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Abstract

In this paper, a Bernstein-polynomial-based likelihood method is proposed for the partially

linear model under monotonicity constraints. Monotone Bernstein polynomials are employed to

approximate the monotone nonparametric function in the model. The estimator of the regression

parameter is shown to be asymptotically normal and efficient, and the rate of convergence of the

estimator of the nonparametric component is established, which could be the optimal under the

smooth assumptions. A simulation study and a real data analysis are conducted to evaluate the

finite sample performance of the proposed method.
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§1. Introduction

In this paper, we consider Bernstein-polynomial-based maximum likelihood estima-

tion for a partially linear model under monotonicity constraints. A general partially linear

model takes the form

Y = ψ(Z) +XTβ + ε, (1.1)

where X = (x1, . . . , xd)
T and Z are d × 1 and 1 dimensional explanatory variables re-

spectively, β is a d × 1 vector of the unknown regression parameters, ψ is an unknown

function, the error term ε is normally distributed with mean 0 and finite variance σ2, and

(X,Z) and ε are independent. The partially linear model is an extension of a standard

linear model without having to specify the functional forms of some predictor variables.

It can be an appropriate choice when the response variable Y is assumed to be linearly

associated with covariate X, but the relationship between Y and Z may be nonlinear.
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The partially linear model (1.1) has been extensively studied by many authors, see

for example, Bianco and Boente (2004), Engle et al. (1986), Green et al. (1985), Green and

Silverman (1994), Robinson (1988), and Schimek (2009) among many others. A lot of

methods for estimation of the parameters and the smooth nonparametric component have

been suggested. Heckman (1986) explored the asymptotic properties of the estimator of β

using the penalized likelihood estimation method. Chen (1988) used piecewise polynomials

to approximate ψ(·) and showed that the estimator of β can achieve a convergence rate

of n−1/2 with smallest possible asymptotic variance. Chen and Shiau (1994) studied

the asymptotic behaviors of two data-driven efficient estimators of β using the spline

estimation method. Mammen and van der Geer (1997) applied empirical process theory to

study the asymptotic properties of the penalized quasi-likelihood estimator of β. Speckman

(1988) investigated the theoretical properties of the kernel smoothing approach for the

partially linear model. Hamilton and Truong (1997) used the local linear smoother method

to derive the asymptotic distributions of the estimates of β and ψ, which generalized the

results of Robertson et al. (1988).

In many studies, there is a monotonic relationship between one or more of covariates

and the response variable, such as the dose-response relationship in some clinical trials.

In this case, one would like to give an estimator of the regression function which satis-

fies the monotone constraint. Earlier works for nonparametric isotonic regression models

refer to, for example, Brunk (1970), Robertson and Wright (1975), and Wright (1981).

Huang (2002) considered model (1.1) assuming that ψ is a smooth monotone function,

and proposed a restricted least squares estimation. Under the assumption that the error ε

is normally distributed, the estimator of β was shown to be asymptotically efficient among

all regular estimators. The limiting distribution of the isotonic estimator of the monotone

nonparametric function ψ at a fixed point was also established. Sun et al. (2012) proposed

an another estimation method for model (1.1) with error-in-variable data. Although the

above estimators of β performs well, the convergence rate of the nonparametric compo-

nent may be improved through smoothing technics. Bernstein polynomial approximation

is such a technic. It has been found for other models that Bernstein polynomials can be

used to construct an isotonic estimator of a monotone function, see, for example, Chak

et al. (2005), Chang et al. (2005), Chang et al. (2007), Curtis and Ghosh (2011), Petrone

(1999) and Stadtmuller (1986) among others. To the best of our knowledge, however,

there is no systematic study for model (1.1) based on the Bernstein polynomial approx-

imation to ψ when it is subject to be monotone. Therefore, it would be preferable to

develop a practical Bernstein polynomial procedure for the partially linear model under
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monotonicity constraints on ψ and study the asymptotic properties of the estimates.

Without loss of generality, assume that ψ(·) is nondecreasing. We employ the following

monotone Bernstein polynomials to approximate ψ(Z), i.e.

