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Abstract
We generalize the well-known Dobrushin coefficient δ in total variation to weighted total

variation δV , which gives a criterion for the geometric ergodicity of discrete-time Markov chains.
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§1. Introduction and Main Results

In this paper, we generalize the classical Dobrushin coefficient, in order to give a

criteria for geometric ergodicity of discrete-time Markov chains.

Let X = (Xn)n≥0 be a discrete-time Markov chain taking values on a measurable

space (E, E ). Denote by

Pn(x,A) := P[Xn ∈ A|X0 = x], x ∈ E, A ∈ E ,

the n-step transition kernel. Set P = P 1 be the one-step kernel.

Throughout the paper, we assume that X is ψ-irreducible and aperiodic, c.f. [1].

We are interested in the geometrical ergodicity that is, there is an invariant probability

measure π on (E, E ) and a constant ρ ∈ [0, 1) and a function C : E → (0,∞) such that

‖Pn(x, ·)− π‖Var ≤ C(x)ρn, for all n > 0, π-a.s. x ∈ E, (1.1)

where ‖µ‖Var := 2 sup
A∈E

|µ(A)| = sup
{∫

E
fdµ : |f | ≤ 1

}
is the total variation for a signed

measure µ.
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From [1, 2], we know that (1.1) is equivalent to that there exist constants ρ ∈ [0, 1),

C < ∞ and a π-a.s. finite function V : E → [1,∞] such that

‖Pn(x, ·)− π‖V ≤ CV (x)ρn, (1.2)

where ‖µ‖V := sup
{∫

E
fdµ : ‖f‖V ≤ 1} denotes the V -norm on signed measures. Recall

that for a kernel K(x,A) (x ∈ E, A ∈ E ),

‖K‖V := sup
x∈E

‖K(x, ·)‖V

V (x)
, (1.3)

and for a function f ,

‖f‖V := sup
x∈E

|f(x)|
V (x)

, (1.4)

c.f. [1, Chapter 14].

Specially, if in (1.1) C(x) ≤ C < ∞ for π-a.s. x ∈ E, (1.1) is strengthened to the

so-called strong ergodicity. Equivalently in (1.2), we can choose V : E → [1,∞) to be

(upper) bounded. Recall that X is said to be strongly ergodic if there exist constants

ρ ∈ [0, 1) and C < ∞ such that

essπ sup
x∈E

‖Pn(x, ·)− π‖Var ≤ Cρn, for all n > 0. (1.5)

Dobrushin (1956) gave an elegant criterion for strong ergodicity in (1.5). Let

δ(P ) =
1
2
essπ sup

x,y∈E
‖P (x, ·)− P (y, ·)‖Var.

Then, X is strongly ergodic if and only if there exists n, such that δ(Pn) < 1. δ(P ) is now

in term of Dobrushin coefficient.

In the context of E countable, an elegant description of δ(P ) and strong ergodicity

can be found in [4, § 6.1, § 6.3]. Although [4, § 6.3] only considered continuous-time Markov

chains, these arguments remain valid for a general Markov process. Or this can be viewed

as a special case where we will do in the following (by taking V (x) ≡ 1).

Now, we will generalize δ(P ) to δV (P ), which gives a criteria for geometric ergodicity

in (1.1) or (1.2).

Definition 1.1 For a transition kernel P , and a π-a.s. finite function V : E →
[1,∞], we define the generalized Dobrushin coefficient δV (P ):

δV (P ) := essπ sup
x,y∈E

1
V (x) + V (y)

‖P (x, ·)− P (y, ·)‖V . (1.6)
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Here is the main result.

Theorem 1.1 A ψ-irreducible and aperiodic Markov chain X = (Xn)n≥0 is geo-

metrically ergodic if and only if X is ergodic with stationary distribution π, and there is

a π-a.s. finite function V : E → [1,∞] such that π(V ) < ∞ and δV (Pn) < 1 for n large

enough.

Note that when V (x) ≡ 1, δV (P ) = δ(P ) and hence Theorem 1.1 generalizes the

classical Dobrushin coefficient.

The key ingredient for the proof of Theorem 1.1 comes from an excellent observation.

