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Abstract

The problem of estimating the scale parameter in the Pareto distribution from interval cen-

sored observations is considered. Four kinds of estimators, including the maximum likelihood esti-

mator and least square estimator, are evaluated. The variance of them are compared, and the

numerical simulation results is also given.

Keywords: Pareto distribution, interval censored observations, parameter estimation.

AMS Subject Classification: 62N02.

§1. Introduction

Suppose that a random variable X follows Pareto distribution, i.e., the probability

density function (PDF) of X is

f(x; θ) =

θx−(θ+1) for x ≥ 1;

0 for x < 1,
(1.1)

the parameter θ being positive. The corresponding cumulative distribution function (CDF)

is

F (x; θ) =

1− x−θ for x ≥ 1;

0 for x < 1.
(1.2)

For example, if R denotes family income and R0 denotes a base income, then over the range

R ≥ R0, observed distributions of X = R/R0 appears to be reasonably well described

by (1.1). Now suppose that a random sample of size n is drawn from this probability

distribution, and the observations are reported in the form of a set of interval censored
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data, such as (ai, bi), i = 1, 2, . . . , n. Such data arise quite naturally in medical follow-up

studies or in industrial life-testing. Turnbull (1976) and Chang and Yang (1987) dealt

with the problem of estimating the underlying survival distribution, Ding (2012, 2008)

gave a maximum likelihood estimation for some special laws under any interval censored

observations. In this paper we consider a more restricted model than was assumed, and

deal with the problem of estimating a parameter by maximum likelihood or least square.

The rest of the paper is organized as follows. In Section 2, we give a careful description

of the interval censored model and discuss the maximum likelihood estimator (MLE) of

the parameter θ. In Section 3, a non-linear regression model is formulated in terms of

the interval relative frequencies both classical and generalized least square estimators are

derived, a non-linear regression model is also formulated in terms of the cumulated relative

frequencies both classical and generalized least square estimators are derived. Numerical

illustrations are provided in Section 4.

§2. The Model and the MLE for θ

Suppose that in some medical or industrial set-up, inspections occur at times k4,

k ≥ 1, where 4 is some positive constant (known), and that the time a subject enters the

study is exactly recorded. Assume without loss of generality that4 = 1. The observational

data consists of independent and identically distributed (i.i.d.) pairs of random variables

(Ui, Vi), i = 1, 2, . . . , n, where Ui denotes the time when the subject i enter and Vi the time

from entry till the response is observed. Assume without loss of generality that 0 ≤ Ui ≤ 1

for all i, i = 1, 2, . . . , n. The true response time is denote by Xi (unknown). It is clear

that there is an integer ki such that Xi ∈ (ki, ki+1) (so Xi is called the “interval censored

data”). Figure 1 helps to clarify the relationship between the variables U , V and X (omit

the subscript i for convenient).

Figure 1 The relationship between U , V and X

Remark 1 From the above description, sample data is composed of (Ui, Vi), i =
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1, 2, . . . , n, ki = (Ui + Vi) − 1, and other variables in the following discussion are all

unknown.

Remark 2 In an interval censoring model, the inspection intervals may be different

for each subject, and do not have to be in the same length. However, it is convenience to

consider the more special model.

Assume that

Pθ(U ≤ u,X ≤ x) = H(u)F (x; θ), (2.1)

where θ is the unknown parameter, F (x; θ) is given by (1.2), and H(u) is, in general, an

unknown distribution function on [0, 1]. This assumption can be understood as censoring

mechanism has nothing to do with the considering distribution.

By the fact that V = [U +X] + 1− U , and straightforward calculations, where [·] is

the greatest integer that is less than or equal to a given real number, we have the CDF of

V :

W (v; θ) = Pθ(V ≤ v) =

∫ 1

0
F ([v + u]− u; θ)dH(u)

= 1−
∫ 1

0
([v + u]− u)−θdH(u). (2.2)

Differentiating this with respect to v, we see that V has density

w(v; θ) = [F (v; θ)− F (v − 1; θ)]h([v] + 1− v), (2.3)

with respect to the Lebesgue measure, where h is density of H.

