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Abstract

Nonparametric quantile regression with multivariate covariates is a difficult estimation. To

reduce the dimensionality while still retaining the flexibility of nonparametric model, the single-

index regression is often used to model the conditional quantile of a response variable. In this paper,

we focus on the variable selection aspect of single-index quantile regression. Based on the minimized

average loss estimation (MALE), the variable selection is done by minimizing the average loss with

SCAD penalty. Under some mild conditions, we demonstrate the oracle properties about SCAD

variable section of single-index quantile regression. Furthermore, the algorithm of the variable

selection of SCAD penalized quantile regression is given. Some simulations are done to illustrate

the performance of the proposed methods.

Keywords: Single-index model, quantile regression, SCAD, variable selection.

AMS Subject Classification: 62G05.

§1. Introduction

Least squares regression estimates the conditional mean, that is, the mean response

as a function of regressors. Least absolute deviation regression estimates the conditional

median function. Koenker and Bassett (1978) introduced quantile regression (QR), which

can be used to estimate the conditional quantile function of the response. QR has attracted

tremendous interest in the literature and been widely developed in the past decades.

The linear quantile regression has been proved to be very useful (Koenker, 2005), but

like linear regression, it is not flexible to capture complicated relations. Stone (1977)

and Chaudhuri (1991) considered fully multivariate nonparametric quantile regression,

which is flexible but usually unattractive in practice due to “curse of dimensionality”.

The single-index approach has been proved to be an efficient way to cope with high-

dimensional nonparametric estimation problems in not only conditional mean but also
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quantile regression involving multivariate covariates (Wu, Yu and Yu, 2010 and Zhu,

Huang and Li, 2012).

Suppose that Y is the response variable and X is a covariate vector. Single-index

quantile regression (SIQR) is defined as

Y = m0(X
Tβ0) + ε, Qτ (ε|X) = 0, (1.1)

where Qτ (ε|X) is the τ -th conditional quantile of ε. β0 ∈ Rp with ‖β0‖ = 1 and the first

component β01 > 0, is an unknown parameter vector. m0(·) is an unknown nonparametric

function. The single-index model has many advantages such as flexibility, effectively reduc-

ing dimensionality, simple interpretation, and so on. Based on the local linear approach,

Wu, Yu and Yu (2010) proposed the minimized average loss estimation for single-index

quantile regression.

Variable selection plays an important role in the single-index model building process.

As we know, when the dimension of covariates X is high, X maybe contain irrelevant

regressors. Exclusion of irrelevant variables from a large number of candidate predictors

becomes crucial since inclusion of irrelevant predictors may decrease the interpretative and

predictive ability of the resultant model. To automatically select the variables with nonze-

ro coefficients, many different types of penalties have been introduced in the literature.

Compared with traditional estimation methods, the major advantage of penalized esti-

mator is its simultaneous execution of both parameter estimation and variable selection.

The L1 penalty was used in the LASSO proposed by Tibshirani (1996). The smoothly

clipped absolute deviation (SCAD) penalty function was proposed by Fan and Li (2001)

and shown to possess the oracle properties of variable selection (consistent, sparse and

efficient). Zou (2006) introduced the adaptive LASSO (aLASSO), which is slightly differ-

ent from LASSO in that different amounts of shrinkage are used for different regression

coefficient, and demonstrated its oracle properties.

In the literatures, most works of variable selection were put on the conditional mean

regression. The selection criterion of AIC for single-index mean regression was studied

by Naik and Tsai (2001). The main novel part of this paper is the inclusion of variable

selection of single-index quantile regression by the methods of SCAD penalty. The rest

of this paper is organized as follows. Section 2 describes estimation methodology of the

minimized average loss estimation (MALE). The SCAD variable selection and its oracle

properties are given in Section 3. Numerical studies are conducted to evaluate the fi-

nite sample performance of the proposed methods in Section 4. All technical proofs are

relegated to the Appendix.
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§2. The Minimized Average Loss Estimation

