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Abstract

This paper proposes a new type of random parameters AACD (RPAACD) models, which

extends the AACD model. Depending on the state of the price process, the RPAACD models seem

to be a valuable alternative to existing approaches and have the better overall performance. We

give the transition probability of the process. Moreover by employing the transition probability,

we obtain the probability properties of the RPACD model.

Keywords: AACD model, Markov chain, geometric ergodicity.

AMS Subject Classification: 60J99.

§1. Introduction

High-frequency financial time series have become widely available during the past

decade or so. Engle and Russell (1998) developed the Autoregressive Conditional Duration

(ACD) model whose explicit objective is the modeling of times between events. Since its

introduction, the ACD model and its various extensions have become a leading tool in

modeling the behavior of irregularly time-spaced financial data, and open the door to

both theoretical and empirical developments. ACD models have been partly covered in

books such as Bauwens and Giot (2001), Russell and Engle (2010), Tsay (2002) and

Hautsch (2004). Recently, Pacurar (2008) reviews both the theoretical and empirical

work that has been done on ACD models. In this article we follow the line of work

originated by Engle and Russell (1998), where the durations between events (e.g., trades,

quotes, price changes) are the quantities being modeled. Moreover, regime-switching ACD

specifications have been introduced by Zhang et al. (2001) and recently extended by Meitz

and Teräsvirta (2006) to allow for smooth transition specifications. Hujer et al. (2002)

propose the Markov switching ACD model.
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However, in a great deal of research of ACD models, there is little work in the research

of the probability properties and its limitation is obvious. These ACD models don’t

show up the disturbance from the environment to the system. In practice, the model

parameters vary with the environment. The contribution of this paper is two-fold. First,

we propose a new type of random parameters AACD (RPAACD) models. It turns out

that flexible disturbance of the new impact function are necessary to model financial

durations appropriately. So the RPAACD model seems to be a valuable alternative to

existing approaches and has the better overall performance. Second, we get the probability

properties of the RPAACD model, and give rigorous proofs of the probability properties.

§2. The RPAACD Model

Let (Ω,F ,P) be a probability space. Throughout this paper, all random variables

and random vectors are assumed to be defined on this space. Let E = {1, 2, . . . , e} be a

finite set, H denote σ-algebra generated by all subsets of E, {Zk, k ≥ 1} be an irreducible

and aperiodic Markov chain on (Ω,F ,P) with state space (E,H).

Let xk = tk − tk−1 denote the time between two events occurring at time tk−1 and

tk, respectively. Engle and Russell (1998) proposed to specify the duration process based

on a dynamic parameterization of the conditional mean function ψk = E(xk|Fk−1), where

Fk−1 denotes the filtration up to period k− 1. By defining εk as an i.i.d. random variable

with positive support, the ACD model is given by xk = ψkεk.

Hence, the specification of an ACD model includes (i) the choice of the functional form

for the conditional mean function ψk and (ii) the choice of an appropriate distribution for

εk.

The augmented autoregressive conditional duration (AACD) model was proposed by

Fernandes and Grammig (2006) in their seminal paper and is given by

xk = ψkεk, (2.1)

ψλk = ω + αψλk−1[|εk−1 − b| − c(εk−1 − b)]v + βψλk−1, (2.2)

where ω, α, β, b, c denote constants and ω > 0, α > 0, β > 0, |c| ≤ 1.

Here, we propose a new type of AACD model which nests a wide range of specifications

and is given by

ψλk = ω(Zk−1) + α(Zk−1)ψλk−1[|εk−1 − b| − c(εk−1 − b)]v + β(Zk−1)ψλk−1, (2.3)
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where for any i ∈ E, ω(i), α(i), β(i), b, c denote constants and ω(i) > 0, α(i) > 0, β(i) > 0,

|c| ≤ 1.

We call this random parameters AACD (RPAACD) models. And {(ψk, Zk), k ≥ 1} is

called the derived sequence of the model (2.3). If E is a simple point set, the model (2.3)

reduces to the model (2.2).

