai (2004), Gerber and
Shiu (1997), Paulsen and Gjessing (1997), Grandell (1991), Hipp (2004), Konstantinides
et al. (2002), Ng and Yang (2006), Wu and Wei (2004) and references therein. In their risk
models, it is often assumed that the premium incomes follow a fixed rate, as an alternative,
the risk process with variable premium income rate has recently received an increasing
amount of attention in modeling surplus process. For example, Melnikov (2004) studied
the ruin probability in a risk model with stochastic premium incomes and all capital of
the insurer was invested in stock, like did by Taylor (1980). In this paper, we focus on
Cox risk model with variable premium income rate specified by a function of the intensity
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process of the Cox process, which allows for the dependence of the premium incomes and
the claims. This assumption makes our model more reasonable in practice. To our best
knowledge, it is the first time to consider the ruin problems under such risk model.

Exponential upper bound estimation for ruin probability is one the main topic in
ruin theory, which claims that if the Lundberg coefficient exists, then the ruin probability
will decay exponentially w.r.t. the increase of initial surplus. The existence of Lundberg
coefficient requires the tail distribution of claims should decay exponentially. Such claims
are often named with “small claim” or “light tailed distribution”. When the distribution
of claims is “heavy tailed”, even the mathematical expectation of the claims may not exist,
so we can not define the Lundberg coefficient. One common topic on studying the ruin
probability for risk model with heavy tailed claims is to find the asymptotic behavior of ruin
probability. For example, Embrechts et al. (1997) presented a comprehensive introduction
for modeling extremal events in insurance, including asymptotic ruin probabilities when
claims are heavy tailed. Cai and Dickson (2004) studied the asymptotic ruin probability
for discrete time risk model with dependent investment return when the claims are long-
tailed, Wang and Yin (2010) studied the asymptotic ruin probability for risk model with
dependent claims, Leipus and Šiaulys (2007) researched the asymptotic ruin probability
for Sparre-Anderson risk model with heavy tailed claims, Konstantinides et al. (2002)
studied asymptotic ruin probability in the classical risk model with constant interest force
in the presence of heavy tails. Relatively, few papers concentrate on the asymptotic ruin
probability for Cox risk model with constant interest force and heavy tailed distributed
claims and this is the goal of this paper. As results, recursive equations for finite ruin
probabilities are derived by “renewal techniques” and asymptotic estimation for finite time
ruin probabilities and ultimate ruin probability are obtained by inductive method. This
paper is organized as follows. Section 2 presents the introduction to our risk model and the
problem to be investigated. Section 3 studies the asymptotic behavior of ruin probability
when claims have regularly varying tails with index γ.

§2. Model and Problem

Let (Ω,F ,P) be a complete probability space containing all the variables defined in
this paper and the Cox risk model with variable premium income is specified by

Xt = u +
∫ t

0
c(λs)ds−

Nt∑
i=1

Yi, (2.1)

where u > 0 is the initial value of the surplus process, N = {Nt, t ≥ 0} is a Cox process
with intensity process λ = {λt, t ≥ 0}. Nt denote the number of claims arrived up to
time t. Y = {Yi, i ≥ 1} are i.i.d. random variables with F (x) the common cumulative
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distribution function. λ is assumed to be a positive-valued, continuous time Markov chain
with phase space E = {αi, i = 1, 2, . . . , n} and generator Q = (qij)n×n. Define τ1 the first
time that the process λ leave the initial state, i.e. τ1 = inf{t : t > 0, λt 6= λ0}. By the
classical results on continuous time Markov chain, if qi := −qii =

∑
j 6=i

qij < ∞, then we

have the following results:

Lemma 2.1 Suppose that λ0 = αi, then for any αi ∈ E, the following properties
holds:

P(τ1 > t) = e−qit; (2.2)

P(τ1 ≤ t, λτ1 = αj) = (1− e−qit)
qij

qi
; (2.3)

P(λτ1 = αj) =
qij

qi
. (2.4)

The proof for the Lemma 2.1 can be found in Grandell (1991). Denote by Fλ
t =

σ{λs, 0 ≤ s ≤ t}, FX
t = σ{Xt, 0 ≤ s ≤ t} and Ft = σ{(λs, Xs), 0 ≤ s ≤ t}. We shall make

strong use of Lemma 2.19 in Grandell (1991), which says that

Lemma 2.2 (i) Nt has independent increments relative to Fλ∞;

(ii) Nt −Ns is Poisson distribution with mean
∫ t

s
λrdr relative to Fλ∞.