Suppose that the loss function is specified as

ρτ (v) = v(τ − I(v < 0)) = v(τI(v > 0) + (τ − 1)I(v ≤ 0)), (2.1)

where 0 < τ < 1 and I(·) is the identify function. Koenker and Bassett (1978) demon-

strated that the τth conditional quantile function can be estimated by minimizing loss

function defined by (2.1). Mathematically, the true model (1.1) solves the following mini-

mizing problem

arg minE[ρτ (Y −m(XTβ))], (2.2)

with respect to β ∈ {β ∈ Rp : ‖β‖ = 1 and β1 > 0} and m(·) ∈ L1. For XTβ “close” to u,

m(XTβ) can be approximated by

m(XTβ) ≈ m(u) +m′(u)(XTβ − u) = a+ b(XTβ − u), (2.3)

where a = m(u) and b = m′(u). Suppose that {yi, Xi}, i = 1, 2, . . . , n is a sample of size

n from the model (1.1). The sample analog of (2.2) can be written as

n∑
j=1

n∑
i=1

ρτ (yi − aj − bjXT
ijβ)Wij , (2.4)

where Xij = Xi −Xj , aj = m(XT
j β), bj = m′(XT

j β),

Wij = K
(βTXij

h

)/ n∑
l=1

K
(βTXlj

h

)
,

K(·) is the kernel function and h is the bandwidth. The estimators obtained by minimizing

(2.4) with respect to β and (aj , bj) are said to be the minimized average loss estimators

(MALE), which can refer to Wu, Yu and Yu (2010). When ρτ (·) is replaced by least

square loss function, which is used for conditional mean regression, the obtained estimator

is called to be the minimized average variance estimator (MAVE, see Xia and Härdle,

2006).

Minimizing (2.4) can be decomposed to two typical quantile regression problems by

fixing β and (aj , bj) alternatively. With β given,

(ãj , b̃j)
T = arg min

aj ,bj

n∑
i=1

ρτ (yi − aj − bjXT
ijβ)K(XT

ijβ/h), j = 1, 2, . . . , n. (2.5)

With (aj , bj) given,

β̃ = arg min
β

n∑
j=1

n∑
i=1

ρτ (yi − aj − bjXT
ijβ)Wij , (2.6)
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where Wij is evaluated at the previous estimate of β. Standardize β̃ to β̃ = s1β̃/‖β̃‖,
where s1 is the sign of the first entry in β̃. Repeat the above two steps until convergence.

At last, obtain the estimate of m(u) at any u, m̃(u;h, β̃) = ã, where

(ã, b̃) = arg min
a,b

n∑
i=1

ρτ (yi − a− b(XT
i β̃ − u))Kh(XT

i β̃ − u) (2.7)

in which Kh(u) = (1/h)K(u/h). The initial estimate can be obtained by the average

derivative estimation (Chaudhuri, Doksum and Samarov, 1997). Denote by β̃ and (ãT
j , b̃

T
j )

T,

j = 1, 2, . . . , n, the obtained estimates.

Both (2.5) and (2.6) are simple linear quantile regression problem. Several efficient

algorithms for linear quantile are available and see Koenker (2005). Under some regular

conditions (see Appendix), Wu, Yu and Yu (2010) obtained the asymptotic properties of

MALE m̃(u) and β̃.

Lemma 2.1 Suppose that Assumptions A1 – A4 in Appendix hold. If n → ∞,

h→ 0 and nh→∞, then for an interior point u,

√
nh

{
m̃(u;h, β̃)−m0(u)−

m′′0(u)

∫
v2K(v)dv

2
h2

}
w−→ N(0, α2(u)),

where

α2(u) =

∫
K2(v)dv

fU0(u)

τ(1− τ)

[fy(m0(u))]2
,

fU0(u) is the density of U0 = XTβ0 and fy(·) is the conditional density of y given XTβ = u.

Lemma 2.2 Suppose that Assumptions A1 – A4 in Appendix hold. If n → ∞,

h→ 0 and nh→∞, we have

√
n(β̃ − β)

w−→ N(0, τ(1− τ)∆−1Σ∆−1),

where

Σ = E{m′0(XTβ0)
2[X − E(X|XTβ0)][X − E(X|XTβ0)]

T}

and

∆ = E{fy(m0(X
Tβ0))m

′
0(X

Tβ0)
2[X − E(X|XTβ0)][X − E(X|XTβ0)]

T}.

