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Abstract

In this paper, we study the pricing of defaultable bonds and credit default swaps with coun-

terparty risk using a contagion model. We present a contagion model of correlated defaults in a

reduced model. The model assumes the intensities of default processes depend on the stochastic

interest rate process driven by a stochastic differential equation and the default process of a coun-

terparty. These are extensions of the models in Jarrow and Yu (2001) and Hao and Ye (2011).

Moreover, we derive the explicit formulae for the pricing of defaultable bonds and credit default

swap with counterparty risk using the properties of stochastic exponentials and make some numer-

ical analysis on the explicit formulae.
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§1. Introduction

Defaultable bonds and credit default swap are important credit securities and have

been popular for managing and hedging credit risk in the market. There have been mainly

two important models dealing with the pricing of these credit securities: the structural

model and the reduced-form model. The structural model initially proposed in Black

and Scholes (1973), Merton (1974), Black and Cox (1976), could give an intuitive under-

standing. Comparing with the structural model, the reduced-form model could give a

more flexible and tractable model, which is originally proposed by Lando (1994, 1998),

and Duffie and Singleton (1999). The default processes occur unexpectably at exogenous

intensity processes in their models.
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In recent years, the reduced-form model has been studied extensively. Jarrow and Yu

(2001) present the primary-secondary framework that avoids looping default and simplifies

the payoff structure where the protection seller’s payments are made only at the maturity

of credit default swap. Leung and Kwork (2005) employ the change of measure introduced

by Collins-Dufresne et al. (2004) to derive the joint density function in their valuation

procedure of the swap rate. Yu (2007) applies the total hazard construction approach

to price credit default swap and basket credit default swaps. Hao and Ye (2011) apply

the techniques in Park (2008) to the pricing of bonds and credit default swap, where the

intensities of default processes depend on the stochastic interest rate process driven by

an extended Vasicek model, extending the models in Jarrow and Yu (2001). Our model

is similar to Jarrow and Yu (2001) and Hao and Ye (2011). However, we present a more

structural specification of the stochastic interest rate process. The stochastic interest rate

process is driven by a stochastic differential equation which is the spirit of the approaches

of Heath, Jarrow and Morton (1992), Bjork, Kabanov and Runggaldier (1997). Moreover,

we derive the pricing of defaultable bonds and credit default swaps with counterparty risk

using the properties of stochastic exponentials in Applebaum (2004).

So the aim of this paper is to give a method to price the defaultable bonds and credit

default swap with stochastic interest rate process driven by a stochastic differential equa-

tion in the reduced-form model. The remainder of this paper is organized as follows. In

Section 2 we present the contagion model of correlated defaults in the primary-secondary

framework. The model assumes the intensities of default processes depend on the stochas-

tic interest rate process driven by a stochastic differential equation and the default process

of a counterparty. These are extensions of the models in Jarrow and Yu (2001) and Hao

and Ye (2011). In Section 3 and Section 4, we derive the explicit formulae for the de-

faultable bonds and credit default swap with counterparty risk using the properties of

stochastic exponentials, respectively. In Section 5, we make some numerical analysis on

the explicit formulae for the pricing of defaultable bonds and credit default swap with

counterparty risk. We conclude in Section 6.

§2. Model Setup

Let (Ω,G, (Gt)Tt=0,P) be a filtered probability space satisfying the usual conditions,

where G = GT , and P is an equivalent martingale measure under which the prices of all

discounted securities are martingales. The random default processes are modeled by Cox

processes. In Cox processes, the intensities of default, which measure the likelihood of
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default per unit time, are stochastic processes that depend on a set of economy-wide state

variables. On this probability space there is a process Xt, which represents the economy-

wide state variables. There are also l point processes N i
t , i = 1, . . . , l, initialized at 0,

which represent the default processes of l companies, respectively.

The filtration Gt is generated collectively by the information contained in the state

variables and the default processes companies and defined as follows:

Gt = FXt ∨H1
t ∨ · · · ∨ Hlt, (2.1)

where

FXt = σ(Xs : 0 ≤ s ≤ t) (2.2)

and

Hit = σ(N i
s : 0 ≤ s ≤ t) (i = 1, . . . , l) (2.3)

are the natural filtrations generated by Xt and N i
t (i = 1, . . . , l), respectively. Let

Kit = FXT ∨H1
T ∨ · · · ∨ Hi−1T ∨Hit ∨Hi+1

T ∨ · · · ∨ HlT , (2.4)

then Ki0 = FXT ∨H1
T ∨ · · · ∨ H

i−1
T ∨Hi+1

T ∨ · · · ∨ HlT .

