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Abstract

Global sensitivity indices play important roles in global sensitivity analysis based on ANOVA
high-dimensional representation, Wang et al. (2012) showed that orthogonal arrays are A-optimality
designs for the estimation of parameter ©)s, the definition of which can be seen in Section 2.
This paper presented several other optimal properties of orthogonal arrays under ANOVA high-
dimensional representation, including E-optimality for the estimation of ©j; and universal opti-
mality for the estimation of Sas, where S is the independent parameters of ©57. Simulation study
showed that randomized orthogonal arrays have less biased and more precise in estimating the
confidence intervals comparing with other methods.
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8§1. Introduction

The ANOVA high-dimensional model representation originated from Hoeffding (1948),
and was further discussed by Takemura (1983), Efron and Stein (1981) and Stein (1987).
That is
[y, mm) = fo+ 32 fiwi) + ; fij(@i, zj) + -+ fiz.m(@1, ... Tm), (1.1)
i i<y
where fo denotes the mean effect which is a constant. f;(x;) gives the effect of the variables
x; independent of the other input variables. f;;(x;, x;) describes the interactive effects of
the variables x; and z;, and so on. Model (1.1) has several interesting properties under
the orthogonal condition, /fil...is (Tiyy ... x5, )dxg = 0, for k = i1,...,is. More details
can be found in Sobol (1993).
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Based on this ANOVA model representation, Sobol (1993) proposed global sensitivity

index,

Siy.ie = Diy i, /D,

where Dy, i, = Var(fi, i.(®iy,..-,2i,)), D = Di+ > Djp+ -+ Di2_m, to reflect
i <k
the importance of the input variables and their interactions, and to identify the most

important variables and interactions for f. In general, S;, ;. = D;, . /D can be computed
numerically and several numerical methods have been investigated by many authors, such
as Monte Carlo simulation (Sobol, 2001, 2003; Sobol and Myshetskaya, 2008), quasi-Monte
carlo method (Saltelli et al., 2010). However, to most of experimenters, the objective
function f often appears as a “black box”, that is, a nonparametric model. There has
been little study on this subject. Recently, Wang et al. (2011, 2012) discussed the use of
design of orthogonal arrays in global sensitivity analysis of nonparametric models, and
shows that orthogonal arrays (OAs) are A-optimality designs for the estimation of @y,
the definition of which can be seen in Section 2.

This paper shows several optimal properties of orthogonal arrays (OAs) under ANO-
VA high-dimensional representation, including E-optimality for the estimation of G, in
Section 2 and universal optimality for the estimation of ;s in Section 3, where 3, is the
independent parameters of ©;. In Section 4, simulation study showed that randomized
orthogonal arrays have less biased and more precise in estimating the confidence intervals

comparing with other methods, such as MC method and OA method in Wang et al. (2011).

§2. E-optimality for the Estimation of O,

Regard the input variable 1, ..., z,, as control factors, and arrange the experiment
according to a design H = (ajj)nxm = (a1, ..., am), the jth column of which has p; levels
and a;; € {1,2,...,p;}. Suppose Y = (y1,...,yn)” is the observation vector with the

observation errors ¢; ~ N(0,0?), hence

yi = fo+ fi(za) + fo(xi2) + -+ fiz.m (i1, - oo, Tim) + €.

Denote
firis @iy, o, 214y) €1
0.0y = : ; €=

fil...is (xnila ce 7~Tm's) €n
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Then the above model can be written as
Y =00+>0;+ > 0j++ 0612 m+e (2.1)
i <k
In order to obtain global sensitivity indices, the estimate of D;, ; should be got first.
The following two-step approach can be used.