Lemma 2.1 and 2.2 see Theorem 1 and 3 in Wu, Yu and Yu (2010).
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§3. The Variable Selection of SIQR

Denote by β̃ and {ãj , b̃j}nj=1 the above obtained nonpenalized estimators. When

the dimension of X is large, the coefficients are usually sparse and variable selection

is crucial. As for linear quantile regression, the variable selection has been considered

in several papers, such as the penalized methods of Wu and Liu (2009) and Bayesian

method of Alhamzawi and Yu (2012). For SIQR (1.1), to avoid over-fitting and improve

generalization, we consider the penalized version of (2.4). The finial estimator of β is

obtained by minimizing the average loss with penalty, that is,

β̂ = arg min
β

n∑
j=1

n∑
i=1

ρτ (yi − ãj − b̃jXT
ijβ)Wij +

p∑
j=1

pλ(|βj |), (3.1)

where λ > 0 is the regularization parameter and Wij is evaluated at β̃. Fan and Li

(2001) argued that a good penalty should possess the following three properties in its

estimator: unbiasedness, sparsity and continuity. In the recent literatures, the popular

penalty includes SCAD (Fan and Li, 2001) and adaptive LASSO (Zou, 2006) penalty, both

of which were proved to achieve these three desirable properties simultaneously. In this

paper, we consider the variable selection of SIQR (1.1) via the SCAD penalty.

3.1 The SCAD Selection

The SCAD penalty is defined in term of its first order derivative and is symmetric

around the origin. For θ > 0, its first derive is given by

p′λ(θ) = λ
{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)
}
, (3.2)

where a > 2 and λ > 0 are tuning parameters. Particularly, a = 3.7 is often selected. The

minimizer of (3.1) with SCAD penalty (3.2) is denoted by β̂(S). That is

β̂(S) = arg min
β

n∑
j=1

n∑
i=1

ρτ (yi − ãj − b̃jXT
ijβ)Wij + n

p∑
j=1

pλn(|βj |), (3.3)

where pλn(|βj |) is defined in (3.2). The final estimator of single-index function, m̂(u), is

obtained from (2.7) through replacing β̃ by β̂. Notice that the SCAD penalty function

is symmetric non-convex on [0,∞) and singular at origin. The SCAD penalizes large

coefficients equally. Hence, the SCAD results in unbiased penalized estimators for large

coefficients. Fan and Li (2001) demonstrated that the SCAD penalty has the oracle

properties of the variable selection in the penalized likelihood setting.
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Theorem 3.1 (Consistency) Under Assumptions A1 – A4 given in Appendix, if

λn → 0, there is a local minimizer β̂(S) defined by (3.3) such that β̂(S) − β0 = Op(n
−1/2).

For convenience, let’s denote A = {j : β0,j 6= 0}, βA = (βi : i ∈ A) and Ac be the

complement of A. Define MA = (aij |i, j ∈ A) as the submatrix of M = (aij).

Theorem 3.2 (Oracle) Under the same conditions as in Theorem 3.1, if λn → 0,
√
nλn →∞, as n→∞, then

(a) Sparsity: P{β̂(S)Ac = 0} → 1.

(b) Asymptotic normality:

√
n(β̂

(S)
A − β0,A)→ N(0, τ(1− τ)∆−1A ΣA∆−1A ),

where ∆A and ΣA are submatrix of ∆ and Σ, the definitions of which see Lemma 2.2.

The proof of Theorem 3.1 and 3.2 sees Appendix.

3.2 Algorithm for SCAD Selection

Due to the SCAD penalty is non-convex, the corresponding minimization problem

is hard to solve. In Fan and Li (2001), a unified least quadratic approximation (LQA)

algorithm was proposed to solve the SCAD likelihood optimization problem. Hunter and

Li (2005) studied LQA under a more general M -algorithm framework. To avoid a disturb

parameter, Wu and Liu (2009) noticed that the SCAD penalty function can be decomposed

as the difference of two convex function. That is, pλ(x) = pλ,1(x) − pλ,2(x), where both

pλ,1(x) and pλ,2(x) are convex functions and their derivatives for x > 0 are givenp′λ,1(x) = λ;

p′λ,2(x) = λ[1− (aλ− x)+/[(a− 1)λ]]I(x > λ).

