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Abstract

We generalize the well-known Dobrushin coefficient ¢ in total variation to weighted total
variation Jdy, which gives a criterion for the geometric ergodicity of discrete-time Markov chains.

Keywords: V-norm, dy coefficient, geometric ergodicity.

AMS Subject Classification: 37A30, 47A35.

§1. Introduction and Main Results

In this paper, we generalize the classical Dobrushin coefficient, in order to give a
criteria for geometric ergodicity of discrete-time Markov chains.
Let X = (X,)n>0 be a discrete-time Markov chain taking values on a measurable

space (F,&). Denote by
P"(z,A) :=P[X, € A|Xo = x|, reFE, Acé,

the n-step transition kernel. Set P = P! be the one-step kernel.
Throughout the paper, we assume that X is ¢-irreducible and aperiodic, c.f. [1].
We are interested in the geometrical ergodicity that is, there is an invariant probability

measure 7w on (E, &) and a constant p € [0,1) and a function C' : E — (0,00) such that

|P"(z,-) — m||var < C(z)p", for all n >0, m-as. z € E, (1.1)

where ||pt]|var :== 2 sup |u(A)| = sup {/ fdu | f] < 1} is the total variation for a signed
Ae& E

measure .
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From [1, 2], we know that (1.1) is equivalent to that there exist constants p € [0, 1),

C < o0 and a 7-a.s. finite function V : E' — [1, oo such that
1P (z,-) = 7llv < CV(2)p", (1.2)

where ||p|]yv = sup { / fdu || fllv <1} denotes the V-norm on signed measures. Recall
E
that for a kernel K(z,A) (r € E, A€ &),

K (z,-)v
Kly = 1.3
1Ky WD) (1.3)
and for a function f,
|/ ()]
‘= su , 1.4

c.f. [1, Chapter 14].

Specially, if in (1.1) C(x) < C < oo for m-a.s. x € E, (1.1) is strengthened to the
so-called strong ergodicity. Equivalently in (1.2), we can choose V : E — [1,00) to be
(upper) bounded. Recall that X is said to be strongly ergodic if there exist constants
p €10,1) and C' < oo such that

essy sup || P"(x,-) — mllvar < Cp", for all n > 0. (1.5)
el

Dobrushin (1956) gave an elegant criterion for strong ergodicity in (1.5). Let

5(P) = gesss sup [P, )~ P(3,)lvar.
z,yeE

Then, X is strongly ergodic if and only if there exists n, such that 6(P") < 1. §(P) is now

in term of Dobrushin coefficient.

In the context of E countable, an elegant description of §(P) and strong ergodicity
can be found in [4, §6.1, §6.3]. Although [4, § 6.3] only considered continuous-time Markov
chains, these arguments remain valid for a general Markov process. Or this can be viewed
as a special case where we will do in the following (by taking V(z) = 1).

Now, we will generalize §(P) to dy (P), which gives a criteria for geometric ergodicity
in (1.1) or (1.2).

Definition 1.1 For a transition kernel P, and a m-a.s. finite function V : E —

[1,00], we define the generalized Dobrushin coefficient dy (P):

5v(P) = essy sup —————|P(x,-) — P(y, )llv- (1.6)

ryelk V(x) + V(y)
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Here is the main result.

Theorem 1.1 A t-irreducible and aperiodic Markov chain X = (X,,),>0 is geo-
metrically ergodic if and only if X is ergodic with stationary distribution 7, and there is
a m-a.s. finite function V' : E — [1, 00| such that 7(V) < oo and dy(P™) < 1 for n large
enough.

Note that when V(z) = 1, dy(P) = §(P) and hence Theorem 1.1 generalizes the
classical Dobrushin coefficient.

The key ingredient for the proof of Theorem 1.1 comes from an excellent observation.
By defining a metric on F as in [5], we can transfer dy (P) to be a Wasserstein distance

on space of probability measures.

§2. Proof of Theorem

For simplicity, in the following, sup is referred to ess; sup.

Following [5], we introduce a metric on E. Let V : E — [1,00). For z,y € E,

0, T =1y;
V(z)+V(y), z#vy.

dv(.flf, y) =

Then (F,dy) is a complete metric space. Let ¢ be a function on (F,dy ), the Lipschitz

norm of ¢ is

o ple@ el _ o) — o)l
WPliva) =20 ey S V@ V)

For two (probability) measures p1, 2 on (E,E), Wasserstein metric Wy,, is defined
by

Way, (p1, po) = sup / @d(p1 — p2)-
@illellLip(dy) <1

The following was proved in [5, Lemma 2.1].