Denote N i
t = Iτ i≤t and assume that τ i has a strictly positive Ki0-adapted intensity

process λit satifying

∫ t

0
λisds <∞, a.s., 0 ≤ t ≤ T , then the conditional and unconditional

distributions of τ i are given by

P(τ i > t|Ki0) = exp
(
−
∫ t

0
λisds

)
, 0 ≤ t ≤ T, (2.5)

P(τ i > t) = E
[
e−

∫ t
0 λ

i
sds
]
, i = 1, . . . , l, 0 ≤ t ≤ T. (2.6)

We suppose that the existence of an FXt -adapted stochastic interest rate process r(t),

which is given by a stochastic differential equation

dr(t) = l(t)dt+ b1(t)dW1(t) + b2(t)dW2(t) +

∫
E
q(t, x)J(dt× dx), (2.7)

where W1(t) and W2(t) are Wiener processes, J is a Poisson random measure on a mea-

surable space (E, ε) with intensity ν and jump size distribution F . We assume that W1(t)

and W2(t) are mutually independent, ν([0, t] × E) < ∞, P-a.s., and l(t), b1(t), q(t, x) are

chosen to satisfy standard conditions, see Heath et al. (1992), Bjork et al. (1997). The

stochastic interest rate process is similar to the forward rate process, except that both the

time and maturity arguments vary simultaneously.
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To be convenient, we use the time-t forward interest rate process f(t, u) instead of

the stochastic interest rate process in (2.7). For all u ≥ t, let

f(t, u) = f(0, u) +

∫ t

0
α(s, u)ds+

∫ t

0
σ1(s, u)dW1(s)

+

∫ t

0
σ2(s, u)dW2(s) +

∫ t

0

∫
E
δ(s, x, u)J(ds× dx), (2.8)

then r(u) can be expressed as

r(u) = f(u, u)

= f(0, u) +

∫ u

0
α(s, u)ds+

∫ u

0
σ1(s, u)dW1(s)

+

∫ u

0
σ2(s, u)dW2(s) +

∫ u

0

∫
E
δ(s, x, u)J(ds× dx),

where

l(t) = α(t, t) +

∫ t

0

∂α(s, T )

∂T

∣∣∣
T=t

ds+

∫ t

0

∂σ1(s, T )

∂T

∣∣∣
T=t

dW1(s)

+

∫ t

0

∂σ2(s, T )

∂T

∣∣∣
T=t

dW2(s) +

∫ t

0

∫
E

∂δ(s, x, T )

∂T

∣∣∣
T=t

J(ds× dx),

b1(t) = σ1(t, t), b2(t) = σ2(t, t), q(t, x) = δ(t, x, t).

So

r(u) = f(t, u) +

∫ u

t
α(s, u)ds+

∫ u

t
σ1(s, u)dW1(s)

+

∫ u

t
σ2(s, u)dW2(s) +

∫ u

t

∫
E
δ(s, x, u)J(ds× dx). (2.9)

Remark 1 Assuming that σ1(s, u) = σ1 and σ2(s, u) = σ2e
l(T−s)/2, where σ1, σ2

and l are strictly positive constants, {W1(t) : t ∈ [0, T ]} can be interpreted as a “long-run

factor” and {W2(t) : t ∈ [0, T ]} can be interpreted as a spread between a “short” and

“long term factor”; {W2(t) : t ∈ [0, T ]} affects the forward rates with short maturity more

than it does long maturity (See Brenner and Jarrow, 1993).

Supposing that the face value of bond is 1 dollar, the money market account, default-

free and defaultable bond prices are, respectively, given by

B(t) = exp
[ ∫ t

0
r(s)ds

]
, (2.10)

p(t, T ) = E
[ B(t)

B(T )

∣∣∣Gt] = E
[
e−

∫ T
t r(s)ds

∣∣Gt], (2.11)

V i(θi, t, T ) = E
[ B(t)

B(T )
(θiIτ i≤T + Iτ i>T )

∣∣∣Gt], i = 1, . . . , l, (2.12)
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where θi is the constant recovery rate of defaultable bond of firm i. Further, see Jarrow

and Yu (2001), the defaultable bond prices can also be expressed as

V i(θi, t, T ) = θip(t, T ) + Iτi>t(1− θi)E
[
e−

∫ T
t (r(s)+λis)ds

∣∣Gt], i = 1, . . . , l. (2.13)

Now we present the contagion model of correlated defaults in the primary-secondary

framework, which was originally proposed in Jarrow and Yu (2001). We divide l firms

into two mutually exclusive types: n primary firms and l − n secondary firms. Default

processes of primary firms only depend on the economy-wide state variables, while default

processes of secondary firms depend on the economy-wide state variables and the default

processes of the primary firms.