The above decomposition of SCAD penalty allows us to use the difference convex algorithm

(DCA). More Specifically, the objective function (3.3) is decomposed as Qvex(β)+Qcav(β),

where

Qvex(β) =
n∑
j=1

n∑
i=1

ρτ (yi − ãj − b̃jXT
ijβ)Wij + n

p∑
j=1

pλ,1(|βj |), Qcav(β) = −n
p∑
j=1

pλ,2(|βj |).

Repeat

β(k+1) = arg min
β

(Qvex(β) + 〈Q′cav(β(k)), β − β(k)〉)

until convergence. Notice that the derivative of the concave part is

Q′cav(β(k)) = −n
(
p′λ,2(|β

(k)
1 |)sign(β

(k)
1 ), p′λ,2(|β

(k)
2 |)sign(β

(k)
2 ), . . . , p′λ,2(|β(k)p |)sign(β(k)p )

)
.
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In the (k + 1)-th iteration, DCA solves the following optimization problem:

min
β

{ n∑
j=1

n∑
i=1

ρτ (yi − ãj − b̃jXT
ijβ)Wij + n

p∑
j=1

pλ,1(|βj |)

− n
p∑
j=1

p′λ,2(|β
(k)
j |)sign(β

(k)
j )(βj − β(k)j )

}
. (3.4)

We can use the solution of non-penalized quatile regression as the initial value. By

introducing some slack variables, we can recast the above minimization problem (3.4) into

the following linear programming problem:

min
n∑
j=1

n∑
i=1

[τξij + (1− τ)ζij ]Wij + nλn
p∑
j=1

νj − n
p∑
j=1

p′λ,2(|β
(k)
j |)sign(β

(k)
j )(βj − β(k)j )

s.t.

ξij ≥ 0, ζij ≥ 0, ξij − ζij = yi − ãj − b̃jXT
ijβ, i, j = 1, 2, . . . , n;

νj ≥ βj , νj ≥ −βj , j = 1, 2, . . . , p,

which can be easily solved by many optimization softwares.

The proposed estimates depend on the appropriate specification of bandwidth h and

penalty parameter λn. With β fixed, the bandwidth h is actually selected for a univariate

local linear quantile regression. For local linear quantile regression, Yu and Jones (1998)

derived an approximate optimal bandwidth under moderate assumptions and gave the

following rule-of-thumb bandwidth hτ :

hτ = hm{τ(1− τ)/φ(Φ−1(τ))2}1/5, (3.5)

where φ(·) and Φ(·) are the probability density function and the cumulative distribution

function of the standard normal distribution, respectively. hm is the optimal bandwidth

used in least square mean regression. For hm, there are many existing algorithms. In

practice, the simple rule-of-thumb (Fan and Gijbels, 1996) often works well. That is,

hm = 1.364σ̂0n
−1/5.

For the penalty parameter λ, BIC criterion can be defined as

BIC(λ) = log
( n∑
j=1

n∑
i=1

ρτ (yi − ãj − b̃jXT
ij β̂λ)Wij

)
+
dλ log n

n
,

where dλ is the number of nonzero coefficients in β̂λ, a simple estimate for the degrees of

freedom, The penalty parameter λ is selected as

λ̂ = arg min
λ

BIC(λ).
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§4. Monte Carlo Study

We present some numerical studies to demonstrate finite sample performance. Con-

sider the following model

y = 2 exp{−3(XTβ0)
2}+ σ(ε−Qτ (ε)). (4.1)

The components of X = (X1, X2, . . . , X5) are standard normal. The correlation between

any two components Xi and Xj is set to be 0.5|i−j|. X and ε are independent.

Here we present results for the case where β0 = (2/3, 1/3,−2/3, 0, 0)T and σ = 0.1.

The parameters are estimated under different cases with quantiles and random errors.

For each case, we simulate N = 100 random samples with n = 200. Table 1 reports the

results of variable selection, including about the average model size (AMS) with standard

deviations in its corresponding parentheses, the percentage of correct models identified

(PCM), the average numbers of correct and wrong zero coefficients, and mean squared

error of the parametric estimation among N runs

MSEβ =
1

N

N∑
i=1
‖β̂i − β0‖2 =

1

N

N∑
i=1

p∑
k=1

(β̂ik − β0,k)2

and its standard deviations in its corresponding parentheses. Table 2 shows that the

frequency of variable selection among 100 runs for the model (4.1).

