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Abstract

This paper considers the optimal dividend and capital injection strategies in the classical

risk model with randomized observation periods. Assume that ruin is prohibited. We aim to

maximise the expected discounted dividend payments minus the expected penalised discounted

capital injections. We derive the associated Hamilton-Jacobi-Bellman (HJB) equation and prove

the verification theorem. The optimal control strategy and the optimal value function are obtained

under the assumption that the claim sizes are exponentially distributed.
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§1. Introduction

Finding an optimal dividend strategy has been an important problem in actuarial

sciences since “dividend” was considered as a criterion for measuring the stability of an

insurance company. De Finetti (1957) first proposed this criterion and solved the problem

in a discrete time random walk model by stochastic control theory, and showed that the

optimal dividend strategy is a barrier strategy. In recent years, many researches on the

issue of maximization of the dividend payments until ruin have been produced. Avanzi

(2009) and Albrecher and Thonhauser (2009) are two comprehensive reviews before 2009.

In most of the literature, the surplus processes are continuously observed and dividend

can be paid at any time when the surplus is positive. But Albrecher et al. (2011a, 2013)

argued that it was more reasonable that companies checked the balance on a periodic

basis and then decided whether to pay dividends to the shareholders, which implies that

lump sum dividends can only be paid at some randomized observation times. The periodic
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dividend problems with Brownian risk model was studied by Albrecher et al. (2011b), and

with Lévy model by Albrecher et al. (2011c). Avanzi et al. (2013) derived the integro-

differential equations for the Laplace transform of the ruin time and the expected present

value of dividends until ruin in the dual model under the assumption that the time intervals

between dividend decisions were Erlang distributed and dividends were paid according to

a barrier strategy. Avanzi et al. (2014) consider the optimal periodic dividend strategies

in the dual model with diffusion. One can refer to Wei et al. (2012), Peng et al. (2013), Liu

and Chen (2014), Wang and Liu (2014) and Chen et al. (2014) for more literature about

randomized observation periods.

Barrier strategy is usually the optimal dividend strategy for the risk model with

unrestricted dividend density and hence ruin will occur almost surely. Dickson and Waters

(2004) proposed that capital injections can be taken into account to continue the business

once the surplus becomes negative. The models with capital injection are Kulenko and

Schmidli (2008), Eisenberg and Schmidli (2009, 2011), Dai et al. (2010), Bai and Paulsen

(2010, 2012), Yao et al. (2010, 2011, 2014), Peng et al. (2012) and the references therein.

In Kulenko and Schmidli (2008), they studied the optimal dividend strategy in the

classical risk model with capital injection and showed that the optimal dividend strategy

is a barrier strategy. Motivated by Kulenko and Schmidli (2008), in this paper, we will

investigate the optimal dividend and capital injection problems in the case that dividends

can only be paid at some randomized observation times.

This paper is organized as follows. In Section 2, the model we studied in this paper

is introduced. In Section 3, the associated Hamilton-Jacobi-Bellman (HJB) equation is

found and the verification theorem is proved. In Section 4, the explicit solution to the HJB

equation is derived when the claim sizes are exponentially distributed, and we construct

a candidate strategy and prove that it is the optimal strategy.

§2. The Model

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space on which all random processes

and variables introduced in the following are defined. Suppose that the uncontrolled

surplus process is described by

U(t) = x+ ct−
N1(t)∑
i=1

Yi, t ≥ 0, (2.1)

where x ≥ 0 is the initial surplus, c is the constant premium rate, {N1(t); t ≥ 0} is a homo-

geneous Poisson process with intensity λ > 0, and the claim sizes {Yi; i = 1, 2, . . .} form a
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sequence of independent and identically distributed positive random variables (r.v.s) with

generic r.v. Y , whose distribution function is P (y) and density function is p(y). Assume

that the net profit condition c > λE[Y ] holds. Denote the jump times of {N1(t); t ≥ 0}
by T1 < T2 < · · · . Let {N2(t); t ≥ 0} be a homogeneous Poisson process with intensity

γ > 0 and S1 < S2 < · · · be the jump times. Suppose that dividends can only be paid at

times {Si; i = 1, 2, . . .}, and denote the corresponding amounts by {Li; i = 1, 2, . . .}. Let

L(t) be the accumulated dividends paid up to time t, then we have L(t) =
N2(t)∑
i=1

Li. In

addition, we assume that {N1(t); t ≥ 0}, {N2(t); t ≥ 0} and {Yi; i = 1, 2, . . .} are mutually

independent.