We define the default times of primary firms j as

τ j = inf
{
t ≥ 0 :

∫ t

0
λjsds ≥ Ej

}
, j = 1, . . . , n, (2.14)

where the intensity λjt is adapted to FXt and {Ej : j = 1, . . . , n} is a set of independent

unit exponential random variables, which are also independent of Xt, then the conditional

and unconditional distributions of τ j are given by

P(τ j > t|FXT ) = exp
(
−
∫ t

0
λjsds

)
, 0 ≤ t ≤ T, (2.15)

P(τ j > t) = E
[
e−

∫ t
0 λ

j
sds
]
, j = 1, . . . , n, 0 ≤ t ≤ T. (2.16)

For primary firms, we assume that their intensities have the following expression:

λjt = bj0(t) + bj(t)r(t), j = 1, . . . , n, 0 ≤ t ≤ T,

where bj0(t) and bj(t) (j = 1, . . . , n) are deterministic functions.

Then we add another set of independent unit exponential random variables, which

are independent of both Xt and {τ j : j = 1, . . . , n}. If we denote them by {Ek : k = n+1,

. . . , l}, then the default times of secondary firms can be similarly defined as

τk = inf
{
t ≥ 0 :

∫ t

0
λksds ≥ Ek

}
, k = n+ 1, . . . , l, (2.17)

where the intensity λkt is adapted to FXt ∨H1
t ∨ · · · ∨Hnt , then the conditional and uncon-

ditional distributions of τk are given by

P(τk > t|FXT ∨H1
T ∨ · · · ∨ HnT ) = exp

(
−
∫ t

0
λksds

)
, 0 ≤ t ≤ T, (2.18)

P(τk > t) = E
[
e−

∫ t
0 λ

k
sds
]
, k = n+ 1, . . . , l, 0 ≤ t ≤ T. (2.19)
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For secondary firms, we assume that their intensities have the following expression:

λkt = bk0(t) + bk(t)r(t) +
n∑
j=1

bkj (t)Iτ j≤t, k = n+ 1, . . . , l, 0 ≤ t ≤ T,

where bk0(t), bk(t) and bkj (t) (j = 1, . . . , n; k = n+ 1, . . . , l) are deterministic functions.

§3. The Pricing of Defaultable Bonds

In this section, we only consider the case with two firms. Firm A is the primary

firm whose default process is independent of the default process of secondary firm B but

depends on the stochastic interest rate process r(t), while firm B’s default process is

correlated with the default process of firm A and the stochastic interest rate process r(t).

We assume their default processes, respectively, satisfy the following relations:

λAt = bA0 (t) + bA1 (t)r(t), 0 ≤ t ≤ T, (3.1)

λBt = bB0 (t) + bB1 (t)r(t) + bB(t)IτA≤t, 0 ≤ t ≤ T, (3.2)

where bA0 (t), bA1 (t), bB0 (t), bB1 (t) and bB(t) are deterministic functions.

Now We provide the following extra assumptions of the model:

(i) bB(t) is either positive and decreasing or negative and increasing, such that

lim
t→∞

bB(t) = 0;

(ii) Both λjt and λjt are positive processes.

We assume that the bonds issued by firm A and B have the same maturity date

T . Denote θA and θB be the constant recoveries of the bonds issued by firm A and B,

respectively, then the prices of defaultable bonds issued by firm A and B can be expressed

by

V A(θA, t, T ) = θAp(t, T ) + IτA>t(1− θ
A)E

[
e−

∫ T
t (r(s)+λAs )ds

∣∣Gt] (3.3)

and

V B(θB, t, T ) = θBp(t, T ) + IτB>t(1− θ
B)E

[
e−

∫ T
t (r(s)+λBs )ds

∣∣Gt]. (3.4)