ψ(Z) ≈ ΣN
j=0αjbj(Z,N), (1.2)

subject to the constraints α0 ≤ α1 ≤ · · · ≤ αN . The nondecreasing constraints on the

coefficients αj , j = 0, 1, . . . , N , guarantee the isotonicity of the resulting Bernstein poly-

nomial estimator (Wang and Ghosh, 2012). This approach follows the idea of the sieve

method for the estimation of the infinite-dimensional parameter ψ. In sieve estimation

a sequence of subspaces (sieves) that depend on the sample size n are used to approxi-

mate the original space such that the resulting estimation problem over sieves becomes

less complicated. In the model presented here, the sieves are the collections of monotone

Bernstein polynomials and the original space is the set of bounded nondecreasing smooth

functions. By using monotone Bernstein polynomials to approximate ψ, we can estimate

the Bernstein coefficients α = (α0, . . . , αN ) and the regression parameter β simultaneously.

We show that the estimator of β is asymptotically normal and efficient and the estimator

of ψ achieves the possible optimal rate of convergence under the smooth condition.

The rest of the paper is organized as follows: The Bernstein maximum likelihood

estimator (β̂n, ψ̂n) and the numerical algorithm are presented in Section 2. Asymptotic

results are given in Section 3. A Monte Carlo simulation study and a real data analysis are

displayed in Section 4. Finally, the proofs of asymptotic results are sketched in Appendix.

§2. Method and Algorithm

Let (β0, ψ0) be the true value of (β, ψ). Assume the parametric space Θ for β is a

convex and compact subset of Rd and ψ0 is a smooth monotone function. Since the change

of variables specified by t = (z − a)/(b − a) maps z ∈ [a, b] to t ∈ [0, 1] without changing

the max norm of any function, we can restrict our attention to continuous functions ψ0(z)

on z ∈ [0, 1] without loss of generality. Let (Y1, Z1, X1), . . . , (Yn, Zn, Xn) be a random

sample of (Y,Z,X). The log-likelihood for this random sample is

ln(β, ψ) = − ln(
√

2πσ)−
n∑
i=1

(Yi −XT
i β − ψ(Zi))

2/(2σ2), (2.1)

subject to β ∈ Θ and ψ being monotone. Denoting by Z(1) ≤ · · · ≤ Z(n) the ordered values

of Zi’s and letting ψi = ψ(Z(i)), Huang (2002) defined the semiparametric maximum

likelihood estimator of (β0, ψ0) as the maximizer of ln(β, ψ) subject to β ∈ Θ and ψ1 ≤
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· · · ≤ ψn. The obtained estimator of β is highly efficient, and the estimator of ψ is a

nondecreasing step function with jumps only occurring at the observed points Zi. In

this section, we propose to estimate ψ using monotone Bernstein polynomial instead of

the step function in order to achieve faster rate of convergence and better finite sample

performance of the estimate of ψ.

In this paper, we construct the base function bj(Z,N) using Bernstein polynomials.

For a continuous function such as ψ(Z) on [0, 1], the approximating Bernstein polynomial

of order N is given by

B(Z;N,ψ) =
N∑
j=0

ψ
( j
N

)
CjN (Z)j(1− Z)N−j .

By Weierstrass theorem, B(·;N,ψ) → ψ(·) uniformly over [0, 1] as N → ∞ (Lorentz,

1953). Denote bj(Z,N) = CjN (Z)j(1−Z)N−j , j = 0, . . . , N , where CjN = N !/(j!(N − j)!).
According to Wang and Ghosh (2012), B(Z;N,ψ) is monotone nondecreasing on [0, 1] if

nondecreasing constraints are imposed on the coefficients α = (α0, . . . , αN ). Thus,

MN =
{ N∑
j=0

αj · bj(Z,N) : α0 ≤ · · · ≤ αN ,
N∑
j=0
|αj | ≤ LN

}
is the collection of monotone nondecreasing polynomials on [0, 1].

Replacing ψ(Z) by
N∑
j=0

αj · bj(Z,N) in the log-likelihood function (2.1), we obtain the

Bernstein-polynomial-based log-likelihood function,

ln(α, β) = − ln(
√

2πσ)−
n∑
i=1

(
Yi −XT

i β −
N∑
j=0

αjbj(Zi, N)
)2/

(2σ2), (2.2)

subject to α0 ≤ · · · ≤ αN . The advantage of this reparametrization is that we can estimate

the regression parameters β and coefficients α = (α0, . . . , αN ) simultaneously through

maximizing the Bernstein likelihood function subject to nondecreasing constraints. The

computational burden can be greatly alleviated by such fully parametric representation of

Bernstein polynomial likelihood function.

