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Abstract

Global sensitivity indices play important roles in global sensitivity analysis based on ANOVA

high-dimensional representation, Wang et al. (2012) showed that orthogonal arrays are A-optimality

designs for the estimation of parameter ΘM , the definition of which can be seen in Section 2.

This paper presented several other optimal properties of orthogonal arrays under ANOVA high-

dimensional representation, including E-optimality for the estimation of ΘM and universal opti-

mality for the estimation of βM , where βM is the independent parameters of ΘM . Simulation study

showed that randomized orthogonal arrays have less biased and more precise in estimating the

confidence intervals comparing with other methods.
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§1. Introduction

The ANOVA high-dimensional model representation originated from Hoeffding (1948),

and was further discussed by Takemura (1983), Efron and Stein (1981) and Stein (1987).

That is

f(x1, . . . , xm) = f0 +
∑
i
fi(xi) +

∑
i≤j

fij(xi, xj) + · · ·+ f12...m(x1, . . . , xm), (1.1)

where f0 denotes the mean effect which is a constant. fi(xi) gives the effect of the variables

xi independent of the other input variables. fij(xi, xj) describes the interactive effects of

the variables xi and xj , and so on. Model (1.1) has several interesting properties under

the orthogonal condition,

∫
fi1...is(xi1 , . . . , xis)dxk = 0, for k = i1, . . . , is. More details

can be found in Sobol (1993).
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Based on this ANOVA model representation, Sobol (1993) proposed global sensitivity

index,

Si1...is = Di1...is/D,

where Di1...is = Var (fi1...is(xi1 , . . . , xis)), D =
∑
i
Di +

∑
j≤k

Djk + · · · + D12...m, to reflect

the importance of the input variables and their interactions, and to identify the most

important variables and interactions for f . In general, Si1...is = Di1...is/D can be computed

numerically and several numerical methods have been investigated by many authors, such

as Monte Carlo simulation (Sobol, 2001, 2003; Sobol and Myshetskaya, 2008), quasi-Monte

carlo method (Saltelli et al., 2010). However, to most of experimenters, the objective

function f often appears as a “black box”, that is, a nonparametric model. There has

been little study on this subject. Recently, Wang et al. (2011, 2012) discussed the use of

design of orthogonal arrays in global sensitivity analysis of nonparametric models, and

shows that orthogonal arrays (OAs) are A-optimality designs for the estimation of ΘM ,

the definition of which can be seen in Section 2.

This paper shows several optimal properties of orthogonal arrays (OAs) under ANO-

VA high-dimensional representation, including E-optimality for the estimation of ΘM in

Section 2 and universal optimality for the estimation of βM in Section 3, where βM is the

independent parameters of ΘM . In Section 4, simulation study showed that randomized

orthogonal arrays have less biased and more precise in estimating the confidence intervals

comparing with other methods, such as MC method and OA method in Wang et al. (2011).

§2. E-optimality for the Estimation of ΘM

Regard the input variable x1, . . . , xm as control factors, and arrange the experiment

according to a design H = (aij)n×m = (a1, . . . , am), the jth column of which has pj levels

and aij ∈ {1, 2, . . . , pj}. Suppose Y = (y1, . . . , yn)T is the observation vector with the

observation errors εi ∼ N(0, σ2), hence

yi = f0 + f1(xi1) + f2(xi2) + · · ·+ f12...m(xi1, . . . , xim) + εi.

Denote

Θi1...is =


fi1...is(x1i1 , . . . , x1is)

...

fi1...is(xni1 , . . . , xnis)

 , ε =


ε1
...

εn

 .
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Then the above model can be written as

Y = Θ0 +
∑
i

Θi +
∑
j≤k

Θjk + · · ·+ Θ12...m + ε. (2.1)

In order to obtain global sensitivity indices, the estimate of Di1...is should be got first.

The following two-step approach can be used.

1. Approximate Di1...is by

D∗i1...is =
1

n

n∑
i=1

[fi1...is(xii1 , . . . , xiis)]
2 =

1

n
(Θi1···is)

T (Θi1...is).