Lemma 2.1 For two probability measures 1, pu2 on (E, &),

1 — p2llv = Way, (g1, p2)- (2.1)

Remark 1 (1) For V(z) = 1, both sides of (2.1) are reduced to the total variation
of py — po. For the left side, when V(z) =1,

s = paly = sup {_ [ s = po) 11 = 1} = s = el
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For the right side, dy is nothing but discrete metric. Hence by [6, Theorem 5.7], Wy, (11,

p2) = [lpr = pzllvar.
(2) As pointed out in [5], (2.1) is also true for measures p1, g2 with equal mass.

The following properties are essential to the proof of Theorem 1.1.

Proposition 2.1 Let P and P be probability transition kernels on (E,E). Then

(i) dv(PP) < dv(P)sv(P),

(i) |6v(P) = dv(P)| < ||P = Plv,

(iii) Let R be a transition kernel on (F, ) such that R(x, F) = 0, for all x € E and
|R|lv < oco. Then ||RP||y < ||R||vov(P).

Proof (i) By the definition of §y (P) and Lemma 2.1, we have
Way (P(2,-), P(y,-)) = [ P(z,) = P(y,)lv < v (P)(V(2) +V(y)),  7as. z,y€kE.

Hence by the definition of Wy,,, we get

[Po(x) = Po(y)| < 0v(P)ll¢llLipa,) (V(2) + V(y))

or
1

W|P<ﬁ(ﬂf) — Po(y)| < ov(P)l¢llLip(dy)

and
1Pol|Lipy) < 0v(P)llellLip(dy)- (2.2)

Since /(ﬁP)(a:,dz)gp(z) = /(P(p)(z)ﬁ(x,dz), we get from (2.2) that

Way (BP)(z,), (PP)(y, ) =  sup / Py)(2)(P(z,dz) — P(y,d2))
llellLip(a, ) <1

< a(P) s /w P(z,dz) — P(y.d2))

lllLip(dy ) <1
= (SV( )de( (,’L’,),P(:{/,))

Therefore by Lemma 2.1 again, we have

(PP) = sy Mu@w )= (PP)(y,)lv
1 ~ ~

< Sy(P >xs;£EMWdV(ﬁ(x7 )’f)(y,))

= Sy(P) sup —————|[B(z.) — P(y. )|y

z,yeE V( )+V(y)
= v(P)ov(P).
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(i) Using the fact that |sup [u(z)| — sup [v(z)|| < sup |u(z) — v(z)|, we get

|6y (P) — dv(P)|
1 1

1P (z,-) = Py, )llv — sup

= | sup ——
z,yelR V(.T) + V(y)

zyek V(.T) + V(y)

. _ .
< ) S (Pf(z) — Pf(y)) — (Pf(z) — Pf(y))]
. - N
< Is;gE MOF%0) “SC‘USQ/HPJ’(JJ) —Pf(x)|+|Pf(y) — Pf(y)l]
< sup 1P@) = P@ v + 1P ) = Pyl
= eyen V(z)+V(y)
HP(@', ) - ]S(wv)HV
= V(o)
= |P-Ply,

where in the last inequality, we use the element that

o) ) o (00) 50

() +oly) — v(@)” v(y)

1P(z,) = Py, )|lv

(iii) Since R(z,E) = 0, for all x € E, we have Jordan-Hahn decomposition R =

R*™ — R, hence

IRPllv = iggv(aj)ll(RJrP)(%')—(R_P)(ﬂ?w)llv
1 -
igngdv((RJrP)(% ), (R™P)(x,-)).

It follows from (2.2) and Lemma 2.1 that,

Wa, (RTP)(x,),(R™P)(x,")) = sup /s@(y)((mP)(x, dy) — (R™P)(x,dy))

eillellLip(ay) <1

— sw / (Pe)(y)[R* (2, dy) — R~ (, dy)]

eillellLipay) <1

< Sv(P)  sup / ()[R (z,dy) — R~ (x, dy))

BBl Lip(ay) <1
= 5V(P)‘/Vdv (RJr(x? ')7 Ri(‘% ))

= oy(P)|R(z,)) = R™(2,")|lv.

Finally we obtain

1
|RP||yv < oy (P)sup

sup G IR (@) = B, ) = v (P Bl

0



494 N R G BTG

Proof of Theorem 1.1 Set II(x,-) = =, for all x € E. As noted in [1], the
function V' in (1.6) can be chosen to be such that 7(V') < oco. Since dy (II) = 0, we obtain

1

V(.%') ||Pn($7 ) - 7T||V — 0.

oy (P") = |6y (P") — oy (IN)| < |P™ — |y = sup
relR

Conversely, we have || — II||y < sup[V(z) + n(V)]/V(z) = 1+ 7(V) < oo and
zeE
(I —II)(z,E) =0 for all x € E. Then

|P" =1Ly = ||[P" = IIP"[|y = [|({ = I)P"|lv < |[I — Hjvdv(P"),
and

1P (@, ) = mllv < [|P* = H|ly V() < [T — [y V(x)dy (P"). O
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