Let α̂n = (α̂0, . . . , α̂N ) and β̂n be the values that maximize Bernstein likelihood

function (2.2), we denote the Bernstein estimation of ψ(z) by ψ̂n(z) =
N∑
i=0

α̂ibi(z,N).

The Bernstein likelihood estimation problem (2.2) can be formulated as an optimiza-

tion problem subject to linear inequality constraints

max
θ∈Θα×Rd

ln(θ|data),

where θ = (α, β) with α ∈ Θα = {α : α0 ≤ · · · ≤ αN}.
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The above optimization problem can be effectively solved by the general quadratic

programming (Rosen, 1960; Goldfarb and Idnani, 1983). Quadratic programming has also

been used to solve the linear inequality constraints based on B-spline basis under linear

constraints methods. In this study, we use the available R package quadprog by Turlach

and Weingessel (2010) to solve quadratic programming problem. It is to be noted that

in practice the LN can be chosen to be a reasonably large number and hence we do not

need to choose its value. The order N of the Bernstein polynomial can be chosen by the

cross-validation method which is introduced in numerical examples in Section 4.1.

§3. Asymptotic Results

In this section we present asymptotic results for the Bernstein polynomial maximal

likelihood estimator β̂n, ψ̂n. Denote ϑ = (β, ψ). Assume the regression parameter space Θ

to be a convex and compact subset of Rd and the parameter space for the nonparametric

function ψ is taken to be

F = {ψ : ψ is monotone nondecreasing on [0, 1]}.

Let ‖·‖ be the Euclidean norm of Rd. For any probability measure P , define L2-norm

‖f‖2 =
(∫

f2dP
)1/2

. We study the asymptotic properties of (β̂n, ψ̂n) with L2 metric

d2
2(ϑ1, ϑ2) = ‖β2 − β1‖2 + ‖ψ2 − ψ1‖22

= ‖β2 − β1‖2 +

∫
|ψ2(z)− ψ1(z)|2dFZ(z),

for any ϑi = (βi, ψi) ∈ Θ×F , i = 1, 2, where FZ(z) is the marginal probability measure

of the variable Z.

The following regularity conditions with respect to the order of Bernstein polynomial,

the smoothness and monotonicity of ψ0, and the underlying distributions of covariates

(X,Z) are needed to derive the asymptotic results of the Bernstein polynomial maximum

likelihood estimator (β̂n, ψ̂n).

C1. The true function ψ0 is strictly increasing and its first derivative is Holder con-

tinuous with the exponent a0, i.e. there exist constant a0 ∈ [0, 1] and constant M such

that |ψ(1)
0 (Z1)− ψ(1)

0 (Z2)| ≤M |Z1 − Z2|a0 for all Z1, Z2 ∈ [0, 1].

C2. The order N of Bernstein polynomials satisfies N = O(nκ) with κ = 1/(3 + 2a0).

C3. The true parameter β0 is in the interior of Θ.
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C4. There exists x0 such that P(‖X‖ ≤ x0) = 1. That is, the covariate X has a boun-

ded support.

C5. The density function of Z is continuous and positive on [0, 1].

C6. For any β 6= β0, P(XTβ 6= XTβ0) > 0.

C7. E(X − E(X|Z))⊗2 is positive definite, where x⊗2 = xxT .

C8. The function h∗(z)=E(X|Z=z) satisfies the Lipschitz condition on [0, 1].

Remark 1 (C1) and (C2) are two mild assumptions needed to derive consistency

and the rate of convergence of (β̂n, ψ̂n). The compactness and convexity of Θ and (C3)

are common in the literature of semiparametric estimation. Assumptions that are related

to observation scheme of (X,Z), (C4)-(C5), are needed for the entropy calculation in

the proofs of Theorems 3.1-3.2. (C6) is required to establish the identifiability of the

semiparametric model. (C7) and (C8) are useful in the proof of the asymptotic normality.

To obtain the asymptotic distribution of β̂n, we first need to adjust for the dependence

of Z and X, which is a common complication in semiparametric models. For a single

observation (Y, Z,X), its log density given by

l(β, ψ) = − ln(
√

2πσ)− (Y − ψ(Z)−XTβ)2/(2σ2).