2. Estimate Θi1...is by a function of observed values gi1...is(Y ).

Different choices of H and g may lead to different extent of deviations between the es-

timated and true values. Thus, it is important to select “good” designs and g(Y ) for

global sensitivity analysis. Wang et al. (2012) proved that under A-optimality criterion,

the choice of orthogonal arrays and g = AMY can minimize the distance between gi1...is(Y )

and Θi1...is , where AM is the matrix image of columns i1, . . . , is of H, which is developed

by Zhang et al. (1999). We give the definition of matrix image and some useful properties

in this section.

Definition 2.1 Let SS2
M be the treatment sum of squares of column M in the

analysis of variance. The matrix image (MI) of column M = {i1, i2, . . . , is}, denoted by

AM , is defined to be the n× n projection matrix AM if

SS2
M = Y TAMY.

Since SS2
M is a quadratic form of Y , there exists a unique symmetric matrix AM such

that SS2
M = Y TAMY . In particular, denote the sum of squares of main effect of column

i as SS2
i , then the matrix Ai is called the matrix image of columns i if SS2

i = Y TAiY .

Several important properties can be found for an orthogonal array H with strength s in

Zhang et al. (1999), Wang et al. (2012), such as

1. The MI of interactions of column M , AM = n|M |−1 ©
j:j∈M

Aj , ∀ |M | ≤ s, where Aj

is the MI of column j of H, and |M | is the number of elements in set M , and © is the

Hadamard product in theory of matrix.

2. Compute Aj as follows: Aj = Xj(X
T
j Xj)X

T
j − 1n1Tn/n, for j = 1, 2, . . . ,m, where

Xj is the incidence matrix of column j, and 1n = (1, . . . , 1)T .

3. The MI of H, AM , is a projection matrix, and rk(AM ) =
∏
j∈M

(pj − 1), for |M | ≤ s.

4. The MI’s of H are orthogonal, AMAN = 0, for M 6= N , |M ∪N | ≤ s.
5. AMΘM = ΘM , for |M | ≤ s.
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For convenience of the proof in the later section, we transform model (2.1) into a

linear model. Following Wang et al. (2012), we write N =
∏
j∈M

pj and denote the N × 1

vector, with elements fi1...is(xi1 , . . . , xis), arranged in the lexicographic order, by µM . Let

XM , having n rows and N columns, be the incidence matrix of columns i1, . . . , is of H,

then

ΘM = XMµM . (2.2)

For each ΘM , let βM be the independent parameters of µM . Then there exists a matrix

BM such as

µM = BMβM , (2.3)

and rk(BM ) =
∏
j∈M

(pj − 1). From (2.2) and (2.3), we have ΘM = XMBMβM . Let CM =

XMBM , then ΘM = CMβM . Therefore

Y =
∑

M :M⊆{1,2,...,m}
CMβM + ε = Cβ + ε, (2.4)

where C = (C0, C1, . . . , C12...m) and β = (βT0 , β
T
1 , . . . , β

T
12...m)T .

The following two lemmas play an important role in Wang et al. (2012):

Lemma 2.1 For the linear model

Y = Cβ + ε,

where Y is a n× 1 observation vector, C is a n× p design matrix, β is a p× 1 parameter

vector, ε is a n× 1 random error vector and E(ε) = 0, β is estimable if and only if C has

full column rank.

Lemma 2.2 Assume that H is a feasible design (H satisfies that for any ΘM (H),

M ⊂ Ω, there exists a matrix B such that E(BY ) = ΘM (H)), rk(CM ) = α(M) and the

best linear unbiased estimate of ΘM (H) is Θ̂M (H), then

tr(Var (Θ̂M (H))) ≥ σ2
∏
j∈M

(pj − 1).

By properties of MI’s of orthogonal arrays with strength s and the above lemmas, we

have

Theorem 2.1 Let Θ̂M (H) = AMY . If H is an orthogonal array with strength m,

then

E(Θ̂M (H)) = E(AMY ) = ΘM
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and

tr(Var (AMY )) = σ2
∏
j∈M

(pj − 1)

for M ⊆ {1, . . . ,m}.