1. Approximate D;, ;. by

1
[fil..,is (xiip e )xiis)]Z = E

(04,-i,) " (O4y...i,)-

M=

1
* —
Dil...is -

n =1

2. Estimate O;, ;, by a function of observed values g¢;, ;. (Y).
Different choices of H and g may lead to different extent of deviations between the es-
timated and true values. Thus, it is important to select “good” designs and ¢(Y') for
global sensitivity analysis. Wang et al. (2012) proved that under A-optimality criterion,
the choice of orthogonal arrays and ¢ = Ap/Y can minimize the distance between g;, ;. (Y)
and ©;, . ;,, where A, is the matrix image of columns iy, ...,4s of H, which is developed
by Zhang et al. (1999). We give the definition of matrix image and some useful properties

in this section.

Definition 2.1 Let SS]QW be the treatment sum of squares of column M in the
analysis of variance. The matrix image (MI) of column M = {ij,is,...,is}, denoted by

Ajy, is defined to be the n x n projection matrix Ay if
582, =YTAyY.

Since 55%4 is a quadratic form of Y, there exists a unique symmetric matrix A,; such
that 55%4 = YT A)Y. In particular, denote the sum of squares of main effect of column
i as 9S2, then the matrix A; is called the matrix image of columns i if SS? = YT 4,Y.
Several important properties can be found for an orthogonal array H with strength s in
Zhang et al. (1999), Wang et al. (2012), such as

1. The MI of interactions of column M, Ay = nlMI—1 O AV M| < s, where A;
is the MI of column j of H, and |M| is the number of eleril'éflﬁ in set M, and () is the
Hadamard product in theory of matrix.

2. Compute A; as follows: A; = Xj(XjTXj)XJT — 1,17 /n, for j = 1,2,...,m, where
X; is the incidence matrix of column j, and 1,, = (1,...,1)T.

3. The MI of H, Ay, is a projection matrix, and rk(Ay) = [ (p; — 1), for |[M| < s.

4. The MI'’s of H are orthogonal, Ay Ay =0, for M # N, \{7\64]‘6 N| <s.

5. Ay©Onr = Oy, for | M| < s.
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For convenience of the proof in the later section, we transform model (2.1) into a

linear model. Following Wang et al. (2012), we write N = [] p; and denote the N x 1

vector, with elements f;,. ;. (xi,...,x;,), arranged in the le}ZiEC](\)/[graphic order, by . Let
X, having n rows and N columns, be the incidence matrix of columns iy, ...,is of H,
then

On = X (2.2)

For each Oy, let Bj; be the independent parameters of pps. Then there exists a matrix

By such as

punm = BB, (2.3)

and rk(By) = [ (pj —1). From (2.2) and (2.3), we have ©); = Xy By fSuyr. Let Cyp =
jeM
Xy By, then Oy = Cp8y. Therefore

Yy — 3 CrvpBy +e=CpB+e, (2.4)
M:MC{1,2,...m}
where C' = (Co, C1, ..., Cra..m) and = (85, B+, Bl )"

The following two lemmas play an important role in Wang et al. (2012):

Lemma 2.1 For the linear model
Y =Cp +¢,

where Y is a n X 1 observation vector, C' is a n x p design matrix, 8 is a p X 1 parameter
vector, € is a n X 1 random error vector and E(e) = 0, 8 is estimable if and only if C' has

full column rank.

Lemma 2.2  Assume that H is a feasible design (H satisfies that for any ©,,(H),
M C Q, there exists a matrix B such that E(BY) = O/(H)), rk(Cy) = a(M) and the
best linear unbiased estimate of ©y/(H) is Oun (H), then

tr(Var (O (H))) > o T] (p; —1).
JEM
By properties of MI’s of orthogonal arrays with strength s and the above lemmas, we

have

Theorem 2.1 Let @)M(H) = ApY. If H is an orthogonal array with strength m,
then

-~

E(@u(H)) = E(AyY) = On
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and

tr(Var (A Y)) = o ‘QM(pj -1)

for M C{1,...,m}.
From Lemma 2.2 and Theorem 2.1, we have

Remark 1 Orthogonal arrays with strength m are the best experimental plans for

the estimation of ©); under the A-optimality criterion.
We now consider the E-optimality of orthogonal arrays in the remaining of this section.