The score function for β is

l̇β(β, ψ) = (Y − ψ(Z)−XTβ)X/σ2.

Consider a parametric smooth submodel (β, ψt), where ψ0 = ψ and ∂ψt/∂t|t=0 = h,

more details of the submodel see Chapter 25 of van der Vaart (1996). Let H be the class

of such h functions with bounded variation on [0, 1]. The score function for ψ takes the

form of

l̇ψ(β, ψ)h = (Y − ψ(Z)−XTβ)h/σ2.

The efficient score for β at the true parameter (β0, ψ0) is given by

l∗β = l̇β(β0, ψ0)− l̇ψ(β0, ψ0)h∗,

where h∗ ∈H d satisfies

E[l̇β(β0, ψ0)− l̇ψ(β0, ψ0)h∗]l̇Tψ (β0, ψ0)h = 0,

for all h ∈H d. This simplifies to

E(Y − ψ0(Z)−XTβ0)2(X − h∗(Z))hT (Z) = 0,
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for all h ∈H d. Thus, h∗(z) = E(X|Z = z). So the efficient score function for β at (β0, ψ0)

is

l∗β = (Y − ψ0(Z)−XTβ0)(X − E(X|Z))/σ2.

The efficient information takes the form of

I(β0) = El∗⊗2
β = E(X − E(X|Z))⊗2/σ2,

where x⊗2 = xxT , for x ∈ Rd.

Theorem 3.1 Suppose conditions (C1)-(C7) hold. Then

(i) (Consistency)

d2((β̂n, ψ̂n), (β0, ψ0))→ 0

in probability, as n→∞.

(ii) (Rate of convergence)

d2((β̂n, ψ̂n), (β0, ψ0)) = OP (n−(1+a0)/(3+2a0)).

Thus, if a0 = 1, then the rate of convergence is OP (n−2/5), and if a0 = 0, then the rate

of convergence is OP (n−1/3), which is the optimal rate of convergence under the smooth

condition.

Theorem 3.2 (Asymptotic normality) Suppose conditions (C1)-(C8) hold. Then

√
n(β̂n − β0) = n−1/2I−1(β0)

n∑
i=1

l∗β + oP (1) −→ N(0, I−1(β0))

in distribution, as n→∞.

§4. Numerical Examples

4.1 Simulation Study

In this section a Monte Carlo simulation study is performed to evaluate the finite

sample performance of the proposed estimation method. We generate n independently

and identically distributed observations {(Yi, Xi, Zi) : i = 1, . . . , n} as follows: Zi ∼
Uniform[0, 1]; Xi ∼ N(0, 1) and model is given by

Yi = ψ(Zi) +Xiβ + εi,

where β = 0.2, ψ(Z) = sin(πZ/2) and εi ∼ N(0, 1). In order to choose a proper order

of Bernstein polynomial N , we use the popular V -fold cross-validation method. Given V ,
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for each N , the cross validation term CV (N) for our estimator takes the following form:

CV (N) =
1

V

V∑
v=1

∑
i∈I−v

(Yi −Xiβ̃ − ψ̃(Zi))
2, (4.1)

where β̃ and ψ̃(·) are obtained from the v-th training data set consisting of bn(V − 1)/V c
observation points and I−v denotes the corresponding validation set consisting of [n/V ]

points. We compute the cross validation function defined in (4.1) for a series of N val-

ues starting with N = 2 to a relatively large integer Nmax(< bn(V − 1)/V − 1c). The

optimal value N̂ is chosen to minimize (4.1), i.e., N̂ = arg min
N∈[2,Nmax]

CV (N). The samples of

n = 50, 100 and 200 observations are generated respectively, and the data generation and

subsequent estimation are repeated 500 times. The order of Bernstein polynomial is esti-

mated using 7-fold cross validation method. We also compare the constrained estimation

with the unconstrained estimation.

The Monte Carlo sample bias, standard deviation (SD), and mean squared error

(MSE) for the constrained estimation and the the unconstrained estimation of β are

summarized in Table 1 Table 2, based on 500 repeated samples, n = 50, 100 and 200,

respectively. For the current simulation setting, we can directly compute the efficient

information I(β0) = 1 and the asymptotic variance AVar(β̂n) = 1/n.