In classical risk model, one basic requirement is “safety loading”, which ensures that
the expected net income of the insurer is positive in per unit time interval. In our risk
model, since the premium income rate is a random variable c(λt) and the distribution of
λt is highly dependent on its initial distribution and the generator Q. For exposition ease,
it is assumed that Process λ is stationary with initial distribution π = (π1, π2, . . . , πn), i.e.
πi = P(λ0 = αi), i = 1, 2, . . . , n. To make “safety loading” hold, the following property is
sufficient and natural for our model

Ec(λt) = Ec(λ0) > EY Eλ0 := pEY. (2.5)

Equation (2.5) ensures that for any t ≥ 0, the expected total premium income is greater
than the expected aggregate claims, because

E

∫ t

0
c(λs)ds =

∫ t

0
Ec(λs)ds = tEc(λ0) > E

[ N(t)∑
i=1

Yi

]
= EY E

[ ∫ t

0
λsds

]
= EY Eλ0t

⇐⇒ Ec(λt) = Ec(λ0) > EY Eλ0 := pEY.

Putting c(λt) = (1 + ρ)pEY with ρ > 0, i.e. c(λt) is linear function of t, then, our model
is the one considered in Grandell (1991). Let Li denote the arrival time of ith claim, then
{Li − Li−1, i ≥ 1, L0 = 0} are i.i.d. random variables relative to Fλ∞.
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In this paper, we assume that the insurer would like to invest all its surplus to a
bond market with investment return rate δ, which can also be regard as the interest force.
Then, the dynamic of the surplus process is

dXt = Xtδdt + c(λt)dt− dZt, (2.6)

where Zt =
Nt∑
i=1

Yi denote aggregate claims up to time t. By Equation (2.6), it is easy to

find that

Xt = eδt
(
u +

∫ t

0
e−δrc(λr)dr −

∫ t

0
e−δrdZr

)
. (2.7)

In the rest of this paper, the risk process to be discussed is the one specified by (2.6).
Define by Ti(u) = inf{t : Xt < 0|X0 = u, λ0 = αi} the ruin time of Xt with λ0 = αi,
X0 = u and T (u) = inf{t : Xt < 0|X0 = u} the ruin time of process (2.1), with the
convention that inf ∅ = ∞. Denote the ultimate ruin probability with initial surplus u

and initial intensity state αi by ψi(u), i.e.

ψi(u) = P{Ti(u) < ∞} = P
{

inf
t

Xt < 0|X0 = u, λ0 = αi

}
, (2.8)

the ruin probability with initial surplus u by ψ(u), i.e.

ψ(u) = P{T (u) < ∞} = P
{

inf
t

Xt < 0|X0 = u
}

=
n∑
i

ψi(u)πi, (2.9)

the probability that ruin occurs before or on the ith claim with initial tensity αi by

ψi,n(u) = P{Ti(u) ≤ Ln|X0 = u, λ0 = αi}, (2.10)

the probability that ruin occurs before or on the ith claim by

ψn(u) = P{T ≤ Ln|X0 = u}. (2.11)

By “differential arguments”, a coupled integral equations for ruin probabilities satis-
fied by vector (ψ1(u), ψ2(u), . . . , ψd(u)) is obtained in Xu et al. (2014) and the initial value
of coupled equations can be determined explicitly when the claims are “light-tailed”. This
result principally enables us to computing the ruin probability numerically. However,
when the claims are heavy tailed, it is difficult to determine the initial value of the cou-
pled integral equations. Alternatively, we try to determine the asymptotic behavior of
ruin probability when initial surplus tends to infinity.

§3. Asymptotic Estimation for Ruin Probability

Note that ruin only takes place when a claim arrived, thus ensuring us to consider
the so-called “skeleton-process” of process (2.7) for studying ruin probability. Denote the
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“discounted skeleton risk process” of process (2.7) by

Mn := e−δLnXLn = e−δLn

[
XLn−1e

δ(Ln−Ln−1) +
∫ Ln

Ln−1

eδrc(λr)dr − Yn

]

= u +
∫ Ln

0
e−δrc(λr)dr −

n∑
i=1

Yie−δLi

= u +
n∑

i=1

[ ∫ Li

Li−1

e−δrc(λr)dr − Yie−δLi

]
(3.1)

= Mn−1 + e−δLn−1

[ ∫ Ln

Ln−1

e−δ(r−Ln−1)c(λr)dr − Yne−δ(Ln−Ln−1)
]

(3.2)

with the convention that L0 = 0. The following theorem is basic for this paper.