Taking (1.1) into (2.3), and noticing that v ≥ 2, we have

w(v; θ) =

{(v − 1)−θ − v−θ}h([v] + 1− v) for v ≥ 2;

{1− v−θ}h(2− v) for 1 ≤ v < 2.
(2.4)

Now suppose that the observations are reported in the form of (Ui, Vi), i = 1, 2, . . . , n.

Following from (1.2), (2.1), (2.2) and (2.3), the probability mass function of observations

is given by

L(θ) =
n∏
k=1

w(v(k); θ),

it follows from (2.4) that

L(θ) =
j0∏
k=1

{1− v−θ(k)}h(2− v(k))
n∏

k=j0

{(v(k) − 1)−θ − v−θ(k)}h([v(k)] + 1− v(k)),
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the equation determining the maximum likelihood estimator (MLE) θ̂1 for θ is

j0∑
k=1

ln v(k)

vθ(k) − 1
+

n∑
k=j0

(v(k) − 1)−θ ln(v(k) − 1)− v−θ(k) ln v(k)

(v(k) − 1)−θ − v−θ(k)

= 0. (2.5)

By standard maximum likelihood theory, the estimator θ̂1 will be asymptotically unbi-

ased, consistent, efficient, and have asymptotically variance equal to the reciprocal of the

information measure.

§3. Regression of Interval Frequencies

Suppose that a set of values, say 1 = x0 < x1 < · · · < xm < xm+1 = ∞, have been

preselected to mark off intervals over the range of x ∈ [1,∞). It is easy to obtain nj ,

the number of observations falling within each of the intervals: [xj , xj+1), j = 0, 1, . . . ,m,

m < n. Here, nj is also called the absolute frequencies, and m is specified in advance

according to a practical problem.

Let yj denote the cumulated relative frequencies of greater-than xj . That is,

yj =
m∑
t=j

nt
n
,

and the probability density function (1.1) implies that

πj = P{X > xj} = x−θj ,

so that lnπj = −θ lnxj , this suggests that we write

ln yj = −θ lnxj + ej

for some error ej . Since this model has the appearance of a linear regression of ln yj on

lnxj , we may apply ordinary least square to obtain the estimator, say θ̂2 for θ. It is easy

to see that

θ̂2 = −

m∑
j=0

(ln yj)(lnxj)

m∑
j=0

(lnxj)2
, (3.1)

with variance

Var (θ̂2) =
1

m− 1

m∑
j=0

(ln yj − θ̂2 lnxj)
2. (3.2)

For the sake of the cumulative character of the yj ’s, the ej ’s homoscedasticity may be

ruled out, which may not guarantee that θ̂2 has good statistical properties. We now take
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up a regression for the estimator of θ with the following model (Here, we discard f0 (and

p0) since f0 = 1−
m∑
j=1

fj is redundant.):

f = p+ ε, (3.3)

where f = (f1, f2, . . . , fm)T , p = (p1, p2, . . . , pm)T , ε = (ε1, ε2, . . . , εm)T , and

fj =
nj
n
, pj = P(xj ≤ X < xj+1) =

∫ xj+1

xj

f(x)dx. (3.4)

From (1.1), (3.4) is simplified as

pj =

x
−θ
j − x

−θ
j+1 for j = 0, 1, . . . ,m− 1;

x−θm for j = m.

It is clear that the frequencies (n0, n1, . . . , nm) comprise a random sample of size n

from the multinomial distribution Multi(n; p0, p1, . . . , pm). Thus, the means, variances,

and covariances of the relative frequencies fj ’s are:

E(fj) = pj , Var (fj) =
1

n
pj(1− pj), Cov (fj , fs) = − 1

n
pjps (j 6= s). (3.5)

Associating (3.3) with (3.5), we have

E(ε) = 0, Var (ε) =
1

n
Σ,

where Σ = Λ− ppT = Λ(I − 1mp
T ) and Λ =


p1 0 0 · · · 0

0 p2 0 · · · 0
...

...
...

...
...

0 0 0 · · · pm

.