From Table 1, we see that the average model size approximates true value 3 and

the average number of correct zeros approximates true value 2. Table 1 also shows that

the proposed variable selection methods are very efficient for τ = 0.25, 0.5 whether under

the error N(0, 1), t(5), χ(3) or Cauchy. The efficiency of variable selection become a

little low for τ = 0.9 and Cauchy error, which maybe is since the quantile curve is more

difficult to estimate for τ approximating 1 and existing too many outliers. Table 2 depicts

that all most relevant predictors are selected although possibly including a few redundant

predictors. Table 3 summarizes the average computing time in seconds used for estimating

the index parameter and variable selection for one replication. It can be seen from Table

3 that the computing time may be related to the error distributions. The computation for

the Cauchy error needed more time than other error distribution. In addition, we found

that most of computing time is used in the MALE estimation while a little time in the

variable selection.

For τ = 0.5, Figure 1 gives the average estimates of single-index function m(·) over

100 simulations with sample size 200 and the corresponding 95% confidence bands. The

difference between the true single-index function and the average fit is barely visible, which

shows that there is little bias. Furthermore, the confidence bands are reasonably close to
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the true curve, showing small variation in the estimates. The boxplots in Figure 1 depicts

the parameter estimates from single index quantile regression (with ε ∼ t(5)). One can

see that the distributions of estimates are centered around the true values and estimated

well.

Table 1 Simulation results based on 100 replications for the model (4.1)

ε τ AMS(SD) PCM ANCZ ANICZ MSE(SD)

0.25 3(0) 1 2 0 0.159(0.026)

N(0, 1) 0.50 3.03(0.223) 0.98 1.97 0 0.041(0.027)

0.90 3.02(0.141) 0.98 1.98 0 0.173(0.132)

0.25 3.06(0.239) 0.94 1.94 0 0.038(0.005)

t(5) 0.50 3.07(0.256) 0.93 1.93 0 0.037(0.007)

0.90 3.03(0.332) 0.95 1.95 0.02 0.203(0.259)

0.25 3.03(0.171) 0.97 1.96 0.01 0.165(0.065)

χ(3) 0.50 3.09(0.321) 0.92 1.91 0 0.209(0.529)

0.90 3.15(0.386) 0.83 1.83 0.02 0.205(0.326)

0.25 3.38(0.736) 0.78 1.74 0.08 0.279(0.655)

Cauchy 0.50 3.15(0.626) 0.89 1.89 0.06 0.209(0.646)

0.90 3.66(0.89) 0.73 1.62 0.12 0.308(0.674)

Note: ANCZ, average number of correct zeros (true value = 2).

Table 2 Frequency of each covariate appearing in the resultant models among

100 runs for the model (4.1) (True β0 = (2/3, 1/3,−2/3, 0, 0)T)

ε τ X1 X2 X3 X4 X5

0.25 100 100 100 0 0

N(0, 1) 0.50 100 100 100 2 1

0.90 100 100 100 2 0

0.25 100 100 100 4 2

t(5) 0.50 100 100 100 3 4

0.90 100 99 99 1 4

0.25 100 99 100 3 1

χ(3) 0.50 100 100 100 6 3

0.90 100 99 99 10 7

0.25 99 95 98 14 12

Cauchy 0.50 100 99 99 10 11

0.90 98 95 95 23 25
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Table 3 The averages of computing times (in seconds) for model (4.1) with p = 5

ε τ = 0.25 τ = 0.50 τ = 0.90

N(0, 1) 54.0 54.9 54.9

t(5) 60.2 59.9 56.0

χ2(3) 53.2 54.8 51.4

Cauchy 67.2 68.9 65.09
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Figure 1 Estimates for single-index function and Boxplot of parameter estimates

In conclusion, by the use of the SCAD methods, most of the zero coefficients are

estimated to be 0 and resultant model is easier to interpret. On the other hands, both

the nonzero parameters and single-index function can also be estimated well. Hence, our

proposed procedure is validated for the variable selection and estimation of single-index

quantile regression.

Appendix

To prove the asymptotic properties, we need to lay out some basic assumptions.

A1 The density function of βT
0X is continuous and bounded away from 0 and ∞ on

its support. Further the density function of βTX is continuous for β in a neighborhood of

β0.