Theorem 3.1 Finite time ruin probability ψn(u) and ψi,n(u) satisfy the following
recursive equation respectively

ψn(u) = E
[
F (G(L1)) +

∫ G(L1)

0
ψn−1(G(L1)− y)dF (y)

]
,

ψi,n(u) = E
[
F (G(L1)) +

d∑
j=1

Hij

∫ G(L1)

0
ψj,n−1(G(L1)− y)dF (y)|λ0 = αi

]
,

i = 1, 2, . . . , d, (3.3)

where

G(L1) =̂ ueδL1 +
∫ L1

0
eδ(L1−r)c(λr)dr, (3.4)

Hij = P(λL1 = αj |λ0 = αi). (3.5)

Proof By calculating whether the first claim cause ruin or not, it follows that

ψn(u) = P(T ≤ Ln) = P
( n⋃

k=1

{Mk < 0}|M0 = u
)

= P
( n⋃

k=1

{Mk < 0}|M1 < 0
)
P(M1 < 0) + P

( n⋃
k=1

{Mk < 0}|M1 > 0
)
P(M1 > 0)

= E
[
P(Y1 > G(L1)) + P

( n⋃
k=2

{Mk < 0}|Y1 < G(L1)
)
P(Y1 < G(L1))

]

= E
[
F (G(L1)) +

∫ G(L1)

0
ψn−1(G(L1)− y)dF (y)

]
. (3.6)

With similar discussion to Equation (3.6), we have Equation (3.3) immediately. ¤

Note that for any n ≥ 1, ψn(u) is decreasing w.r.t. u when u approaches to infinity.
Then we have the following lower bound for ruin probability. Letting n →∞ in Equation
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(3.6) yields

ψ(u) = E
[
F (G(L1)) +

∫ G(L1)

0
ψ(G(L1)− y)dF (y)

]

≥ E
[
F (G(L1)) +

∫ G(L1)

G(L1)−u
ψ(u)dF (y)

]
, (3.7)

which implies that

ψ(u) ≥ E[F (G(L1))]
1− E[F (G(L1))− F (G(L1)− u)]

=
E[F (G(L1))]

E[F (G(L1)) + F (G(L1 − u))]
. (3.8)

Definition 3.1 A distribution B defined on (−∞,∞) is said to have a regularly
varying tail with index γ, or B ∈ Rγ , if there exists some constant γ > 0 such that for
any y > 0,

lim
x→∞

B(xy)
B(x)

= y−γ . (3.9)

Definition 3.2 A distribution B is said to have Dominant-tail, or B ∈ D, if for
any 0 < y < 1,

lim sup
B(xy)
B(x)

< ∞. (3.10)

Definition 3.3 A distribution B is said to have long-tailed distribution, or B ∈ L,
if for any y > 0

lim
B(x + y)

B(x)
= 1. (3.11)

It is well known that
R−γ ⊂ D ∩ L (3.12)

and distributions in all the three classes of distributions are heavy tailed. For a review
of heavy tailed distributions and their applications, see Embrechts et al. (1997). It is well
known that if F1 ∈ R−γ and F2 ∈ R−γ then F1 ∗ F2 ∈ R−γ and

F1 ∗ F2(x) ∼ F1(x) + F2(x). (3.13)

Further, we know that for a distribution F1 supported on [0,∞) and a distribution F2

supported on (−∞,∞), the tail of convolution F1 ∗ F2 satisfies

F1 ∗ F2 = F 1(x) +
∫ x

−∞
F1(x− y)dF2(y). (3.14)

We also have, the class R−γ is closed under tail-equivalences, namely, for two distributions
B1 and B2, if B1(x) ∼ CB2(x) for some c > 0 and B1(x) ∈ R−γ , then B2(x) ∈ R−γ .
Further, it is easy to see that if B ∈ D, then for any constant c > 0, the function
B(cu)/B(u) is uniformly bounded in u ∈ (−∞,∞). Moreover, it is obvious that for two
positive functions f and g, if f(x) ∼ g(x) then there exist a constant C > 0 such that
f(x) ≤ Cg(x), x ≥ 0.
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Theorem 3.2 Let F ∈ R−γ for some γ > 0, then for n = 1, 2, 3, . . .,

ψn(u) ∼ E
[ n∑

k=1

e−kδγL1

]
F (u), u →∞. (3.15)

ψ(u) ∼ E
[ ∞∑

k=1

e−kδγL1

]
F (u), u →∞. (3.16)