Theorem 2.2  Orthogonal arrays with strength m are the best experimental plans

for the estimation of ©,; under the E-optimality criterion.

Proof That is to prove
Amiae(Var (AprY')) = min Aua(Var (B (H))), (2.5)

where A\pax(A) denotes the maximum eigenvalue of matrix A. From the proof of Lemma
2.2, we obtain Var (©y(H)) > 02Cy(CT.Cy)~1CT.. Let Po,, = Cy(CLCuy)1CE,.
Then Pc,, is a projection matrix and Amax(Pc,,) = 1. By Theorem 2.2, we have Var (4,/Y)
= 02A)s. From property 1 of MI's of orthogonal arrays with strength m, A, is also a
projection matrix. So Amax(Anr) = 1, for |[M| <'s. Thus (2.5) holds. O

Remark 2 Since parameters in O, are correlated with each other, thus for any
feasible design H, det(©p;(H)) = 0. Therefore, there is no sense to discuss the D-
optimality.

8§3. Universal Optimality for the Estimation of (),

The notion of universal optimality, due to Kiefer (1975), helps in unifying the various
optimality criteria. Let Z denote the class of positive definite matrices of order a(M) =
II (pj — 1), and for a positive integer v, let J, denote the v x v matrix with all elements
JEM
unity. consider the class ® of real-valued functions ¢(x), such that

1. ¢(x) is convex; that is, for every z1,z9 € Z, and real a(0 < a < 1),
ag(x1) + (1 — a)p(z2) > dlaz + (1 — a)xa);

2. ¢(crlaany + c2dary) = ¢(cly(ar)) whenever ¢ > c; + c2, where c1,c2 and ¢ are

scalars;
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3. ¢(z) is permutation invariant; that is, ¢(rzr?) = ¢(z), for every x and every
permutation matrix r of order a(M).

Let Qg denotes the information matrix for 5y, under plan H and model (2.4),

Definition 3.1 A universally optimality plan is one that for each ¢() € ®, mini-
mizes ¢(Qm) over H € D where D} denotes the n-run plans which are capable of keeping
B estimable under (2.4).

Universal optimality is more power than the specific optimality criteria. Consideration

of the functions
¢(G) =log(det(G7")),  &(G)=tr(G7),  $(G) = Amax(G™1),

which are all members of ®, shows that a universally optimal plan is also D-, A- and
E- optimal. The following Theorem from Dey and Mukerjee (1999) demonstrate that
orthogonal arrays is the universally optimal plans for the estimation of 83; with orders

less than m/2, where m denotes the strength of the OA.

Theorem 3.1 Let Hy be represented by an n-run orthogonal array with strength
m, where 2 < m <, [ is the column number of Hy. Then Hj is a universally optimal plan

for every choice of By, such that | M| < m/2.

This was first proved by Cheng (1980) for the gage m = 2 and later extended by
Mukerjee (1982) to the case of general m. It covers many of the earlier findings in Kounias
(1977) who worked with 2" factorials and specific optimality criteria. Under model (2.4),
I = m, then Theorem 3.2 can be strengthened. We now present the main result of this
section, which shows Hj is a universally optimal plan for every choice of 83; with orders
less than m, that is |[M| < m. The following lemma will be useful in the subsequent

development (The proof can be found in Dey and Mukerjee (1999), Lemma 2.5.2, Pgs):

Lemma 3.1 Let there exist a plan Hj such that the information matrix Gy, =

Io(ar)- Then Hy is a universally optimal plan for estimating Sy

Theorem 3.2 Let Hy be represented by an n-run orthogonal array with strength
m, where m = [, [ is the column number of Hy. Then Hj is a universally optimal plan for

every choice of 8y with orders less than m under model (2.4).