Let H(t) be the accumulated capital injections paid up to time t. A control strategy

is described by (L,H) = (L(t), H(t)). Assume that dividends and capital injections are

discounted at a constant force of interest δ. The controlled surplus process associated with

(L,H) is described by

U(L,H)(t) = U(t)− L(t) +H(t), t ≥ 0. (2.2)

Supposing ruin is not permitted, we denote Π the set of all the control strategies

(L,H) such that: L(t) with L(0−) = 0 and H(t) with H(0−) = 0 are adapted càdlàg

and non-decreasing processes; and Px[U(L,H)(t) ≥ 0 for all t ≥ 0] = 1, where Px is

the probability corresponding to the law of {U(L,H)(t); t ≥ 0} with U(L,H)(0) = x. The

performance function of a control strategy (L,H) ∈ Π is defined as

V(L,H)(x) = Ex
[ ∞∑
i=1

exp(−δSi)Li − k
∫ ∞

0
exp(−δt)dH(t)

]
, (2.3)

where k > 1 is a penalising factor and Ex is the expectation corresponding to the law of

{U(L,H)(t); t ≥ 0} with U(L,H)(0) = x.

We want to find the optimal value function

V (x) = sup
(L,H)∈Π

V(L,H)(x) = V(L∗,H∗)(x) for x ≥ 0, (2.4)

where (L∗, H∗) is the optimal control strategy.

§3. Hamilton-Jacobi-Bellman Equation

In this section, we derive the HJB equation and prove the verification theorem. We

first state a proposition of V (x).
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Lemma 3.1 The function V (x) is increasing, Lipschitz continuous, and therefore

absolutely continuous.

Proof Using the same strategy for two different initial capitals shows that V (x)

is increasing with x. For initial capital x, injecting capital 4x > 0 and then following a

control strategy (L,H), we have

V (x) ≥ V(L,H)(x+4x)− k4x,

and hence

V (x+4x)− V (x) ≤ k4x,

which shows that V (x) is Lipschitz continuous, and therefore absolutely continuous. �

Remark 1 From Lemma 3.1, we know that V (x) is differentiable and V ′(x) ≤ k

almost surely.

Because of discounting, the capital injection only occurs at the times when the surplus

becomes negative by a claim, hence we have H∗(t) = max
{
− inf

0≤s≤t
(U(t)−L∗(t)), 0

}
, and

we can define

V (u) = V (0) + ku (3.1)

for u < 0. Similar to Fleming and Soner (2005), we derive the HJB equation associated

with (2.4) as

max
0≤l≤x

{γ[l + V (x− l)]}+AV (x) = 0, (3.2)

where

AV (x) = λ

∫ ∞
0

V (x− y)dP (y)− (λ+ δ + γ)V (x) + cV ′(x). (3.3)

The verification theorem is stated as follows.

Theorem 3.1 Let f(x) : [0,∞)→ [0,∞) with f ′(0+) ≤ k be a continuously differ-

entiable, increasing and concave function.

(i) If f(x) satisfies

max
0≤l≤x

{γ[l + f(x− l)]}+Af(x) ≤ 0 (3.4)

with the definition f(u) = f(0) + ku for u < 0, then we have

f(x) ≥ V (x). (3.5)

(ii) If f(x) satisfies

max
0≤l≤x

{γ[l + f(x− l)]}+Af(x) = 0 (3.6)
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with the definition f(u) = f(0) + ku for u < 0, then we have

f(x) = V (x). (3.7)

Proof Denote M1 = {Ti; i = 1, 2, . . .} and M2 = {Si; i = 1, 2, . . .}. For any

(L,H) ∈ Π, from generalized Itô formula, we have

e−δtf(U(L,H)(t)) = f(x)− δ
∫ t

0
e−δsf(U(L,H)(s−))ds

+ c

∫ t

0
e−δsf ′(U(L,H)(s−))ds+ Ω1(t) + Ω2(t) + Ω3(t), (3.8)

where

Ω1(t) =
∑

s∈M1,s≤t
e−δs[f(U(L,H)(s) +4U(L,H)(s))− f(U(L,H)(s))],

Ω2(t) =
∑

s∈M2,s≤t
e−δs[f(U(L,H)(s−)−4L(s))− f(U(L,H)(s−))]

and

Ω3(t) =
∑
s≤t

e−δs[f(U(L,H)(s))− f(U(L,H)(s)−4H(s))].