Table 1 The constrained estimation

n Bias(β̂n) SD(β̂n) MSE(β̂n) AVar(β̂n)

50 -0.0099 0.1562 0.0245 0.0200

100 0.0052 0.1082 0.0117 0.0100

200 -0.0080 0.0672 0.0050 0.0050

Table 2 The unconstrained estimation

n Bias(β̂n) SD(β̂n) MSE(β̂n) AVar(β̂n)

50 -0.0098 0.1645 0.0272 0.0200

100 -0.0013 0.1075 0.0116 0.0100

200 0.0009 0.0714 0.0051 0.0050

The simulation results show that the sample biases are small and the standard de-

viations decrease when the sample size n increases for the proposed estimation method.

Moreover, the variances of β̂n derived from the asymptotic theory are close to the corre-

sponding mean squared errors based on the Monte Carlo simulations, which provides a

numerical justification for the asymptotic normality result in Theorem 3.2.
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For nonparametric function ψ(Z), we investigate both the unconstrained and con-

strained estimation for ψ(Z). From Figure 1, we can see that one of the key distinguishing

features of the proposed estimator is that the monotonicity constraint is maintained for

any finite sample size and satisfied over the entire domain of the nonparametric function.

Hence, the appropriate background information about the monotone constraint of non-

parametric function can provide better estimator than those without such subject-matter

information.
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Figure 1 The real line denotes the true function curve, the dotted line denotes the

constrained estimated curve, the dashed line denotes the unconstrained

estimated curve, based on 500 repeated samples, sizes of sample n = 50,

100, 200, and corresponding order 6,7,8, respectively.
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4.2 A Real Data Example

We now illustrate the proposed procedures via an analysis of a subset of data from

the Multi Center AIDS Cohort study. The dataset contains the human immunodeficiency

virus (HIV) status of 283 homosexual men who were infected with HIV during the follow-

up period between 1984 and 1991. Details of the study design, methods, and medical

implications have been given by Kaslow et al. (1987). Fan and Zhang (2000) and Huang

et al. (2002) analyzed the same dataset using varying coefficient models. Their analysis

aimed to describe the trend of the mean CD4 percentage depletion over time and to

evaluate the effects of cigarette smoking, pre-HIV infection CD4 percentage, and age at

infection on the mean CD4 percentage after the infection. Therefore, they took the CD4

cell percentage of a subject at distinct time points after HIV infection and considered

the three covariates: Smoking, Age, and PreCD4. Huang et al. (2002) fitted the data by

a varying-coefficient model, and found that at significance level 0.05, only the covariate

PreCD4 is linearly related to the viral load. Furthermore, neither smoking nor age had a

significant impact on PerCD4. In our analysis, we believe that it is reasonable to assume

that the response PerCD4 is decreasingly functionally related to the treatment time, since

HIV had a devastating effect on CD4 cells after the subject was infected. All of the above

motivated us to model the relation between the response CD4 and the two covariates:

PreCD4 and the treatment time by model (1.1)

Yi = Xiβ + ψ(Zi) + εi,

where Yi represent the individual’s response CD4 percentage for subject i at time Zi, Xi

the observed variable for PreCD4, and Zi the treatment time. For a clear interpretation,

we standardized PreCD4.

We consider both the unconstrained estimation and monotone constrained estima-

tion. The order of the Bernstein polynomial is chosen N = 8. The constrained estimator

and unconstrained estimator of β are 3.0463 and 3.0635, respectively. This shows that a

somewhat stronger positive association between the CD4 percentage and PreCD4 is de-

tected. As is seen from Figure 2, the unconstraint estimation of nonparametric function

ψ(Z) does not preserve decreasing property especially in the boundary points. For con-

strained estimation, the monotonicity property is satisfied over the entire domain of the

nonparametric function. Figure 2 shows that the mean baseline CD4 percentage for the

population decreased rather quickly after infection. During the three years after infection,

the mean percentage of CD4 decreased from 36% to 21% approximately, which indicated

a decline of 40% compared with the level before infection. The above results are similar

with the results of Fan and Zhang (2000), although we ignored the correlation structure
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of the data in our analysis.
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Figure 2 The real red line is the constrained estimate of ψ(Z), the dashed green

line is the unconstrained estimate. The dots are the residual on para-

metric part ri = yi − β̂Xi, where β̂ is the constrained estimate.