To price the bonds issued by firm A and firm B, we firstly calculate E
[
e−

∫ T
t a(u)r(u)du

∣∣Gt]
using Fubini’s theorem and the property of stochastic exponentials, where a(u) (0 ≤ u ≤
T ) is a deterministic function. About Fubini’s theorem and the property of stochastic

exponentials, can be found in Applebaum (2004).
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Theorem 3.1 Let h(ar, t, T ) = E
[
e−

∫ T
t a(u)r(u)du

∣∣Gt], then h(ar, t, T ) has the fol-

lowing expression:

h(ar, t, T ) = exp
{
−
∫ T

t

[
a(u)f(t, u) +

∫ u

t
a(u)α(s, u)ds

]
du+

1

2
K(a, t, T )

+

∫ T

t

∫
E

[
e−

∫ T
s a(u)δ(s,x,u)du − 1

]
νF (ds× dx)

}
, (3.5)

where

K(a, t, T ) =

∫ T

t
ds
[( ∫ T

s
a(u)σ1(s, u)du

)2
+
(∫ T

s
a(u)σ2(s, u)du

)2]
,

for all 0 ≤ t ≤ T .

Proof Since r(t) has an explicit expression as (2.9), we get

−
∫ T

t
a(u)r(u)du

= −
∫ T

t
a(u)f(t, u)du−

∫ T

t
du

∫ u

t
a(u)α(s, u)ds−

∫ T

t
du

∫ u

t
a(u)σ1(s, u)dW1(s)

−
∫ T

t
du

∫ u

t
a(u)σ2(s, u)dW2(s)−

∫ T

t
du

∫ u

t

∫
E
a(u)δ(s, x, u)J(ds× dx)

= g1(t, T ) + g2(t, T ) + g3(t, T ), (3.6)

where

g1(t, T ) = −
∫ T

t
a(u)f(t, u)du−

∫ T

t
du

∫ u

t
a(u)α(s, u)ds,

g2(t, T ) = −
∫ T

t
du

∫ u

t
a(u)σ1(s, u)dW1(s)−

∫ T

t
du

∫ u

t
a(u)σ2(s, u)dW2(s),

g3(t, T ) = −
∫ T

t
du

∫ u

t

∫
E
a(u)δ(s, x, u)J(ds× dx).

Using Fubini’s theorem, we have

g2(t, T ) =

∫ T

t
dW1(s)

∫ T

s
[−a(u)σ1(s, u)]du+

∫ T

t
dW2(s)

∫ T

s
[−a(u)σ2(s, u)]du

and

g3(t, T ) =

∫ T

t

∫
E
J(ds× dx)

∫ T

s
[−a(u)δ(s, x, u)]du.

Further by the properties of stochastic exponentials, we know

exp
{∫ t

0
dW1(s)

∫ T

s
[−a(u)σ1(s, u)]du− 1

2

∫ t

0

[ ∫ T

s
a(u)σ1(s, u)du

]2
ds
}
,

exp
{∫ t

0
dW2(s)

∫ T

s
[−a(u)σ2(s, u)]du− 1

2

∫ t

0

[ ∫ T

s
a(u)σ2(s, u)du

]2
ds
}
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and

exp
{∫ t

0

∫
E
J(ds× dx)

∫ T

s
[−a(u)δ(s, x, u)]du−

∫ t

0

∫
E

[
e−

∫ T
s a(u)δ(s,x,u)du − 1

]
νF (ds× dx)

}
are Gt-martingales. So

E
[
eg2(t,T )

∣∣Gt] = exp
{1

2

∫ T

t
ds
[( ∫ T

s
a(u)σ1(s, u)du

)2
+
(∫ T

s
a(u)σ2(s, u)du

)2]}
≡ exp

{1

2
K(a, t, T )

}
, (3.7)

E
[
eg3(t,T )

∣∣Gt] = exp
{∫ T

t

∫
E

[
e−

∫ T
s a(u)δ(s,x,u)du − 1

]
νF (ds× dx)

}
, (3.8)

where

K(a, t, T ) =

∫ T

t
ds
[( ∫ T

s
a(u)σ1(s, u)du

)2
+
(∫ T

s
a(u)σ2(s, u)du

)2]
.