Defining

Φ1(t) = Ω1(t)− λ
∫ t

0
e−δs

∫ ∞
0

[f(U(L,H)(s)− y)− f(U(L,H)(s))]dP (y)ds

=

∫ t

0
e−δs[f(U(L,H)(s) +4U(L,H)(s))− f(U(L,H)(s))]dN1(s)

− λ
∫ t

0
e−δs

∫ ∞
0

[f(U(L,H)(s)− y)− f(U(L,H)(s))]dP (y)ds,

Φ2(t) = Ω2(t)− γ
∫ t

0
e−δs[f(U(L,H)(s−)−4L(s))− f(U(L,H)(s−))]ds

=

∫ t

0
e−δs[f(U(L,H)(s−)−4L(s))− f(U(L,H)(s−))]dN2(s)

− γ
∫ t

0
e−δs[f(U(L,H)(s−)−4L(s))− f(U(L,H)(s−))]ds

and

Φ3(t) =
∑

s∈M2, s≤t
e−δs4L(s)− γ

∫ t

0
e−δs4L(s)ds

=

∫ t

0
e−δs4L(s)dN2(s)− γ

∫ t

0
e−δs4L(s)ds,
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we know that Φ1(t), Φ2(t) and Φ3(t) are martingales with zero-expectation. Hence

e−δtf(U(L,H)(t))− f(x)

=

∫ t

0
e−δs[γ(f(U(L,H)(s−)−4L(s)) +4L(s)) +Af(U(L,H)(s−))]ds

−
∑

s∈M2,s≤t
e−δs4L(s) +

∑
s≤t

e−δs
∫ 0

−4H(s)
f ′(U(L,H)(s) + y)dy

+ Φ1(t) + Φ2(t) + Φ3(t). (3.9)

If the condition (3.4) holds, we have

f(x) ≥ Ex
[ ∑
s∈M2,s≤t

e−δs4L(s)−
∑
s≤t

e−δs
∫ 0

−4H(s)
f ′(U(L,H)(s) + y)dy

]
+ Ex[e−δtf(U(L,H)(t))]

≥ Ex
[ ∑
s∈M2,s≤t

e−δs4L(s)− k
∑
s≤t

e−δs4H(s)
]

+ Ex[e−δtf(U(L,H)(t))]

≥ Ex
[ ∑
s∈M2,s≤t

e−δs4L(s)− k
∑
s≤t

e−δs4H(s)
]

+ e−δtf(0).

Letting t→∞, we get f(x) ≥ V(L,H)(x) for all (L,H) ∈ Π, and hence (3.5) holds.

If the condition (3.6) holds, we let H∗(t) = max
{
− inf

0≤s≤t
(U(t) − L∗(t)), 0

}
and

L∗i = l(U(L∗,H∗)(Ti−)), where l(x) satisfies

γ[l(x) + f(x− l(x))]}+Af(x) = 0.

Then we have∑
s≤t

e−δs
∫ 0

−4H∗(s)
f ′(U(L∗,H∗)(s) + y)dy =

∑
s≤t

e−δs
∫ 0

−4H∗(s)
f ′(y)dy

= k
∑
s≤t

e−δs4H∗(s).

It is easy to see that U(L∗,H∗)(t) ≤ x + ct, which together with the facts that f(x) is a

concave function and f ′(0+) ≤ k, implies that lim
t→∞

Ex
[
e−δtf(U(L∗,H∗)(t))

]
= 0. Letting

(L,H) = (L∗, H∗) in (3.9), taking expectation and then letting t → ∞ yield f(x) =

V(L∗,H∗)(x), and therefore (3.7) holds. The proof is completed. �

§4. Analysis for Exponential Claims

In this section, supposing P (y) = 1− e−βy, y > 0, β > 0, we investigate the optimal

control strategy and the optimal value function.
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Let us find a continuously differentiable, increasing and concave solution V (x) to (3.2)

with (3.1). Suppose that there exists some point b > 0 such that V ′(x) > 1 for x < b and

V ′(x) ≤ 1 for x ≥ b. Then a candidate of the optimal dividend strategy is

L∗i =

0, U(L∗,H∗)(Si−) < b;

U(L∗,H∗)(Si−)− b, U(L∗,H∗)(Si−) ≥ b,
(4.1)

and (3.2) is translated into

cV ′(x)− (λ+ δ)V (x) + λβe−βx
∫ x

0
V (z)eβzdz

+ λ
(
V (0)− k

β

)
e−βx = 0, x < b (4.2)

and

cV ′(x)− (λ+ δ + γ)V (x) + λβe−βx
∫ x

0
V (z)eβzdz

+ λ
(
V (0)− k

β

)
e−βx + γ[x+ V (b)− b] = 0, x ≥ b. (4.3)