§5. Proof of Theorems

For simplicity we assume that X ∈ R. The general case can be proved similarly. Given

a random sample X1, . . . , Xn with probability measure P on a measurable space (X ,A ),

for a measurable function f : X 7→ R, define Pf =

∫
fdP as the expectation of f under P

and Pnf = n−1
n∑
i=1

f(Xi) as the expectation of f under the empirical measure Pn. We write

Gnf =
√
n(Pn − P0)f for the empirical process evaluated at f and ‖Gn‖F = sup

f∈F
|Gnf |

for any measurable class of functions F .

Proof of Theorem 3.1 We first prove part (i). Let M(ϑ) = Pl(ϑ) and Mn(ϑ) =

Pnl(ϑ). Recall that F is the class of monotone nondecreasing function on [0, 1]. Define

L1 = {l(β, ψ) : (β, ψ) ∈ Θ×F}. According to Example 19.11 of van der Vaart (1998), for

any ε > 0, logN[ ](ε,F , L2(P )) ≤ K(1/ε). Hence, F is a P -Donsker class. Furthermore,

X has a bounded support and Θ is compact. Therefore, we can show that L1 is P -

Donsker class. It yields sup
(β,ψ)∈Θ×F

|Mn(β, ψ)−M(β, ψ)| = oP (1). Thus, we have uniform

convergence of Mn to M on Θ×F .

A straightforward algebra yields M(ϑ0) − M(ϑ) = P ((g + h)2/(2σ2)), where g =

Xβ − Xβ0 and h = ψ − ψ0. Note that (Pgh)2 = σ4(β − β0)2[P l̇ψ(β0, ψ0)hl̇β(β0, ψ0)]2.
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Since Plψ(β0, ψ0)hl∗β(β0, ψ0) = 0, for any h, we have

[P l̇ψ(β0, ψ0)hl̇β(β0, ψ0)]2 = [P l̇ψ(β0, ψ0)h(l̇β(β0, ψ0)− l∗β(β0, ψ0))]2.

By Cauchy-Schwarz inequality and the fact that

P (l̇β(β0, ψ0)− l∗β(β0, ψ0))2 = CP (l̇β(β0, ψ0))2,

for 0 < C < 1, we obtain

[P l̇ψ(β0, ψ0)hl̇β(β0, ψ0)]2 ≤ CP (l̇β(β0, ψ0))2P (l̇ψ(β0, ψ0)h)2.

Therefore, (Pgh)2 ≤ CPg2Ph2, for 0 < C < 1. According to Lemma A.6 of Murphy and

van der Vaart (1997), there exists some C > 0 such that P (g + h)2 ≥ Cd2
2(ϑ, ϑ0). Hence,

M(ϑ0)−M(ϑ) ≥ Cd2
2(ϑ, ϑ0), for C > 0. Then, it implies

sup
d2(ϑ,ϑ0)≥ε

M(ϑ) ≤ sup
d2(ϑ,ϑ0)≥ε

(M(ϑ0)− Cd2
2(ϑ, ϑ0)) ≤M(ϑ0)− Cε2 <M(ϑ0).

It follows from the Property 3.2 of Wang and Ghosh (2012) and the condition (C1), we

can show there exists a ψ0,N ∈MN of order N such that the approximation error

|ψ0 − ψ0,N | ≤
3

4
(N − 1)−(1+a0)/2 ≈ 3

4
N−(1+a0)/2

when N is large enough. Assume N = O(nκ), we have

sup
0≤t≤1

|ψ0 − ψ0,N | ≤
3

4
n−(1+a0)κ/2.

Denote ϑ̂n = (β̂n, ψ̂n) and ϑ0,N = (β0, ψ0,N ). We have

Mn(ϑ̂n)−Mn(ϑ0) ≥Mn(ϑ0,N )−Mn(ϑ0) = In1 + In2 ,

where In1 = (Pn − P ){l(ϑ0,N )− l(ϑ0)} and In2 = M(ϑ0,N )−M(ϑ0).

Define class

L2 = {l(β0, ψ)− l(β0, ψ0) : ψ ∈ F , ‖ψ − ψ0‖∞ ≤ η},

for η = O(n−(1+a0)κ/2). The fact that F is P -Donsker and conditions (C1) and (C4) yield

L2 is P -Donsker. Thus, we have

In1 = (Pn − P ){l(β0, ψ0,N )− l(β0, ψ0)} = oP (1).