The model (2.3) indicates that the model can be interpreted as a nonlinear model with

stochastic time-varying parameterization. The RPAACD model can better fit a system

influenced by environment. The new model has broad application prospect. Extensions of

this framework to the case of smooth transitions have been recently introduced by Meitz

and Teräsvirta (2006). And extensions of this framework to the case of regime-switching

ACD model have been recently introduced by Hautsch (2006).

§3. Properties of the RPAACD Model

In this paper, assume that the following three conditions hold

1. εk is an i.i.d. random variable with positive support and E(εk) = 1.

2. {ψk, k ≥ 1} is independent of εk; For any k ≥ 1, Zk is independent of ψ1 and {Zk,
k ≥ 1} is independent of {εk, k ≥ 1}.

3. {εk, k ≥ 1} have density function f(·) that is positive and lower semi-continuous.

In the following, we are interested in the limit behavior of the sequence {(ψk, Zk),
k ≥ 1} of the model (2.3).

Lemma 3.1 The process {(ψk, Zk), k ≥ 1} is a homogeneous Markov chain.

The proof is similar to that of Lemma 2.1 of Hou et al. (2005).

Let

Φ(x, y, i) =
[yλ − ω(i)− β(i)xλ

α(i)xλ

]1/v

and µ be a Lebesgue measure on the space (R,B).

Lemma 3.2 The transition probability of the process {(ψk, Zk), k ≥ 1} is as fol-

lows:

P ((x, i),Λ× j) = Pij

[ ∫
ε0≥b,y∈Λ

f
(
b+

1

1− c
Φ(x, y, i)

)
µ(dy)

+

∫
ε0<b,y∈Λ

f
(
b− 1

1 + c
Φ(x, y, i)

)
µ(dy)

]
.
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For any n ≥ 2,

P (n)((x, i),Λ× j)

=
∑

l1,...,ln−1∈E
Pil1Pl1l2 · · ·Pln−1j

[ ∫
ε0≥b,y1∈R

f
(
b+

1

1− c
Φ(x, y1, i)

)
µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(x, y1, i)

)
µ(dy1)

][ ∫
ε1≥b,y2∈R

f
(
b+

1

1− c

Φ(y1, y2, l1)
)
µ(dy2) +

∫
ε1<b,y2∈R

f
(
b− 1

1 + c
Φ(y1, y2, l1)

)
µ(dy2)

]
· · ·

[ ∫
εn−2≥b,yn−1∈R

f
(
b+

1

1− c
Φ(yn−2, yn−1, ln−2)

)
µ(dyn−1) +

∫
εn−2<b,yn−1∈R

f
(
b− 1

1 + c
Φ(yn−2, yn−1, ln−2)

)
µ(dyn−1)

][ ∫
εn−1≥b,yn∈Λ

f
(
b+

1

1− c

Φ(yn−1, yn, ln−1)
)
µ(dyn) +

∫
εn−1<b,yn∈Λ

f
(
b− 1

1 + c
Φ(yn−1, yn, ln−1)

)
µ(dyn)

]
.

Remark 1 Upon noting {Zk} is irreducible, then for any measure λ on (E,H),

{Zk} is λ-irreducible. Choose a suitable measure still denoted by λ, which satisfies λ{i} >
0, i ∈ E. Thus, we can induce a measure µ×λ on (R×E,B×H). And µ(A) > 0 implies

µ× λ(A× {j}) > 0, for any A ∈ B, j ∈ E.

Lemma 3.3 The process {(ψk, Zk), k ≥ 1} is µ× λ irreducible and aperiodic.

Proof For all Λ×{j} ∈ B×H, µ×λ(Λ×{j}) > 0. Fix any (x, i) ∈ R×E, since

{Zn} is irreducible, there exists a positive constant n0 such that

P
(n)
ij > 0 for all n ≥ n0.

Then there exist k1, k2, . . . , kn−1 such that Pik1Pk1k2 · · ·Pkn−1j > 0.