Proof Following Dey and Mukerjee (1999), we rewrite

: B )
E(Y) = (X1a : X1a) 5 ) D(Y) = o°I,,
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where parameter 3(1) denotes the interest ones in the above model (2.4) and X4 =
Xqa(PHYT) Xog = Xq(PYH)T. X is the design matrix and (P = (.- PM...). PM is the

orthogonal contrast coefficients of effect 5j7. By linear model theory, we have
Gy = X1, X140 — X1 Xo0a(X3,X0a)T XogX14.
Hence by Lemma 2.6.1 in Dey and Mukerjee (1999), for orthogonal arrays,

XAT/[XM:IQ(M), for each M C {1,...,m},
XL Xy =0, for each M,N C {1,...,m}, M # N.

If the interest parameter is 8ar, we obtain Ggq = I,(ar), Hence by Lemma 3.1, orthogonal
arrays with strength m is universal optimality for the estimation of 55, such that M €
{1,...,m}, IM| <m. O

§4. Simulation Study

To test the performance of the proposed estimators by matrix image, Wang suggested
that orthogonal arrays which have a much smaller sample size comparing with MC-method
and Q-MC method for the estimation of ©,;. However, as Wang et al. (2011) indicated,
the estimates for the significant sensitivity indices by the OA method have much smaller
lengths of confidence intervals but a larger degree of bias than those of the Q-MC method
and MC method.

We consider randomized orthogonal array (R-OA) sampling designs to improve the
confidence intervals. Owen (1992, 1994) and Tang (1993) independently proposed the
use of randomized orthogonal arrays in computer experiment sampling designs. A class
of randomized orthogonal array sampling designs proposed by Owen (1992) is as follows:
Let D € OA(n,m,q,t), where d;; denotes the (4, j)th element of D, and

1. 71,...,mq be random permutation of {0,...,q — 1}, each uniformly distributed on
all the ¢! possible permutations.

2. €,j be (0,1) independent uniform random variables.

We randomize the symbols of D by applying the permutation 7; to the jth column
of D, j = 1,...,m. This gives us another orthogonal array D*, such that its (i,7)th
element satisfies d ; = m;(d; ;). Orthogonal array-based sample of size n is defined to be
{di,....d;,} where for i =1,...,n, di = (d},...,d;,,), where d} ; = m;(d; ;) + ae and «

is a scaler. The following model (Morris et al., 2006; Wang et al., 2011) are restudied here
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by R-OAs.
m
fxi,...oxm) = Bo+ > Bizi + 2 Bijzizi + -+ Bia.m?1 - Zm,
i=1 i<j
where x;s are uniformly distributed between 0 and 1, and z; = z; — 0.5, i = 1,...,m.

Then we have

fo=Bo, fi(z) = Bizi, -+

y» f12.m = Br.mz122 ... Zm.

Hence
D; = Var (fi(x:)) = 7 /12, Dij = Var (fij(wi,x;)) = 85/12%, -+, Dia.m = Bia._n/12™
D
D=Y 8212+ Y B3/12% + -+ B /12™. Su= TM’ M C{1,2,...,m}.
7 1<k

We consider the situation that the sum of the first sensitivity indices is close to 1. Let
case 1: m = 4, By = 10, f1 = 4, B2 = 0.3, B3 = =5, B4 = 2, f12 = 0.2, B13 = 1.5,
Bag = 0.2, B1o3 = 0.1 and all other B3ss equal zero. In this case, S1+ So + .53+ S, = 0.995.
Wang et al. (2011) studied this situation by the complete orthogonal array with two levels
OA(64,6,4,3) in their step 2. Table 1 give the results of the three methods, that is, MC
method, OA method in Wang et al. (2011) and randomized OA method with o = 1/100,

respectively.