Furthermore,

In2 = − 1

2σ2
‖ψ0,N − ψ0‖22 = −O(n−(1+a0)/(3+2a0)) = −o(1).
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We conclude that

Mn(ϑ̂n)−Mn(ϑ0) > −oP (1).

The uniform convergence of Mn to M on Θ×F implies Mn(ϑ0)→ M(ϑ0) in proba-

bility, it follows that Mn(ϑ̂n) ≥M(ϑ0)− oP (1). Therefore,

M(ϑ0)−M(ϑ̂n) ≤Mn(ϑ̂n)−M(ϑ̂n) + oP (1) ≤ sup
ϑ∈Θ×F

|Mn −M|(ϑ) + oP (1)→ 0

in probability. The last inequality holds because of the uniform convergence of Mn to M
on Θ×F .

For every ε > 0, by sup
d2(ϑ,ϑ0)≥ε

M(ϑ) < M(ϑ0), there exists a number η > 0, such that

M(ϑ) < M(ϑ0) − η, for every ϑ with d2(ϑ, ϑ0) ≥ ε. Thus, the event d2(ϑ̂n, ϑ0) ≥ ε is

contained in the event {M(ϑ̂n) < M(ϑ0) − η}. The probability of latter event converges

to 0 by the preceding display. This completes the proof of d2(ϑ̂n, ϑ0) = oP (1).

Next we prove rate of convergence of part (ii). We apply Theorem 3.4.1 of van der

Vaart and Wellner (1996) to prove the rate of convergence. Denote the regression function

by g(z) = Xβ + ψ(z). Denote g0(z) = Xβ0 + ψ0(z). In the proof of consistency, we show

that there exists a ψ0,N ∈MN of order N such that

sup
0≤t≤1

|ψ0 − ψ0,N | ≤
3

4
N−(1+a0)/2 ≈ 3

4
n−(1+a0)κ/2.

Let gn(z) = Xβ0 + ψ0,N (z) and the estimate of g0(z) by ĝn(z) = Xβ̂n + ψ̂0,N (z). Define

l(g) = −1/(2σ2)(Y − g)2 and M(g) = Pl(g). First we need to find φn(η)/η is decreasing

in η and

E sup
η/2≤‖g−gn‖2≤η

|Gnl(g)−Gnl(gn)| ≤ Cφn(η).

Define class

L3 = {l(g)− l(gn), ψ ∈MN and ‖g − gn‖2 ≤ η}.

For any 0 < ε ≤ η, by the calculation of Shen and Wong (1994), the logarithm of the

bracketing number of MN computed with L2(P ) can be bounded by (N + 1) log(η/ε), up

to a constant. Furthermore, by conditions (C1) and (C4), we can show that, for some

C > 0, J[ ](η,L3, ‖ · ‖P.B) ≤ CN1/2η, where ‖ · ‖P.B is the Bernstein norm defined as

‖f‖P.B = {2P (e|f | − 1 − |f |)}1/2 in van der Vaart and Wellner (1996). Moreover, some

algebra leads to ‖l(g) − l(gn)‖2P.B ≤ Cη2, for some C > 0 and any l(g) − l(gn) ∈ L3.

According to Lemma 3.4.3 of van der Vaart and Wellner (1996), we obtain

EP ‖Gn‖L3 ≤ J[ ](η,L3, ‖ · ‖P.B)
(

1 +
J[ ](η,L3, ‖ · ‖P.B)

n1/2η2

)
≤ C(N1/2η +N/n1/2).
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Hence, we choose φn(η) = N1/2η + N/n1/2. Clearly φn(η)/η is decreasing in η. There-

fore, by Theorem 3.4.1 of van der Vaart and Wellner (1996), choosing the distance dn

defined in the theorem to be d2
n(ĝn, gn) = M(gn)−M(ĝn), when rn satisfies r2

nφn(1/rn) =

r2
n(N1/2r−1

n + N/n1/2) = O(n1/2), we have r2
n(M(gn) −M(ĝn)) = OP (1). It follows that

rn = n(1+a0)/(3+2a0). Note that

M(gn)−M(ĝn) = M(gn)−M(g0) + M(g0)−M(ĝn)

= −‖ψn − ψ0,N‖22/(2σ2) + ‖ĝn − g0‖22/(2σ2).