By Lemma 3.2, we obtain

P (n)((x, i),Λ× j)

≥ Pik1Pk1k2 · · ·Pkn−1j

[ ∫
ε0≥b,y1∈R

f
(
b+

1

1− c
Φ(x, y1, i)

)
µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(x, y1, i)

)
µ(dy1)

][ ∫
ε1≥b,y2∈R

f
(
b+

1

1− c

Φ(y1, y2, k1)
)
µ(dy2) +

∫
ε1<b,y2∈R

f
(
b− 1

1 + c
Φ(y1, y2, k1)

)
µ(dy2)

]
· · ·
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[ ∫
εn−2≥b,yn−1∈R

f
(
b+

1

1− c
Φ(yn−2, yn−1, kn−2)

)
µ(dyn−1) +

∫
εn−2<b,yn−1∈R

f
(
b− 1

1 + c
Φ(yn−2, yn−1, kn−2)

)
µ(dyn−1)

][ ∫
εn−1≥b,yn∈Λ

f
(
b+

1

1− c

Φ(yn−1, yn, kn−1)
)
µ(dyn) +

∫
εn−1<b,yn∈Λ

f
(
b− 1

1 + c
Φ(yn−1, yn, kn−1)

)
µ(dyn)

]
> 0.

Thus {(ψk, Zk), k ≥ 1} is µ× λ irreducible.

By Lemma 4.1.6 of An and Chen (1998) and the preceding conclusion, we have the

process {(ψk, Zk), k ≥ 1} is µ× λ aperiodic. �

Lemma 3.4 If K is a bounded set in R and µ(K) > 0, then for any i ∈ E, K×{i}
is a small set of {(ψk, Zk), k ≥ 1}. It follows that K×E is a small set of {(ψk, Zk), k ≥ 1}.

Proof Let Λ×{j} ∈ B×H, and µ×λ(Λ×{j}) > 0. By the proof of Lemma 3.3,

there exists a positive constant n0, such that for all n ≥ n0 there exist positive constants

k1, k2, . . . , kn−1 such that Pik1Pk1k2 · · ·Pkn−1j > 0.

Thus, for all (x, i) ∈ R×E,

P (n)((x, i),Λ× j)

≥ Pik1Pk1k2 · · ·Pkn−1j

[ ∫
ε0≥b,y1∈R

f
(
b+

1

1− c
Φ(x, y1, i)

)
µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(x, y1, i)

)
µ(dy1)

][ ∫
ε1≥b,y2∈R

f
(
b+

1

1− c

Φ(y1, y2, k1)
)
µ(dy2) +

∫
ε1<b,y2∈R

f
(
b− 1

1 + c
Φ(y1, y2, k1)

)
µ(dy2)

]
· · ·

[ ∫
εn−2≥b,yn−1∈R

f
(
b+

1

1− c
Φ(yn−2, yn−1, kn−2)

)
µ(dyn−1) +

∫
εn−2<b,yn−1∈R

f
(
b− 1

1 + c
Φ(yn−2, yn−1, kn−2)

)
µ(dyn−1)

][ ∫
εn−1≥b,yn∈Λ

f
(
b+

1

1− c

Φ(yn−1, yn, kn−1)
)
µ(dyn) +

∫
εn−1<b,yn∈Λ

f
(
b− 1

1 + c
Φ(yn−1, yn, kn−1)

)
µ(dyn)

]
.

Let

WΛ(y1) =
[ ∫
ε1≥b,y2∈R

f
(
b+

1

1− c
Φ(y1, y2, k1)

)
µ(dy2)
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+

∫
ε1<b,y2∈R

f
(
b− 1

1 + c
Φ(y1, y2, k1)

)
µ(dy2)

]
· · ·

[ ∫
εn−2≥b,yn−1∈R

f
(
b+

1

1− c
Φ(yn−2, yn−1, kn−2)

)
µ(dyn−1)

+

∫
εn−2<b,yn−1∈R

f
(
b− 1

1 + c
Φ(yn−2, yn−1, kn−2)

)
µ(dyn−1)

]
[ ∫
εn−1≥b,yn∈Λ

f
(
b+

1

1− c
Φ(yn−1, yn, kn−1)

)
µ(dyn)

+

∫
εn−1<b,yn∈Λ

f
(
b− 1

1 + c
Φ(yn−1, yn, kn−1)

)
µ(dyn)

]
.