By defining a metric on E as in [5], we can transfer δV (P ) to be a Wasserstein distance

on space of probability measures.

§2. Proof of Theorem

For simplicity, in the following, sup is referred to essπ sup.

Following [5], we introduce a metric on E. Let V : E → [1,∞). For x, y ∈ E,

dV (x, y) =





0, x = y;

V (x) + V (y), x 6= y.

Then (E, dV ) is a complete metric space. Let ϕ be a function on (E, dV ), the Lipschitz

norm of ϕ is

‖ϕ‖Lip(dV ) := sup
x6=y

|ϕ(x)− ϕ(y)|
dV (x, y)

= sup
x6=y

|ϕ(x)− ϕ(y)|
V (x) + V (y)

.

For two (probability) measures µ1, µ2 on (E, E), Wasserstein metric WdV
is defined

by

WdV
(µ1, µ2) = sup

ϕ:‖ϕ‖Lip(dV )≤1

∫
ϕd(µ1 − µ2).

The following was proved in [5, Lemma 2.1].

Lemma 2.1 For two probability measures µ1, µ2 on (E, E),

‖µ1 − µ2‖V = WdV
(µ1, µ2). (2.1)

Remark 1 (1) For V (x) ≡ 1, both sides of (2.1) are reduced to the total variation

of µ1 − µ2. For the left side, when V (x) ≡ 1,

‖µ1 − µ2‖V = sup
{∫

E
fd(µ1 − µ2) : |f | ≤ 1

}
= ‖µ1 − µ2‖Var.
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For the right side, dV is nothing but discrete metric. Hence by [6, Theorem 5.7], WdV
(µ1,

µ2) = ‖µ1 − µ2‖Var.

(2) As pointed out in [5], (2.1) is also true for measures µ1, µ2 with equal mass.

The following properties are essential to the proof of Theorem 1.1.

Proposition 2.1 Let P and P̃ be probability transition kernels on (E, E). Then

(i) δV (PP̃ ) ≤ δV (P )δV (P̃ ),

(ii) |δV (P )− δV (P̃ )| ≤ ‖P − P̃‖V ,

(iii) Let R be a transition kernel on (E, E) such that R(x,E) = 0, for all x ∈ E and

‖R‖V < ∞. Then ‖RP‖V ≤ ‖R‖V δV (P ).

Proof (i) By the definition of δV (P ) and Lemma 2.1, we have

WdV
(P (x, ·), P (y, ·)) = ‖P (x, ·)− P (y, ·)‖V ≤ δV (P )(V (x) + V (y)), π-a.s. x, y ∈ E.

Hence by the definition of WdV
, we get

|Pϕ(x)− Pϕ(y)| ≤ δV (P )‖ϕ‖Lip(dV )(V (x) + V (y))

or
1

V (x) + V (y)
|Pϕ(x)− Pϕ(y)| ≤ δV (P )‖ϕ‖Lip(dV ),

and

‖Pϕ‖Lip(dV ) ≤ δV (P )‖ϕ‖Lip(dV ). (2.2)

Since
∫

(P̃P )(x,dz)ϕ(z) =
∫

(Pϕ)(z)P̃ (x,dz), we get from (2.2) that

WdV
((P̃P )(x, ·), (P̃P )(y, ·)) = sup

‖ϕ‖Lip(dV )≤1

∫
(Pϕ)(z)(P̃ (x,dz)− P̃ (y, dz))

≤ δV (P ) sup
‖ψ‖Lip(dV )≤1

∫
ψ(z)(P̃ (x,dz)− P̃ (y, dz))

= δV (P )WdV
(P̃ (x, ·), P̃ (y, ·)).