Hence,

‖ĝn − g0‖22 = (M(gn)−M(ĝn))(2σ2) + ‖ψn − ψ0,N‖22 = OP (r−2
n ).

In the proof of consistency we have already shown that ‖ĝn−g0‖22 = 2σ2(M(ϑ0)−M(ϑ̂n)) ≥
Cd2

2(ϑ̂n, ϑ0), for C > 0. Hence, r2
nd

2
2(ϑ̂n, ϑ0) = OP (1). �

Proof of Theorem 3.2 In this section we apply the above theorem to show

that the estimator β̂n for β0 is asymptotically normality. Since β̂n is consistent and β0

belongs to the interior of Θ by assumption, thus for sufficiently large n, we may assume

that β̂n belongs to the interior of Θ with large probability. Because (β̂n, ψ̂n) maximizes

the log-likelihood (2.2), it must satisfy the stationary equation for β̂n, that is,

n∑
i=1

(Yi − ψ̂n(Zi)−Xiβ̂n)Xi = 0. (5.1)

For h∗ defined in assumption (C8), let Φ = h∗ ◦ ψ−1
0 be the composite function of h∗

and ψ−1
0 , where ψ−1

0 is the inverse of ψ0. By the Theorem 1.3.6 of Robertson et al. (1988),

we have
n∑
i=1

(Yi − ψ̂n(Zi)−Xiβ̂n)Φ(ψ̂n(Zi)) = 0. (5.2)

Let h0 = y − ψ0(z)− xβ0 and ĥn = y − ψ̂n(z)− xβ̂n. Combine (5.1) and (5.2) to get

Pnĥn(x− Φ(ψ̂n(z)) = 0.

This equation can be rewritten as

Pĥn(x− Φ(ψ̂n(z)) = −(Pn − P )ĥn(x− Φ(ψ̂n(z))). (5.3)

Note that the integration is only with respect to (y, x, z). Because ε and (X,Z) indepen-

dent,

Pε(x− Φ(ψ̂n(z)) = P (x− Φ(ψ̂n(z))Pε = 0. (5.4)

Define class

L4 = {(y − xβ − ψ(z))(x− Φ(ψ(z))) : β ∈ Θ, ψ ∈ F , ‖ψ − ψ0‖∞ ≤ η},
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where η is defined in Theorem 3.1. As in the proof of Theorem 3.1, by considering the

bracketing entropy of the class of L4 and using maximal inequality in Lemma 3.4.3 of van

der Vaart and Wellner (1996), it can be shown that

(Pn − P )ĥn(x− Φ(ψ̂n(z))) = (Pn − P )h0(x− Φ(ψ0(z)) + oP (n−1/2). (5.5)

Combine (5.3)-(5.5) to get

P{(x(β̂n− β0)− ψ̂n(z) +ψ0(z))(x−Φ(ψ̂n(z)))} = (Pn−P )h0(x−Φ(ψ̂n(z))) + oP (n−1/2).

However, by Theorem 3.1 and the Lipschitz condition on h∗ given in condition (C8), we

have

|P (ψ̂n(z)− ψ0(z))(x− Φ(ψ̂n(z)))| = |P (ψ̂n(z)− ψ0(z))(E(X|z)− Φ(ψ̂n(z)))|

= |P (ψ̂n(z)− ψ0(z))(Φ(ψ0(z))− Φ(ψ̂n(z)))|

≤ CP (ψ̂n(z)− ψ0(z))2

= oP (n−1/2),

it follows that

P (x(x− Φ(ψ̂n(z))))(β̂n − β0) = (Pn − P )((y − xβ0 − ψ0(z))(x− E(X|z))) + oP (n−1/n).

Since

P (x(x− Φ(ψ̂n(z))))→ P (x(x− Φ(ψ0(z)))) = P (x(x− E(X|z))) = P (x− E(X|x))2

in probability, we have

P (x− E(X|z))2√n(β̂n − β0) =
√
n(Pn − P )((y − xβ0 − ψ0(z))(x− E(X|z))) + oP (1).

Thus, the result follows from condition (C7), the Central Limit Theorem, and Slutsky’s

lemma. This completes the proof of Theorem 3.2. �
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