Obviously, for all y1 ∈ Rm, WΛ(y1) > 0.

inf
(x,i)∈K×{i}

P (n)((x, i),Λ× j) = inf
x∈K

P (n)((x, i),Λ× j)

≥ Pik1Pk1k2 · · ·Pkn−1j inf
x∈K

[ ∫
ε0≥b,y1∈R

f
(
b+

1

1− c
Φ(x, y1, i)

)
WΛ(y1)µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(x, y1, i)

)
WΛ(y1)µ(dy1)

]
.

Let

H(K,Λ) = inf
x∈K

[ ∫
ε0≥b,y1∈R

f
(
b+

1

1− c
Φ(x, y1, i)

)
WΛ(y1)µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(x, y1, i)

)
WΛ(y1)µ(dy1)

]
.

Obviously, H(K,Λ) ≥ 0.

If H(K,Λ) = 0, moreover K is a bounded set, there exists xn ∈K such that

lim
n→+∞

[ ∫
ε0≥b,y1∈R

f
(
b+

1

1− c
Φ(xn, y1, i)

)
WΛ(y1)µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(xn, y1, i)

)
WΛ(y1)µ(dy1)

]
= 0.

Since xn ∈K is a bounded sequence, there exists xnk
⊂ xn such that lim

k→+∞
xnk

= x0

∈ R.
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Therefore, by Fatou lemma and the lower semicontinuity of f(·), we have

[ ∫
ε0≥b,y1∈R

f
(
b+

1

1− c
Φ(x0, y1, i)

)
WΛ(y1)µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(x0, y1, i)

)
WΛ(y1)µ(dy1)

]
≤
[ ∫
ε0≥b,y1∈R

lim
k→+∞

f
(
b+

1

1− c
Φ(xnk

, y1, i)
)
WΛ(y1)µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(xnk

, y1, i)
)
WΛ(y1)µ(dy1)

]
≤ lim

k→+∞

[ ∫
ε0≥b,y1∈R

f
(
b+

1

1− c
Φ(xnk

, y1, i)
)
WΛ(y1)µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(xnk

, y1, i)
)
WΛ(y1)µ(dy1)

]
= 0.

This contradicts

[ ∫
ε0≥b,y1∈R

f
(
b+

1

1− c
Φ(x0, y1, i)

)
WΛ(y1)µ(dy1)

+

∫
ε0<b,y1∈R

f
(
b− 1

1 + c
Φ(x0, y1, i)

)
WΛ(y1)µ(dy1)

]
> 0.

Hence H(K,Λ) > 0.

Therefore inf
(x,i)∈K×{i}

P (n)((x, i),Λ× j) > 0.

By Lemma 4.1.8 of An and Chen (1998), we obtain K × {i} is a small set of {(ψk,
Zk), k ≥ 1}. It follows that K ×E is a small set of {(ψk, Zk), k ≥ 1}. �

Theorem 3.1 If for any i ∈ E, E{α(i)[|ε0 − b| − c(ε0 − b)]v + β(i)} < 1 and there

exists an M ∈ R such that ω(i) < M , then {(ψk, Zk), k ≥ 1} is geometrically ergodic

Markov chain and model (2.3) is adjoint geometrically ergodic.