Therefore by Lemma 2.1 again, we have

δV (P̃P ) = sup
x,y∈E

1
V (x) + V (y)

‖(P̃P )(x, ·)− (P̃P )(y, ·)‖V

= sup
x,y∈E

1
V (x) + V (y)

WdV
((P̃P )(x, ·), (P̃P )(y, ·))

≤ δV (P ) sup
x,y∈E

1
V (x) + V (y)

WdV
(P̃ (x, ·), P̃ (y, ·))

= δV (P ) sup
x,y∈E

1
V (x) + V (y)

‖P̃ (x, ·)− P̃ (y, ·)‖V

= δV (P )δV (P̃ ).
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(ii) Using the fact that
∣∣ sup

x
|u(x)| − sup

x
|v(x)|∣∣ ≤ sup

x
|u(x)− v(x)|, we get

|δV (P )− δV (P̃ )|
=

∣∣∣ sup
x,y∈E

1
V (x) + V (y)

‖P (x, ·)− P (y, ·)‖V − sup
x,y∈E

1
V (x) + V (y)

‖P̃ (x, ·)− P̃ (y, ·)‖V

∣∣∣

≤ sup
x,y∈E

1
V (x) + V (y)

sup
|f |≤V

|(Pf(x)− Pf(y))− (P̃ f(x)− P̃ f(y))|

≤ sup
x,y∈E

1
V (x) + V (y)

sup
|f |≤V

[|Pf(x)− P̃ f(x)|+ |Pf(y)− P̃ f(y)|]

≤ sup
x,y∈E

‖P (x, ·)− P̃ (x, ·)‖V + ‖P (y, ·)− P̃ (y, ·)‖V

V (x) + V (y)

≤ sup
x∈E

‖P (x, ·)− P̃ (x, ·)‖V

V (x)

= ‖P − P̃‖V ,

where in the last inequality, we use the element that

u(x) + u(y)
v(x) + v(y)

≤ max
{u(x)

v(x)
,
u(y)
v(y)

}
.

(iii) Since R(x,E) = 0, for all x ∈ E, we have Jordan-Hahn decomposition R =

R+ −R−, hence

‖RP‖V = sup
x∈E

1
V (x)

‖(R+P )(x, ·)− (R−P )(x, ·)‖V

= sup
x∈E

1
V (x)

WdV
((R+P )(x, ·), (R−P )(x, ·)).

It follows from (2.2) and Lemma 2.1 that,

WdV
((R+P )(x, ·), (R−P )(x, ·)) = sup

ϕ:‖ϕ‖Lip(dV )≤1

∫
ϕ(y)((R+P )(x,dy)− (R−P )(x,dy))

= sup
ϕ:‖ϕ‖Lip(dV )≤1

∫
(Pϕ)(y)[R+(x,dy)−R−(x,dy)]

≤ δV (P ) sup
φ:‖φ‖Lip(dV )≤1

∫
φ(y)[R+(x,dy)−R−(x,dy)]

= δV (P )WdV
(R+(x, ·), R−(x, ·))

= δV (P )‖R+(x, ·)−R−(x, ·)‖V .

Finally we obtain

‖RP‖V ≤ δV (P ) sup
x∈E

1
V (x)

‖R+(x, ·)−R−(x, ·)‖V = δV (P )‖R‖V . ¤
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Proof of Theorem 1.1 Set Π(x, ·) = π, for all x ∈ E. As noted in [1], the

function V in (1.6) can be chosen to be such that π(V ) < ∞. Since δV (Π) = 0, we obtain

δV (Pn) = |δV (Pn)− δV (Π)| ≤ ‖Pn −Π‖V = sup
x∈E

1
V (x)

‖Pn(x, ·)− π‖V → 0.

Conversely, we have ‖I − Π‖V ≤ sup
x∈E

[V (x) + π(V )]/V (x) = 1 + π(V ) < ∞ and

(I −Π)(x,E) = 0 for all x ∈ E. Then

‖Pn −Π‖V = ‖Pn −ΠPn‖V = ‖(I −Π)Pn‖V ≤ ‖I −Π‖V δV (Pn),

and

‖Pn(x, ·)− π‖V ≤ ‖Pn −Π‖V V (x) ≤ ‖I −Π‖V V (x)δV (Pn). ¤
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Dobrushin系数的推广

毛永华 张 铭 张余辉

(北京师范大学数学科学学院, 数学与复杂系统教育部重点实验室, 北京, 100875)

本文将一般的全变差距离下的Dobrushin系数δ推广到加权的全变差下的δV , 并利用δV系数得到了离散

时间马氏链的几何遍历的判定准则.

关键词: V范数, δV系数, 几何遍历.
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