For i = 1, 2, . . . , d and n = 1, 2, 3, . . . we have

ψi,n(u) ∼ E
[ n∑

k=1

e−kδγL1
∣∣λ0 = αi

]
F (u), u →∞. (3.17)

ψi(u) ∼ E
[ ∞∑

k=1

e−kδγL1
∣∣λ0 = αi

]
F (u), u →∞. (3.18)

Proof For understanding ease, we prove Equation (3.15) and Equation (3.16)
firstly. By Equation (3.6), it follows that

lim
u→∞

ψ1(u)
F (u)

= lim
u→∞

P(T (u) ≤ 1)
F (u)

= lim
u→∞E

[F (G(L1))
F (u)

]

= lim
u→∞E

[F (G(L1))
F (ueδL1)

F (ueδL1)
F (u)

]
. (3.19)

By dominated convergence theorem, Equation (3.11) and Equation (3.9), it follows that
the limit of Equation (3.19) is

E
[

lim
u→∞

F (G(L1))
F (ueδL1)

F (ueδL1)
F (u)

]
= E

[
e−δγL1

]
< 1. (3.20)

Note that

ψn+1(u) = E
[
F (G(L1)) +

∫ G(L1)

0
ψn(G(L1)− y)dF (y)

]
.

Let Υn = 1− ψn(u), by property (3.14), one can easily find that

Υn(u) = E[Υn−1 ∗ F (G(L1))] ∼ E[Υn−1(G(L1)) + F (G(L1))], u →∞.

Then, obviously,

lim
u→∞

ψ2(u)
F (u)

= lim
u→∞

Υ2(u)
F (u)

= lim
u→∞

E[Υ1(G(L1)) + F (G(L1))]
F (u)

= E
[
e−δγL1(1 + e−δγL1)

]
. (3.21)

lim
u→∞

ψ3(u)
F (u)

= lim
u→∞

Υ3(u)
F (u)

= lim
u→∞

E[Υ2(G(L1)) + F (G(L1))]
F (u)

= E
[
e−δγL1(1 + e−δγL1 + 2e−δγL1)

]
. (3.22)

By an inductive method, we assume that for n = k ≥ 1,

ψk(u) ∼ E
[ k∑

i=1
e−iδγL1

]
F (u), u →∞. (3.23)
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Then, for n = k + 1, we have

lim
u→∞

ψk+1(u)
F (u)

= lim
u→∞

Υk+1(u)
F (u)

= lim
u→∞

E[Υk(G(L1)) + F (G(L1))]
F (u)

= lim
u→∞

E[ψk(G(L1)) + F (G(L1))]
F (u)

= E
[
e−δγL1

(
1 +

k∑
i=1

e−iδγL1

)]
= E

[ k+1∑
i=1

e−iδγL1

]
. (3.24)

Letting k →∞ in Equation (3.24) yields

ψ(u) ∼ E
[ 1
eδγL1 − 1

]
F (u). (3.25)

Denote 1− ψi,n(u) by Υi,n(u), similar to Equation (3.21), we have

Υi,n = E
[ d∑

j=1
Hij(Υj,n−1(G(L̃1)) + F (G(L̃1)))|λ0 = αi

]
, (3.26)

where L̃1 is a copy of L1 (thus resembling the same distribution with L1) and independent
of λt. With a similar discussion to Equation (3.19) and (3.23), we have

lim
u→∞

ψi,1(u)
F (u)

= E
[
e−δγL1 |λ0 = αi

]
(3.27)

and assume that

ψi,k(u) ∼ E
[ k∑

i=1
e−iδγL1 |λ0 = αi

]
F (u), u →∞. (3.28)

Then

lim
u→∞

ψi,k+1(u)
F (u)

= E
[(

e−δγL1 +
d∑

j=1
HijE

[ k∑
l=1

e−lδγL1 |λL1 = αj

])∣∣∣λ0 = αi

]

= E
[ k+1∑

l=1

e−lδγL1 |λ0 = αi

]
. (3.29)

This completes the proof. ¤
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带有常值利息力的可变保费Cox风险模型下破产概率的

渐近估计

徐 林 吴丽媛 祝东进

(安徽师范大学数学计算机科学学院, 芜湖, 241003)

本文研究了一类Cox模型下的理赔为重尾分布时破产概率的渐近估计. 假设保费收取费率是Cox计数过

程的强度过程的函数, 通过更新技巧得到了有限时间破产概率的递推方程和终极破产概率的积分方程, 利用归

纳递推的方法, 得到了终极破产概率的渐近估计.

关键词: Cox风险模型, 重尾分布, 可变保费, 破产概率.

学科分类号: O212.3.
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