From (3.6), (3.7) and (3.8), we complete the proof. �

Theorem 3.2 Assuming no default before t, the pricing of bond issued by primary

firm A is

V A(θA, t, T ) = θAh(r, t, T ) + (1− θA)e−
∫ T
t bA0 (s)dsh((1 + bA1 )r, t, T ) (3.9)

and the pricing of bond issued by secondary firm B is

V B(θB, t, T ) = θBh(r, t, T ) + (1− θB)
[
e−

∫ T
t [bB0 (s)+bB(s)]dsh((1 + bB1 )r, t, T )

+ e−
∫ T
t b

B
0 (s)ds

∫ T

t
bB(v)e−

∫ T
v b

B(s)ds−
∫ v
t b
A
0 (s)dsL1(t, v, T )L2(v, T )dv

]
,(3.10)

where

L1(t, v, T ) = exp
{
m(t, v, T ) +

1

2

∫ v

t

[ ∫ v

w
k2(s)σ1(w, s)ds+

∫ T

v
k1(s)σ1(w, s)ds

]2
dw

+
1

2

∫ v

t

[ ∫ v

w
k2(s)σ2(w, s)ds+

∫ T

v
k1(s)σ2(w, s)ds

]2
dw

+

∫ v

t

∫
E

[
e−

∫ v
w k2(s)δ(w,x,s)ds−

∫ T
v k1(s)δ(w,x,s)ds − 1

]
νF (dw × dx)

}
,

L2(v, T ) = exp
{
−
∫ T

v

∫ s

v
k1(s)α(w, s)dwds+

1

2
K(k1, v, T )

+

∫ T

v

∫
E

[
e−

∫ T
w k1(s)δ(w,x,s)ds − 1

]
νF (dw × dx)

}
,

m(t, v, T ) = −
∫ v

t
k2(s)f(t, s)ds−

∫ T

v
k1(s)f(t, s)ds

−
∫ v

t
ds

∫ s

t
k2(s)α(w, s)dw −

∫ T

v
ds

∫ v

t
k1(s)α(w, s)dw,
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k1(s) = 1 + bB1 (s), k2(s) = 1 + bA1 (s) + bB1 (s),

for all 0 ≤ t ≤ v ≤ T and 0 ≤ s ≤ T .

Proof From (3.1), (3.3) and Theorem 3.1, it is easy to get

V A(θA, t, T ) = θAp(t, T ) + (1− θA)E
[
e−

∫ T
t (r(s)+λAs )ds

∣∣Gt]
= θAh(r, t, T ) + (1− θA)e−

∫ T
t bA0 (s)dsh((1 + bA1 )r, t, T ).

Now we prove Equation (3.10). From (3.2) and (3.4), it is easy to know

V B(θB, t, T ) = θBh(r, t, T ) + (1− θB)E
[
e−

∫ T
t (r(s)+λBs )ds

∣∣Gt]
= θBh(r, t, T ) + (1− θB)E[e−

∫ T
t b

B
0 (s)ds−

∫ T
t (1+bB1 (s))r(s)ds−

∫ T
t b

B(s)I
τA≤sds

∣∣Gt]
= θBh(r, t, T ) + (1− θB)E

[
e−

∫ T
t b

B
0 (s)ds−

∫ T
t (1+bB1 (s))r(s)ds

·E
[
e−IτA≤T

∫ T
τA

bB(s)ds∣∣FXT ∨ Gt]∣∣Gt]. (3.11)

Using the property of conditional expectation, we show that

E
[
τA ≤ v

∣∣FXT ∨ Gt] = 1− E
[
τA > v

∣∣FXT ∨ Gt] = 1− E
[
τA > v

∣∣FXT ∨HAt ∨HBt ]
= 1− IτA>t

E
[
τA > v

∣∣FXT ]
E
[
τA > t

∣∣FXT ] = 1− IτA>t exp
(
−
∫ v

t
λAs ds

)
= 1− exp

(
−
∫ v

t
λAs ds

)
, t ≤ v ≤ T.

So

E
[
e−IτA≤T

∫ T
τA

bB(s)ds∣∣FXT ∨ Gt]
=

(∫ T

t
+

∫ ∞
T

)
e−Iv≤T

∫ T
v bB(s)dsd

[
1− e−

∫ v
t b

A
0 (s)ds−

∫ v
t b

A
1 (s)r(s)ds

]
=

∫ T

t
e−

∫ T
v bB(s)dsd

[
1− e−

∫ v
t b

A
0 (s)ds−

∫ v
t b

A
1 (s)r(s)ds

]
+

∫ ∞
T

d
[
1− e−

∫ v
t b

A
0 (s)ds−

∫ v
t b

A
1 (s)r(s)ds

]
= e−

∫ T
t bB(s)ds +

∫ T

t
bB(v)e−

∫ T
v bB(s)ds−

∫ v
t b

A
0 (s)ds−

∫ v
t b

A
1 (s)r(s)dsdv. (3.12)