Table 1 90% confidence intervals for the three methods (case 1)

M True value MC (N =4000) OA (N = 64, Wang et al., 2011) R-OA (N = 64)
{3} 0.5521  (0.5425,0.5620) (0.5501,0.5506) (0.5501,0.5551)
{1} 0.3533 (0.3439,0.3621) (0.3521,0.3636) (0.3515,0.3558)
{4} 0.0883  (0.0828,0.0914) (0.0744,0.0983) (0.0871,0.0897)
{1,3}  0.0041 (0.0007,0.0071) (0.0016,0.0072) (0.0028,0.0034)
{2} 0.0019 (0.0008,0.0029) (0.0013,0.0027) (0.0017,0.0022)

Table 1 shows the 90% confidence intervals for the significant sensitivity indices ob-
tained by replicating the experiments (MC, OA approach and R-OA method) 20 times.
The left point and the right point of each interval are the 5th and 95th percentiles of
the estimate, respectively. As it indicated, the 90% confidence intervals estimated by
MC method contain the true value but have a larger size. For example, the 90% confi-
dence interval for {3} is (0.5425,0.5620) by MC method, which is large than the other
two methods. The 90% confidence interval for {3} is (0.5501,0.5506) by OA method and
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(0.5501,0.5551) by randomized OAs. However, for OA method, they have much smaller
confidence intervals but they seem to have a degree of bias. By R-OA method, confidence
intervals get a better balance, which are less biased comparing with OA method and much
more smaller comparing with MC method.

Now we consider the situation that high-order sensitivity indices are significant. Let
case 2: m = 4, o = 10, 1 = 1.8, By = 1.5, 3 = =2, B4 = 2.5, B12 = 7.5, P13 = 8.5,
Bog = 7, B1o3 = 1.5 and all other SByss equal zero. In this case, S1 + Sy + S3 + S4 = 0.515.
Wang et al. (2011) also studied this situation by the complete orthogonal array with two
levels OA(64,6,4,3) in their step 2. Table 2 lists the results of the three methods, that is,
MC method, OA method in Wang et al. (2011) and randomized OA method with o = 1/5,
respectively. It also shows that the confidence intervals estimated by MC method contain
the true value but have a larger size. For OA method, they have much smaller confidence
intervals but they are all biased. However, confidence intervals estimated by R-OA method
get a better balance, which are less biased comparing with OA method and much more

smaller comparing with MC method.

Table 2 90% confidence intervals for the three methods (case 2)
M True value MC (N =4000) OA (N = 64, Wang et al., 2011) R-OA (N = 64)

{4} 02046  (0.1851,0.2247) (0.1547,0.1698) (0.1676,0.2581)
(1,3} 0.1971  (0.1235,0.2908) (0.2240,0.2484) (0.1238,0.1978)
{1,2}  0.1535  (0.1169,0.2173) (0.1899,0.1934) (0.0895,0.1647)
2,3} 0.1337  (0.0747,0.1869) (0.1654,0.1684) (0.0812,0.1363)

{3} 01309  (0.0388,0.1988) (0.0973,0.1001) (0.1028,0.1827)

{1} 01060  (0.0662,0.1489) (0.0788,0.0802) (0.0815,0.1488)

{2} 00736  (-0.0076,0.1397) (0.0547,0.0557) (0.0475,0.1063)

85. Concluding

In this paper, we have presented several optimal properties of orthogonal arrays for
the estimation of ©,; under model (2.1), such as E-optimality, which combined with A-
optimality in Wang et al. (2012) generalized the results of Cheng (1980) and Mukerjee
(1982). Wang et al. (2011, 2012) used ©y;(H) = A)Y to estimate the global sensitivity
indices when the objective function is a nonparametric model and proved to be accurate
for small indices. By the generalized ANOVA model in Dey and Mukerjee (1999), we

demonstrated that orthogonal arrays is universal optimality for the estimation of 5;; under



FA MRESF pREE el BT ANOVA A IER st rth B 1 579

model (2.4). In simulation study, we proposed to use the randomized OAs in estimating

the parameter and to estimate confidence intervals, which have less biased comparing with

OA method and smaller size comparing with MC method.
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