A2 K(·) is a symmetric density function with bounded derivative and compact sup-
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port. It satisfies∫
u2K(u)du <∞ and

∣∣∣ ∫ ujK2(u)du
∣∣∣ <∞, j = 0, 1, 2.

A3 For each y, the conditional density function fy(y|XTβ = u) is continuous in u.

Furthermore, there exist positive constant δ1, δ2 and a positive function G(y, u) such that

sup
|u′−u|≤ε

f(y|u′) ≤ G(y, u),

∫
|ρτ (y −m(u))|2+δG(y, u)dy <∞

and ∫
(ρτ (y − t)− ρτ (y)− ρ′τ (y))2G(y, u)dy = o(t2) as t→ 0.

A4 The single index function m0(·) defined in SIQR (1.1) is bounded with continuous

derivatives up to the second order.

The conditions above are commonly used in the literature. A1 guarantees that any

ratio terms are meaningful when the density appears in the denominators; A2 requires

that the kernel function is symmetric and has finite second moment, which is familiar to

local estimation; A3 holds when ρ′τ (·) is Lipschitz continuous; A4 is a common requirement

for a link function. These conditions were also assumed in Wu, Yu and Yu (2010).

Proof of Theorem 3.1 Notice that the SCAD estimator β̂(S) minimizes

QS(β) =
n∑
j=1

n∑
i=1
{ρτ (yi − ãj − b̃jXT

ijβ)− ρτ (Yij)}Wij + n
p∑
j=1

pλn(|βj |)

= Φn(β) + n
p∑
j=1

pλn(|βj |), (5.1)

where

Φn(β) =
n∑
j=1

n∑
i=1
{ρτ (yi − ãj − b̃jXT

ijβ)− ρτ (Yij)}Wij and Yij = Yi − ãj − b̃jXT
ijβ0.

To prove Theorem 3.1, it is enough to show that for any given δ > 0, there exists a large

constant C such that

P
{

inf
‖u‖=C

Qs

(
β0 +

u√
n

)
> Qs(β0)

}
≥ 1− δ, (5.2)

which implies that with probability at least 1− δ there exists a local minimum in the ball

{β0 +u/
√
n : ‖u‖ < C}. This in turn implies that there exists a local minimizer such that

|β̂(S) − β0| = Op(n
−1/2).
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Let u =
√
n(β−β0) and ũ =

√
n(β̃−β0). It can be seen that ũ minimize the following

Φn

(
β0 +

u√
n

)
=

n∑
j=1

n∑
i=1

{
ρτ

(
Yij − ãj −

1√
n
b̃jX

T
iju
)
− ρτ (Yij)

}
Wij .

From the proof of Theorem 3 in Wu, Yu and Yu (2010), we have

Φn

(
β0 +

u√
n

)
=

1

2
uTSu+ V T

n u+ op(1), (5.3)

where S = 2∆, Vn = (4τ(1 − τ))1/2Σ1/2Zn, Zn
w−→ N(0, I), and Σ and ∆ are defined in

Lemma 2.2.

From (5.1) and (5.3),

Qs

(
β0 +

u√
n

)
−Qs(β0)

≥ Φn

(
β0 +

u√
n

)
+ n

∑
j∈A

{
pλn

(∣∣∣β0,j +
u√
n

∣∣∣)− pλn(|β0,j |)
}

= uTVn +
1

2
uTSu+ n

∑
j∈A

{
pλn

(∣∣∣β0,j +
u√
n

∣∣∣)− pλn(|β0,j |)
}

+ op(1). (5.4)

Note that, for large n,

n
∑
j∈A

{
pλn

(∣∣∣βj,0 +
uj√
n

∣∣∣)− pλn(|βj,0|)
}

= 0 (5.5)

uniformly in any compact set due to the facts that |βj,0| > 0 for j ∈ A, SCAD penalty is

flat for coefficient magnitude larger than aλn and λn → 0.