Substituting (3.12) into (3.11), we easily obtain

V B(θB, t, T ) = θBh(r, t, T ) + (1− θB)
[
e−

∫ T
t [bB0 (s)+bB(s)]dsh((1 + bB1 )r, t, T )

+ e−
∫ T
t bB0 (s)ds

∫ T

t
bB(v)e−

∫ T
v bB(s)ds−

∫ v
t b

A
0 (s)ds

·E
[
e−

∫ T
v (1+bB1 (s))r(s)ds−

∫ v
t (1+b

A
1 (s)+bB1 (s))r(s)ds

∣∣Gt]dv]. (3.13)

《
应
用
概
率
统
计
》
版
权
所
有



122 A^VÇÚO 1n�ò

Denote k1(s) = 1 + bB1 (s) and k2(s) = 1 + bA1 (s) + bB1 (s), we get

E
[
e−

∫ T
v (1+bB1 (s))r(s)ds−

∫ v
t (1+b

A
1 (s)+bB1 (s))r(s)ds

∣∣Gt]
= E

[
e−

∫ v
t k2(s)r(s)dsE

[
e−

∫ T
v k1(s)r(s)ds

∣∣Gv]∣∣Gt]
= E[e−

∫ v
t k2(s)r(s)dsh(k1r, v, T )

∣∣Gt]
= L1(t, v, T )L2(v, T ), (3.14)

where

L1(t, v, T ) = E[e−
∫ v
t k2(s)r(s)ds−

∫ T
v k1(s)f(v,s)ds

∣∣Gt],
L2(v, T ) = exp

{
−
∫ T

v

∫ s

v
k1(s)α(w, s)dwds+

1

2
K(k1, v, T )

+

∫ T

v

∫
E

[
e−

∫ T
w k1(s)δ(w,x,s)ds − 1

]
νF (dw × dx)

}
. (3.15)

Using Fubini’s theorem, we have

−
∫ v

t
k2(s)r(s)ds−

∫ T

v
k1(s)f(v, s)ds

= m(t, v, T )−
∫ v

t
dW1(w)

[ ∫ v

w
k2(s)σ1(w, s)ds+

∫ T

v
k1(s)σ1(w, s)ds

]
−
∫ v

t
dW2(w)

[ ∫ v

w
k2(s)σ2(w, s)ds+

∫ T

v
k1(s)σ2(w, s)ds

]
−
∫ v

t

∫
E
J(dw × dx)

[ ∫ v

w
k2(s)δ(w, x, s)ds+

∫ T

v
k1(s)δ(w, x, s)ds

]
,

where

m(t, v, T ) = −
∫ v

t
k2(s)f(t, s)ds−

∫ T

v
k1(s)f(t, s)ds

−
∫ v

t
ds

∫ s

t
k2(s)α(w, s)dw −

∫ T

v
ds

∫ v

t
k1(s)α(w, s)dw. (3.16)

Further by the properties of stochastic exponential, we find that

L1(t, v, T ) = exp
{
m(t, v, T ) +

1

2

∫ v

t

[ ∫ v

w
k2(s)σ1(w, s)ds+

∫ T

v
k1(s)σ1(w, s)ds

]2
dw

+
1

2

∫ v

t

[ ∫ v

w
k2(s)σ2(w, s)ds+

∫ T

v
k1(s)σ2(w, s)ds

]2
dw

+

∫ v

t

∫
E

[
e−

∫ v
w k2(s)δ(w,x,s)ds−

∫ T
v k1(s)δ(w,x,s)ds − 1

]
νF (dw × dx)

}
. (3.17)

From (3.13)-(3.17), we complete the proof. �
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§4. The Pricing of Credit Default Swap

In a credit default swap, we assume firm C holds bonds issued by the reference firm

A with the constant recovery rate θA and the maturity date T . To hedge this credit risk,

firm C buys a protection from firm B with the maturity date T . To make the calculation

convenient, we provide the following assumption:

(i) Firm A is the primary party and firm B is the secondary party.

(ii) The swap premium payments are made continuously at a constant swap rate S.

(iii) The protection seller’s payments are made only at the maturity of the credit

default swap.