Proof Let φ(i) = E{α(i)[|ε0− b|− c(ε0− b)]v +β(i)}. Since φ(i) < 1 for any i ∈ E,

then there is a nonnegative constant ρ such that max
i∈E

φ(i) < ρ < 1. Let g(y, u) = |y|λ,

W = max
i∈E

ω(i)/(ρ − φ(i)) + 1, B = {(y, u) : (y, u) ∈ R × E, |yλ| ≤ W}, C1 = min
i∈E

[(ρ −

φ(i))W − ω(i)], C2 = max
i∈E

[ω(i) + φ(i)W ]. Notice g(y, u) is a nonnegative measurable
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function, B is a small set for {(ψk, Zk), k ≥ 1}, C1 > 0, and C2 > 0, then

E{g(ψk+1, Zk+1)|(ψk, Zk) = (x, i)}

= E{ω(i) + α(i)xλ[|εk − b| − c(εk − b)]v + β(i)xλ}

= ω(i) + φ(i)xλ.

For any (x, i) 6∈ B,

E{g(ψk+1, Zk+1)|(ψk, Zk) = (x, i)} = ρxλ − [(ρ− φ(i))xλ − ω(i)]

≤ ρxλ − [(ρ− φ(i))W − ω(i)]

≤ ρxλ − C1.

For any (x, i) ∈ B,

E{g(ψk+1, Zk+1)|(ψk, Zk) = (x, i)} = ω(i) + φ(i)xλ

≤ ω(i) + φ(i)W ≤ C2.

By Theorem 4.1.12 of An and Chen (1998), {(ψk, Zk), k ≥ 1} is a geometrically ergodic

Markov chain.

By the property of conditional probability and the already obtained result, note that

|E| is finite, model (2.3) is adjoint geometrically ergodic. �

§4. Conclusion

In this work, we introduces a type of random parameters AACD (RPAACD) models.

The parameters of RPAACD models is driven by a hidden Markov chain. The RPAACD

models has a broader foreground. Moreover, we give the transition probability of the

process {(ψk, Zk), k ≥ 1}. By the transition probability, we demonstrate the irreducibility

and aperiodicity of the process {(ψk, Zk), k ≥ 1} and construct the small set of the process

{(ψk, Zk), k ≥ 1}. Finally, Lyapunov functional can be proposed, we give the proof of

geometric ergodicity of {(ψk, Zk), k ≥ 1}. But whether the RPAACD models have good

statistical properties seems to be a promising direction for further analysis.

References

[1] An, H.Z. and Chen, M., Nonlinear Time Series Analysis, Higher Education Press, Beijing, 1998. (in

Chinese)

《
应
用
概
率
统
计
》
版
权
所
有



18Ï ¢dù !�: ��Åëê�AACD�.9ÙAÛH{5 569

[2] Bauwens, L. and Giot, P., Econometric Modelling of Stock Market Intraday Activity, Kluwer Academic

Publishers, Boston, Dordrecht, London, 2001.

[3] Engle, R.F. and Russell, J.R., Autoregressive conditional duration: a new model for irregularly spaced

transaction data, Econometrica, 66(5)(1998), 1127–1162.

[4] Russell, J.R. and Engle, R.F., Chapter 7: Analysis of high-frequency data, in Handbook of Financial

Econometrics: Tools and Techniques (Handbooks in Finance, Vol. 1) (Editors: Ait-Sahalia, Y. and

Hansen, L.P.), North Holland, Forthcoming, 2010, 383–426.

[5] Fernandes, M. and Grammig, J., A family of autoregressive conditional duration models, Journal of

Econometrics, 130(1)(2006), 1–23.

[6] Hautsch, N., Modelling Irregularly Spaced Financial Data: Theory and Practice of Dynamic Duration

Models (Lecture Notes in Economics and Mathematical Systems, Vol. 539), Springer, Berlin, 2004.

[7] Hautsch, N., Testing the conditional mean function of autoregressive conditional duration models,

Working Paper, Finance Research Unit, Department of Economics, University of Copenhagen, 2006.

[8] Hou, Z.T., Yu, Z. and Shi, P., Study on a class of nonlinear time series models and ergodicity in

random environment domain, Mathematical Methods of Operational Research, 61(2)(2005), 299–310.

[9] Pacurar, M., Autoregressive conditional duration models in finance: a survey of the theoretical and

empirical literature, Journal of Economic Surveys, 22(4)(2008), 711–751.
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