From Lemma 2.2 and Theorem 2.1, we have

Remark 1 Orthogonal arrays with strength m are the best experimental plans for

the estimation of ΘM under the A-optimality criterion.

We now consider the E-optimality of orthogonal arrays in the remaining of this section.

Theorem 2.2 Orthogonal arrays with strength m are the best experimental plans

for the estimation of ΘM under the E-optimality criterion.

Proof That is to prove

λmax(Var (AMY )) = min
H

λmax(Var (Θ̂M (H))), (2.5)

where λmax(A) denotes the maximum eigenvalue of matrix A. From the proof of Lemma

2.2, we obtain Var (Θ̂M (H)) ≥ σ2CM (CTMCM )−1CTM . Let PCM
= CM (CTMCM )−1CTM .

Then PCM
is a projection matrix and λmax(PCM

) = 1. By Theorem 2.2, we have Var (AMY)

= σ2AM . From property 1 of MI’s of orthogonal arrays with strength m, AM is also a

projection matrix. So λmax(AM ) = 1, for |M | ≤ s. Thus (2.5) holds. �

Remark 2 Since parameters in ΘM are correlated with each other, thus for any

feasible design H, det(ΘM (H)) = 0. Therefore, there is no sense to discuss the D-

optimality.

§3. Universal Optimality for the Estimation of βM

The notion of universal optimality, due to Kiefer (1975), helps in unifying the various

optimality criteria. Let Z denote the class of positive definite matrices of order α(M) =∏
j∈M

(pj − 1), and for a positive integer v, let Jv denote the v × v matrix with all elements

unity. consider the class Φ of real-valued functions φ(x), such that

1. φ(x) is convex; that is, for every x1, x2 ∈ Z, and real a(0 ≤ a ≤ 1),

aφ(x1) + (1− a)φ(x2) ≥ φ(ax1 + (1− a)x2);

2. φ(c1Iα(M) + c2Jα(M)) ≥ φ(cIα(M)) whenever c ≥ c1 + c2, where c1, c2 and c are

scalars;
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3. φ(x) is permutation invariant; that is, φ(rxrT ) = φ(x), for every x and every

permutation matrix r of order α(M).

Let QH denotes the information matrix for βM under plan H and model (2.4),

Definition 3.1 A universally optimality plan is one that for each φ() ∈ Φ, mini-

mizes φ(QH) over H ∈ D∗n, where D∗n denotes the n-run plans which are capable of keeping

βM estimable under (2.4).

Universal optimality is more power than the specific optimality criteria. Consideration

of the functions

φ(G) = log(det(G−1)), φ(G) = tr(G−1), φ(G) = λmax(G−1),

which are all members of Φ, shows that a universally optimal plan is also D-, A- and

E- optimal. The following Theorem from Dey and Mukerjee (1999) demonstrate that

orthogonal arrays is the universally optimal plans for the estimation of βM with orders

less than m/2, where m denotes the strength of the OA.

Theorem 3.1 Let H0 be represented by an n-run orthogonal array with strength

m, where 2 ≤ m ≤ l, l is the column number of H0. Then H0 is a universally optimal plan

for every choice of βM , such that |M | ≤ m/2.

This was first proved by Cheng (1980) for the gage m = 2 and later extended by

Mukerjee (1982) to the case of general m. It covers many of the earlier findings in Kounias

(1977) who worked with 2n factorials and specific optimality criteria. Under model (2.4),

l = m, then Theorem 3.2 can be strengthened. We now present the main result of this

section, which shows H0 is a universally optimal plan for every choice of βM with orders

less than m, that is |M | ≤ m. The following lemma will be useful in the subsequent

development (The proof can be found in Dey and Mukerjee (1999), Lemma 2.5.2, P22):

Lemma 3.1 Let there exist a plan H0 such that the information matrix GH0 =

Iα(M). Then H0 is a universally optimal plan for estimating βM .

Theorem 3.2 Let H0 be represented by an n-run orthogonal array with strength

m, where m = l, l is the column number of H0. Then H0 is a universally optimal plan for

every choice of βM with orders less than m under model (2.4).