Making use of the results of previous sections, we give the pricing of credit default

swap with counterparty risk.

Theorem 4.1 Assuming that the stochastic interest rate process r(t) satisfies (2.9)

and the intensities λA and λB satisfy (3.1) and (3.2), respectively, the swap rate S has the

following expression:

S = (1− θA)

V B(0, 0, T )− exp
{
−
∫ T

0
[bA0 (u) + bB0 (u)]du

}
h(k2r, 0, T )∫ T

0
h(r, 0, s)ds

. (4.1)

Proof It is easy to get that the time-0 market value of buyer C’s payments to seller

B is

E
[ ∫ T

0
Se−

∫ s
0 r(u)duds

]
= S

∫ T

0
E
[
e−

∫ s
0 r(u)du

]
ds = S

∫ T

0
h(r, 0, s)ds

and the time-0 market value of seller B’s payments to buyer C at the time of default of

reference firm A is (1− θA)E
[
IτA≤T e−

∫ T
0 r(u)duIτB>T

]
. By the arbitrage-free principle, we

find that

S =
(1− θA)E

[
IτA≤T e−

∫ T
0 r(u)duIτB>T

]∫ T

0
h(r, 0, s)ds

= (1− θA)
E
[
e−

∫ T
0 r(u)duIτB>T

]
− E

[
IτA>T e−

∫ T
0 r(u)duIτB>T

]∫ T

0
h(r, 0, s)ds

= (1− θA)
E
[
e−

∫ T
0 r(u)duIτB>T

]
− E

[
IτA>T e−

∫ T
0 r(u)duE

(
IτB>T

∣∣FXT ∨HAT )]∫ T

0
h(r, 0, s)ds

= (1− θA)
V B(0, 0, T )− E

[
IτA>T e−

∫ T
0 (r(u)+λBu )du

]∫ T

0
h(r, 0, s)ds

. (4.2)
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From the expression of λAu , λ
B
u and the property of conditional expectation, we have

E
[
IτA>T e−

∫ T
0 (r(u)+λBu )du

]
= E

[
IτA>T e−

∫ T
0 [bB0 (u)+(1+bB1 (u))r(u)+bB(u)I

τA≤u]du
]

= E
[
IτA>T e−

∫ T
0 [bB0 (u)+(1+bB1 (u))r(u)]du−

∫ T
0 bB(u)I

τA≤udu
]

= E
[
IτA>T e−

∫ T
0 bB0 (u)du−

∫ T
0 (1+bB1 (u))r(u)du

]
= E

[
e−

∫ T
0 bB0 (u)du−

∫ T
0 (1+bB1 (u))r(u)duE

[
IτA>T

∣∣FXT ]]
= E

[
e−

∫ T
0 bB0 (u)du−

∫ T
0 (1+bB1 (u))r(u)due−

∫ T
0 λAu du

]
= E

[
e−

∫ T
0 [bA0 (u)+bB0 (u)]du−

∫ T
0 [1+bA1 (u)+bB1 (u)]r(u)du

]
= e−

∫ T
0 [bA0 (u)+bB0 (u)]duh(k2r, 0, T ). (4.3)

Substituting (4.3) into (4.2), we show (4.1) holds. �

§5. Numerical Analysis

In this section, using the explicit formulae obtained in the previous sections, we make

some numerical analysis on the pricing of defaultable bonds and credit default swap with

counterparty risk. For simplicity, we choose the F (x) = (1− e−x)Ix>0 and the parameters

T = 3, σ1(s, u) = 0.02, σ2(s, u) = 0.05, f(t, u) = 0.3, α(s, u) = 0.1, δ(s, x, u) = 0.02,

ν = 0.3, bB(t) = 0.5, where 0 ≤ t ≤ s ≤ u. Unless otherwise noted, the F (x) and the

parameters are the same as the ones given above.