To fit (3.3), we first consider a classical least squares approach: choosing θ (and thus

p) to minimize εT ε = (f−p)T (f−p). The least squares estimator θ̂3 satisfies the following

equation:

p̂Tθ (f − p̂) = 0,

where p̂ is the estimator of p and pθ = ∂p/∂θ. Linearizing this equation around the true

parameter point θ, i.e. via p = p̂+ p̂θ(θ − θ̂), gives

pTθ (f − p)− pTθ pθ(θ̂3 − θ) = 0

or

θ̂3 = θ + (pTθ pθ)
−1pθε.
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It is clear that θ̂3 is asymptotically unbiased and consistent, with asymptotic variance

Var (θ̂3) =
1

n
(pTθ pθ)

−2pTθ Σpθ. (3.6)

A generalized least squares estimator θ̂4, on the other hand, minimizes the following

equation:

Q , εTΣ−1ε

= (f − p)TΣ−1(f − p)

= (f − p)T
(
Λ−1 +

1m1Tm
p0

)
(f − p)

=
m∑
j=0

f2j p
−1
j − 1.

Differentiating Q with respect to θ leads to the equation that θ̂4 should satisfy:

dQ

dθ
= −pTθ Σ−1(f − p) (3.7)

= −
m∑
j=0

f2j p
−2
j

dpj
dθ

,

or equivalently,

m−1∑
j=0

[( fj
fm

)2
·

(−x−θj lnxj + x−θj+1 lnxj+1)x
−θ
m

(x−θj − x
−θ
j+1)

2 lnxm

]
= 1.

θ̂4 is asymptotically unbiased and consistent, with asymptotic variance (The asymptotic

variance of θ̂4 comes from the linearization of (3.7) around the true value θ, a similar

procedure that has been used for Var (θ̂3).):

Var (θ̂4) =
1

n
(pTθ Σ−1pθ)

−1. (3.8)

Theorem 3.1 Following from (2.5), (3.2), (3.6) and (3.8), there is

Var (θ̂1) ≤ Var (θ̂2), (3.9)

Var (θ̂1) ≤ Var (θ̂4), (3.10)

Var (θ̂4) ≤ Var (θ̂3). (3.11)

Proof It is clear from (2.5) that the MLE θ̂1 use whole information from data

(Ui, Vi), i = 1, 2, . . . , n, while θ̂2 in (3.1) uses only the grouped data and thus only part of

the information from data (Ui, Vi), i = 1, 2, . . . , n. This implies (3.9) and (3.10).
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From Kantorovich inequality

1 ≤ x
TAx · xTA−1x

(xTx)2
≤ 1

4
· (λ1 + λn)2

λ1λn
,

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of a n× n symmetric matrix A, we have

(pTθ pθ)
2 ≤ pTθ Σpθ · pTθ Σ−1pθ

or

Var (θ̂3) ≥ Var (θ̂4),

(3.11) is proved. �

As for comparison with θ̂2, and θ̂4, it does not appear possible to make a general

assertion as to which will have smaller asymptotic variance. It seems, from numerical

illustration, that θ̂4 has smaller asymptotic variance than θ̂2.

§4. Numerical Illustrations

For Pareto distribution with parameters θ = 0.5, 1.0, 1.5 and 2.0, we consider random

sample of size n = 300, and ∆ = 1. Suppose that sample data will be reported in the

form of interval censoring, and their relative frequency distribution in 6 intervals, marked

off by x0 = 1, x1 = 2, x3 = 4, x4 = 8, x5 = 16, x6 = 32, x7 = 64 and x8 =∞. Then using

the formulas developed in this paper, using Matlab, it is easy to calculate θ̂1 and θ̂4, and

their variance, as for θ̂2 and θ̂3, can be calculated directly, and their asymptotic variances.

The results are presented in Table 1.

Table 1 Asymptotic variances of alternative estimators

θ = 0.5 θ = 1.0 θ = 1.5 θ = 2.0

θ̂1 0.446 1.235 2.635 4.436

θ̂2 0.501 1.732 3.563 6.154

θ̂3 0.485 1.481 3.112 5.674

θ̂4 0.473 1.423 2.874 4.665

From the above simulation results, we can see that, θ̂1 has smaller variance, θ̂3 has

lager variance, and θ̂4 has smaller asymptotic variance than θ̂2.
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§5. Conclusion

If interval censored observations is indeed comes from Pareto distribution, it comes

from our discussion that θ̂1 is the best estimation in the four kinds of estimators under

the variance criterion. In addition, we can’t distinguish θ̂2 with θ̂4, and expect further

discussion.
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