Proof Following Dey and Mukerjee (1999), we rewrite

E(Y ) = (X1d
... X1d)

(
β(1)

β(2)

)
, D(Y ) = σ2In,
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where parameter β(1) denotes the interest ones in the above model (2.4) and X1d =

Xd(P
1)T , X2d = Xd(P

2)T . Xd is the design matrix and (P 1)T = (· · ·PM · · · ). PM is the

orthogonal contrast coefficients of effect βM . By linear model theory, we have

Gd = XT
1dX1d −XT

1dX2d(X
T
2dX2d)

TXT
2dX1d.

Hence by Lemma 2.6.1 in Dey and Mukerjee (1999), for orthogonal arrays,

XT
MXM = Iα(M), for each M ⊆ {1, . . . ,m},

XT
MXN = 0, for each M,N ⊆ {1, . . . ,m}, M 6= N.

If the interest parameter is βM , we obtain Gd = Iα(M), Hence by Lemma 3.1, orthogonal

arrays with strength m is universal optimality for the estimation of βM , such that M ∈
{1, . . . ,m}, |M | ≤ m. �

§4. Simulation Study

To test the performance of the proposed estimators by matrix image, Wang suggested

that orthogonal arrays which have a much smaller sample size comparing with MC-method

and Q-MC method for the estimation of ΘM . However, as Wang et al. (2011) indicated,

the estimates for the significant sensitivity indices by the OA method have much smaller

lengths of confidence intervals but a larger degree of bias than those of the Q-MC method

and MC method.

We consider randomized orthogonal array (R-OA) sampling designs to improve the

confidence intervals. Owen (1992, 1994) and Tang (1993) independently proposed the

use of randomized orthogonal arrays in computer experiment sampling designs. A class

of randomized orthogonal array sampling designs proposed by Owen (1992) is as follows:

Let D ∈ OA(n,m, q, t), where dij denotes the (i, j)th element of D, and

1. π1, . . . , πd be random permutation of {0, . . . , q− 1}, each uniformly distributed on

all the q! possible permutations.

2. εi,j be (0, 1) independent uniform random variables.

We randomize the symbols of D by applying the permutation πj to the jth column

of D, j = 1, . . . ,m. This gives us another orthogonal array D∗, such that its (i, j)th

element satisfies d∗i,j = πj(di,j). Orthogonal array-based sample of size n is defined to be

{d∗1, . . . , d∗m} where for i = 1, . . . , n, d∗i = (d∗i,1, . . . , d
∗
i,m), where d∗i,j = πj(di,j) + αε and α

is a scaler. The following model (Morris et al., 2006; Wang et al., 2011) are restudied here
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by R-OAs.

f(x1, . . . , xm) = β0 +
m∑
i=1

βizi +
∑
i≤j

βijzizj + · · ·+ β12...mz1 · · · zm,

where xis are uniformly distributed between 0 and 1, and zi = xi − 0.5, i = 1, . . . ,m.

Then we have

f0 = β0, fi(xi) = βizi, · · · , f12...m = β1...mz1z2 . . . zm.

Hence

Di = Var (fi(xi)) = β2i /12, Dij = Var (fij(xi, xj)) = β2ij/122, · · · , D12...m = β212...m/12m.

D =
∑
i
β2i /12 +

∑
j≤k

β2jk/122 + · · ·+ β212...m/12m. SM =
DM

D
, M ⊆ {1, 2, . . . ,m}.

We consider the situation that the sum of the first sensitivity indices is close to 1. Let

case 1: m = 4, β0 = 10, β1 = 4, β2 = 0.3, β3 = −5, β4 = 2, β12 = 0.2, β13 = 1.5,

β23 = 0.2, β123 = 0.1 and all other βM s equal zero. In this case, S1 +S2 +S3 +S4 = 0.995.

Wang et al. (2011) studied this situation by the complete orthogonal array with two levels

OA(64, 6, 4, 3) in their step 2. Table 1 give the results of the three methods, that is, MC

method, OA method in Wang et al. (2011) and randomized OA method with α = 1/100,

respectively.