Applying the operator (d/dx+ β) to (4.2) and (4.3) respectively yields

cV ′′(x) + (βc− λ− δ)V ′(x)− βδV (x) = 0 (4.4)

and

cV ′′(x) + (βc− λ− δ − γ)V ′(x)− β(δ + γ)V (x) + βγ[x+ V (b)− b] + γ = 0. (4.5)

Hence V (x) can be denoted as

V (x) =


A1er1x +A2er2x, x < b;

Besx +
γ

δ + γ
(x− b) +

γ

δ
Besb +

(βc− λ)γ

βδ(δ + γ)
, x ≥ b

(4.6)

for some constants A1, A2 and B, where

r1 =
−(βc− λ− δ) +

√
(βc− λ− δ)2 + 4βcδ

2c
,

r2 =
−(βc− λ− δ)−

√
(βc− λ− δ)2 + 4βcδ

2c

and

s =
−(βc− λ− δ − γ)−

√
(βc− λ− δ − γ)2 + 4βc(δ + γ)

2c
.
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It is easy to see that V (x) should satisfy V (b−) = V (b+) and V ′(b−) = V ′(b+) = 1, which

give

A1er1b +A2er2b =
δ + γ

δ
Besb +

(βc− λ)γ

βδ(δ + γ)
, (4.7)

A1r1er1b +A2r2er2b = 1, (4.8)

Bsesb +
γ

δ + γ
= 1. (4.9)

Solving (4.7)-(4.9), we obtain

A1 =
1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r2

r1 − r2
e−r1b, (4.10)

A2 = −1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r1

r1 − r2
e−r2b, (4.11)

B =
δ

(δ + γ)s
e−µb < 0. (4.12)

Letting x→ 0+ in (4.2) gives

c(A1r1 +A2r2)− δ(A1 +A2) =
λk

β
. (4.13)

Plugging (4.10) and (4.11) into (4.13), we obtain an equation for b:

1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r2

r1 − r2
(cr1 − δ)e−r1b

−1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r1

r1 − r2
(cr2 − δ)e−r2b =

λk

β
. (4.14)

Lemma 4.1 gives the condition of the existence of a positive b which satisfies (4.14).

Lemma 4.1 If c− δ[1/s+ (βc− λ)γ/(βδ(δ + γ))] < λk/β, the equation (4.14) has

unique positive root.

Proof Let

g(x) =
1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r2

r1 − r2
(cr1 − δ)e−r1x

− 1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r1

r1 − r2
(cr2 − δ)e−r2x.

It is easy to see that

1−
(1

s
+

(βc− λ)γ

βδ(δ + γ)

)
r1

=
(√(βc− λ− δ)2 + 4βcδ

2βδ
+

√
(βc− λ− δ − γ)2 + 4βc(δ + γ)

2β(δ + γ)
− (βc− λ)γ

2βδ(δ + γ)

)
r1

> 0. (4.15)
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As the function y = (
√

(βc− λ− x)2 + 4βcx+ βc− λ)/(2βx) is a decreasing function in

(0,∞), we have

1−
(1

s
+

(βc− λ)γ

βδ(δ + γ)

)
r2 =

(√(βc− λ− δ − γ)2 + 4βc(δ + γ)

2β(δ + γ)
+

βc− λ
2β(δ + γ)

−
√

(βc− λ− δ)2 + 4βcδ

2βδ
− βc− λ

2βδ

)
r2 > 0. (4.16)

Since cr1 > δ, then g′′(x) > 0, hence g′(x) ≥ g′(0) = δ(1− cs/(δ + γ)) > 0. Therefore the

equation (4.14) has unique positive root iff g(0) = c − δ[1/s + (βc − λ)γ/(βδ(δ + γ))] <

λk/β. �

Lemma 4.2 If c− δ[1/s+ (βc− λ)γ/(βδ(δ + γ))] < λk/β, then V ′(0) ≤ k, where

V (x) is defined by (4.6).

Proof If c− δ[1/s+ (βc− λ)γ/(βδ(δ + γ))] < λk/β, then b > 0. Let

h(x) =
1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r2

r1 − r2

[(
c− λ

β

)
r1 − δ

]
e−r1x

− 1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r1

r1 − r2

[(
c− λ

β

)
r2 − δ

]
e−r2x.