Based on (5.4) – (5.5), Qs(β0 + u/
√
n) − Qs(β0) is dominated by the quadratic term

(1/2)uTSu for ‖u‖ equal to sufficiently large C. Hence S is positive definite matrix implies

that (5.2) holds, as we have desired. �

Lemma 5.1 (Sparsity) If λn → 0 and
√
nλn →∞, then with probability bending

to one, for any βA satisfying ‖βA − β0,A‖ = Op(n
−1/2) and any constant C

Qs((β
T
A, 0

T)T) = min
‖βAc‖≤Cn−1/2

Qs((β
T
A, β

T
Ac)T).

Proof Notice that

(βT
A, 0)T = β0 +

√
n((βA − β0,A)T, 0)√

n

and

(βT
A, β

T
Ac)T = β0 +

√
n((βA − β0,A)T, βT

Ac)√
n

.
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By (5.1) and (5.3), we have

QS((βT
A, 0)T)−QS((βT

A, β
T
Ac)T)

= [QS((βT
A, 0)T)−QS(β0)]− [QS(βT

A, β
T
Ac)−QS(β0)]

=
√
n((βA − β0,A)T, 0T)Vn +

1

2

√
n((βA − β0,A)T, 0)S

√
n((βA − β0,A)T, 0)T

−
√
n((βA − β0,A)T, βT

Ac)Vn −
1

2

√
n((βA − β0,A)T, βT

Ac)S
√
n((βA − β0,A)T, βT

Ac)T

− n
∑
j∈Ac

pλn(|βj |) + op(1). (5.6)

By the condition |βA − β0,A| = Op(n
−1/2) and |βAc | < cn−1/2, we have

√
n((βA − β0,A)T, 0T)S

√
n((βA − β0,A)T, 0)T = Op(1),

√
n((βA − β0,A)T, βT

Ac)S
√
n((βA − β0,A)T, βAc)T = Op(1)

and

√
n((βA − β0,A)T, 0T)Vn −

√
n((βA − β0,A)T, βT

Ac)Vn = −
√
n(0T

A, β
T
Ac)Vn = Op(1),

where the last step is based on the fact that Vn ∼ N(0, 4τ(1 − τ)Σ) and the condition

|βAc | < cn−1/2. For any ‖βA−β0,A‖ = Op(n
−1/2) and 0 < ‖βAc‖ ≤ Cn−1/2, from (5.6) we

have

Qs((β
T
A, 0

T
A)T)−Qs((βT

A, β
T
Ac)T) = Op(1)− n

p∑
j=1

pλ(|βj |). (5.7)

Notice that

n
∑
j∈Ac

pλn(|βj |) ≥ n
∑
j∈Ac

[
λn lim

λn→0
inf lim

β→0+
inf

p′λn(β)

λn
βjsign(βj) + o(|βj |)

]
= nλn

(
lim
λn→0

inf lim
β→0+

inf
p′λn(β)

λn

)( ∑
j∈Ac

|βj |(1 + o(1))
)

= nλn
∑
j∈Ac

|βj |(1 + o(1)),

where the last step follows from the fact that

lim
λn→0

inf lim
β→0+

inf
p′λn(β)

λn
= 1.

Then
√
nλn →∞ implies in (5.7), the last term dominates in magnitude and as a result,

Qs((β
T
A, 0

T)T)−Qs((βT
A, β

T
Ac)T) < 0 for large n. �
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Proof of Theorem 3.2 Part (a) holds simply due to Lemma 5.1. Next let’s prove

part (b). From the proof of Theorem 3.1, we see that
√
n(β̂

(S)
A − β0,A) minimizes

Φn

(
β0 +

(uA, 0)√
n

)
+ n

∑
j∈A

pλ

(∣∣∣β0,j +
uj√
n

∣∣∣).
From (5.5), for large n,

n
∑
j∈A

pλn

(∣∣∣β0,j +
uj√
n

∣∣∣) = n
∑
j∈A

pλn(|β0,j |)

uniformly in any compact set of R|A|. Hence we have

Φn

(
β0 +

(uA, 0)√
n

)
+ n

∑
j∈A

pλ

(∣∣∣β0,j +
uj√
n

∣∣∣) = uT
AVA +

1

2
uT
ASAuA + n

∑
j∈A

pλ|β0,j |+ op(1).

We have the minimizer ûA satisfies

ûA = −S−1A VA + op(1).

Hence
√
n(β̂A − β0,A) = ûA → N(0, τ(1− τ)∆−1A ΣA∆−1A ).

This completes the proof. �
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