To present the impact of parameters bA0 and bA1 on the pricing V A(θA, t, T ) of default-

able bond issued by firm A, we choose θA = 0.5 and consider the following cases:

Case 1 : bA0 = 0.1, bA1 = 0.2; Case 2 : bA0 = 0.1, bA1 = 0.6;

Case 3 : bA0 = 0.4, bA1 = 0.2; Case 4 : bA0 = 0.4, bA1 = 0.6.
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Figure 1 displays V A(θA, t, T ) against the parameters bA0 and bA1 in the contagion

model. V A(θA, t, T ) will decrease as bA0 increases, which means the buyer is willing to pay

a lower price to the firm A with more risky underlying assets. Be same as bA0 , V A(θA, t, T )

will also decrease as bA1 increases. Besides, Figure 1 presents that V A(θA, t, T ) increases

with t increasing. Fixed t = 0, we consider the change of V A(θA, t, T ) with θA. Figure 2

displays that V A(θA, t, T ) increases with θA increasing in the contagion model. Further-

more, Figure 2 also displays that V A(θA, t, T ) will decrease when bA0 and bA1 increase. In

addition, it is noted that V A(θA, t, T ) is a fixed value when θA = 1. That is, V A(θA, t, T )

does not change along with the change of parameters bA0 and bA1 when θA = 1.

To present the impact of parameters bA0 , b
A
1 , b

B
0 and bB1 on the pricing V B(θB, t, T ) of

defaultable bond issued by firm B, we choose t = 0 and consider the following cases:

Case 5 : bA0 = 0.1, bA1 = 0.2, bB0 = 0.05, bB1 = 0.05;

Case 6 : bA0 = 0.4, bA1 = 0.6, bB0 = 0.05, bB1 = 0.05;

Case 7 : bA0 = 0.1, bA1 = 0.2, bB0 = 0.1, bB1 = 0.2;

Case 8 : bA0 = 0.4, bA1 = 0.6, bB0 = 0.1, bB1 = 0.2.
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From Figure 3, when bA0 and bA1 increase, fixed bB0 and bB1 , V B(θB, t, T ) will de-

crease; when bB0 and bB1 increase, fixed bA0 and bA1 , V B(θB, t, T ) will decrease. In addition,

V B(θB, t, T ) increases with θB. Particularly, if bA0 = 0.1, bA1 = 0.2, bB0 = 0.05 and

bB1 = 0.05, then V B(0, 0, 3) = 0.1779; If bA0 = 0.4, bA1 = 0.6, bB0 = 0.05 and bB1 = 0.05, then

V B(0, 0, 3) = 0.1263; If bA0 = 0.1, bA1 = 0.2, bB0 = 0.1 and bB1 = 0.2, then V B(0, 0, 3) =

0.1255; If bA0 = 0.4, bA1 = 0.6, bB0 = 0.1 and bB1 = 0.2, then V B(0, 0, 3) = 0.0891.

From Figure 4, when bA0 and bA1 increase, fixed bB0 and bB1 , the swap rate S will increase;

when bB0 and bB1 increase, fixed bA0 and bA1 , the swap rate S will decrease. Furthermore,

it is consistent with the fact that the protection buyer will pay a higher swap rate when

holding a greater risk of the underlying asset; while the protection buyer will pay a lower
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swap rate when counterparty defaults easier. In addition, it is noted that the swap rate

S is equal to zero when θA = 1. That is, S does not change along with the change of

parameters bA0 , b
A
1 , b

B
0 and bB1 when θA = 1.
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To compare the prices of credit securities with counterparty risk and without coun-

terparty risk, we choose bA0 = 0.4, bA1 = 0.6, bB0 = 0.1 and bB1 = 0.2. Figure 5 present

the prices of bond issued by firm A with counterparty risk and without counterparty risk,

respectively. Figure 6 present the prices of bond issued by firm B with counterparty risk

and without counterparty risk, respectively. Figure 7 present the swap rates S of the

credit default swap with counterparty risk and without counterparty risk, respectively.

From Figure 5, 6 and 7, we can easily conclude that the prices of credit securities with

counterparty risk are less than the prices of credit securities without counterparty risk.

§6. Conclusion

In this paper, we present a contagion model of correlated defaults in a reduced model.

The model assumes the intensities of default processes depend on the stochastic interest
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rate process driven by a stochastic differential equation and the default process of a coun-

terparty. The model assumes the intensities of default processes depend on the stochastic

interest rate driven by a stochastic differential equation and the default process of a coun-

terparty, extending the models in Jarrow and Yu (2001) and Hao and Ye (2011). We

derive the explicit formulae for the pricing of defaultable bonds and credit default swap

with counterparty risk using the properties of stochastic exponentials and make some

numerical analysis on the explicit formulae. Specifically, we consider the case that the rel-

evant recovery rates are constants and we can further study more general models. Hence,

another important topic for further research is the pricing formulas of defaultable bonds

and credit default swap with counterparty risk under the stochastic recovery rates.
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