Since r1 < βδ/(βc− λ), we know that V (x) is increasing in [0,∞). Hence

h(b) > h(0) =
(βc− λ)δ

β(δ + γ)
− δ

s
≥ 0.

Using (4.14), we get

V ′(0) =
1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r2

r1 − r2
r1e−r1b

− 1− [1/s+ (βc− λ)γ/(βδ(δ + γ))]r1

r1 − r2
r2e−r2b ≤ k. �

If V ′(x) < 1 for all x ≥ 0, then a candidate of the optimal dividend strategy should

be

L∗i = max{U(L∗,H∗)(Si−), 0} (4.17)

and V (x) should satisfy

cV ′(x)− (λ+ δ + γ)V (x) + λβe−βx
∫ x

0
V (z)eβzdz

+ λ
(
V (0)− k

β

)
e−βx + γ[x+ V (0)] = 0, x ≥ 0. (4.18)

Hence V (x) can be denoted as

V (x) = Cesx +
γ

δ + γ
x+

γ

δ
C +

(βc− λ)γ

βδ(δ + γ)
(4.19)
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for constant C. Plugging (4.19) into (4.18) and then letting x→ 0+, we obtain

C =
λ[k(δ + γ)− γ]

β(δ + γ)(cs− δ − γ)
< 0. (4.20)

Theorem 4.1 If c − δ[1/s + (βc − λ)γ/(βδ(δ + γ))] < λk/β, V (x) defined by

(4.6) is a twice differentiable, increasing and concave solution to (3.2) with (3.1). If c− δ
·[1/s + (βc − λ)γ/(βδ(δ + γ))] ≥ λk/β, V (x) defined by (4.19) is a twice differentiable,

increasing and concave solution to (3.2) with (3.1).

Proof If c− δ[1/s+ (βc−λ)γ/(βδ(δ+γ))] < λk/β, we know that b > 0 by Lemma

4.1, and V ′′(b−) = V ′′(b+) = [δ/(δ + γ)]s < 0. From (4.6), (4.15) and (4.16), we have

V ′(x) = A1r1er1x+A2r2er2x > 0 and V ′′′(x) = A1r
3
1er1x+A2r

3
2er2x > 0 for x < b, therefore

V ′′(x) < 0 for x < b, which together with that V ′′(x) = Bs2esx < 0 for x ≥ b implies that

V (x) defined by (4.6) is a twice differentiable, increasing and concave function.

If c − δ[1/s + (βc − λ)γ/(βδ(δ + γ))] ≥ λk/β, it is easy to see that V (x) defined by

(4.19) is twice differentiable, increasing and concave, we only need to show that V ′(0) ≤ 1.

Since

[λk(δ + γ)− λγ − βcδ]s

≥
[
βc(δ + γ)− βδ(δ + γ)

(1

s
+

(βc− λ)γ

βδ(δ + γ)

)
− λγ − βcδ

]
s

= − βδ(δ + γ),

we have V ′(0) ≤ 1. The proof is completed. �

Combining Theorem 3.1, Lemma 4.2 with Theorem 4.1, we obtain the following the-

orem.

Theorem 4.2 Assume that P (y) = 1 − e−βy, y > 0, β > 0. If c − δ[1/s + (βc −
λ)γ/(βδ(δ + γ))] < λk/β, the optimal dividend strategy is given by (4.1); if c − δ[1/s+

(βc − λ)γ/(βδ(δ + γ))] ≥ λk/β, the optimal dividend strategy is given by (4.17). The

optimal capital injection strategy is given by H∗(t) = max
{
− inf

0≤s≤t
(U(t)−L∗(t)), 0

}
. The

function V (x) defined by (4.6) and (4.19) are the optimal value functions, respectively.

Example 1 Let c = 5, k = 1.3, λ = 2, β = 0.5, δ = 0.05 and γ = 0.2, we have

b = 2.48 and

V (x) =

12.8138e0.0388x − 4.8335e−0.1288x, x < 2.48;

−1.7101e−0.1851x + 0.8x+ 9.6935, x ≥ 2.48.
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Example 2 Let c = 5, k = 1.1, λ = 2, β = 0.5, δ = 0.05 and γ = 0.2. Since

c − δ[1/s + (βc − λ)γ/(βδ(δ + γ))] = 4.4702 > λk/β = 4.4, we have b = 0. Hence

V (x) = −1.0209e−0.1851x + 0.8x+ 11.9163.
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