Table 1 90% confidence intervals for the three methods (case 1)

M True value MC (N = 4000) OA (N = 64, Wang et al., 2011) R-OA (N = 64)

{3} 0.5521 (0.5425,0.5620) (0.5501,0.5506) (0.5501,0.5551)

{1} 0.3533 (0.3439,0.3621) (0.3521,0.3636) (0.3515,0.3558)

{4} 0.0883 (0.0828,0.0914) (0.0744,0.0983) (0.0871,0.0897)

{1, 3} 0.0041 (0.0007,0.0071) (0.0016,0.0072) (0.0028,0.0034)

{2} 0.0019 (0.0008,0.0029) (0.0013,0.0027) (0.0017,0.0022)

Table 1 shows the 90% confidence intervals for the significant sensitivity indices ob-

tained by replicating the experiments (MC, OA approach and R-OA method) 20 times.

The left point and the right point of each interval are the 5th and 95th percentiles of

the estimate, respectively. As it indicated, the 90% confidence intervals estimated by

MC method contain the true value but have a larger size. For example, the 90% confi-

dence interval for {3} is (0.5425, 0.5620) by MC method, which is large than the other

two methods. The 90% confidence interval for {3} is (0.5501, 0.5506) by OA method and
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(0.5501, 0.5551) by randomized OAs. However, for OA method, they have much smaller

confidence intervals but they seem to have a degree of bias. By R-OA method, confidence

intervals get a better balance, which are less biased comparing with OA method and much

more smaller comparing with MC method.

Now we consider the situation that high-order sensitivity indices are significant. Let

case 2: m = 4, β0 = 10, β1 = 1.8, β2 = 1.5, β3 = −2, β4 = 2.5, β12 = 7.5, β13 = 8.5,

β23 = 7, β123 = 1.5 and all other βM s equal zero. In this case, S1 + S2 + S3 + S4 = 0.515.

Wang et al. (2011) also studied this situation by the complete orthogonal array with two

levels OA(64, 6, 4, 3) in their step 2. Table 2 lists the results of the three methods, that is,

MC method, OA method in Wang et al. (2011) and randomized OA method with α = 1/5,

respectively. It also shows that the confidence intervals estimated by MC method contain

the true value but have a larger size. For OA method, they have much smaller confidence

intervals but they are all biased. However, confidence intervals estimated by R-OA method

get a better balance, which are less biased comparing with OA method and much more

smaller comparing with MC method.

Table 2 90% confidence intervals for the three methods (case 2)

M True value MC (N = 4000) OA (N = 64, Wang et al., 2011) R-OA (N = 64)

{4} 0.2046 (0.1851,0.2247) (0.1547,0.1698) (0.1676,0.2581)

{1, 3} 0.1971 (0.1235,0.2908) (0.2240,0.2484) (0.1238,0.1978)

{1, 2} 0.1535 (0.1169,0.2173) (0.1899,0.1934) (0.0895,0.1647)

{2, 3} 0.1337 (0.0747,0.1869) (0.1654,0.1684) (0.0812,0.1363)

{3} 0.1309 (0.0388,0.1988) (0.0973,0.1001) (0.1028,0.1827)

{1} 0.1060 (0.0662,0.1489) (0.0788,0.0802) (0.0815,0.1488)

{2} 0.0736 (-0.0076,0.1397) (0.0547,0.0557) (0.0475,0.1063)

§5. Concluding

In this paper, we have presented several optimal properties of orthogonal arrays for

the estimation of ΘM under model (2.1), such as E-optimality, which combined with A-

optimality in Wang et al. (2012) generalized the results of Cheng (1980) and Mukerjee

(1982). Wang et al. (2011, 2012) used Θ̂M (H) = AMY to estimate the global sensitivity

indices when the objective function is a nonparametric model and proved to be accurate

for small indices. By the generalized ANOVA model in Dey and Mukerjee (1999), we

demonstrated that orthogonal arrays is universal optimality for the estimation of βM under
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model (2.4). In simulation study, we proposed to use the randomized OAs in estimating

the parameter and to estimate confidence intervals, which have less biased comparing with

OA method and smaller size comparing with MC method.
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