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Abstract

The note begins with a short story on seeking for a practical sufficiency theorem for the

uniqueness of time-continuous Markov jump processes, starting around 1977. The general result

was obtained in 1985 for the processes with general state spaces. To see the sufficient conditions

are sharp, a dual criterion for non-uniqueness was obtained in 1991. This note is restricted however

to the discrete state space (then the processes are called Q-processes or Markov chains), for which

the sufficient conditions just mentioned are showing at the end of the note to be necessary. Some

examples are included to illustrate that the sufficient conditions either for uniqueness or for non-

uniqueness are not only powerful but also sharp.
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Let E be a countable set with elements i, j, k, . . .. A matrix Q = (qij : i, j ∈ E) is

called a Q-matrix if its non-diagonals are nonnegative and
∑
j∈E

qij ≤ 0 for every i ∈ E.

Throughout this note, we restrict ourselves to the special case that the Q-matrix is totally

stable qi := −qii <∞ and conservative qi =
∑
j 6=i

qij for every i ∈ E. It is called bounded if

sup
i∈E

qi < ∞. For a given Q-matrix Q = (qij) on E, a sub-Markovian semigroup {P (t) =

(pij(t) : i, j ∈ E)}t≥0 is called a Q-process if

d

dt
P (t)

∣∣∣
t=0

= Q (pointwise).
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The Q-processes may not be unique in general, but there always exists the minimal one,

due to Feller (1940, Theorem 1), denoted by Pmin(t) =
(
pmin
ij (t) : i, j ∈ E

)
. For more than

half-century ago, some criteria for the uniqueness were known.

Theorem 1 The Q-process is unique (equivalently, the minimal process Pmin(t)

is not explosive) iff one of the following equivalent conditions holds:

(C1)
∑
j∈E

pmin
ij (t) = 1 for every i ∈ E and t ≥ 0.

(C2)
∞∑
n=1

q−1
Xmin(τn)

=∞, Pi-a.s., where τn is the nth jump time of the minimal process

{Xmin(t) : t ≥ 0} corresponding to Pmin(t).

(C3) The equation

(λI −Q)u = 0, 0 ≤ u ≤ 1, (1)

has only zero solution for some (equivalently, for all) λ > 0.

Criterion (C1) goes back to Feller (1940). Criterion (C2) is due to Dobrushin (1952).

Criterion (C3) is due to Feller (1957) and Reuter (1957). Refer also to Chung (1967; Part

II, § 19, Theorem 1), or Gikhman and Skorokhod (1975; Chap. 3, § 2, Theorems 3 and 4).

The earlier Criterion (C1) often requires a further effort in practice, rather than a

direct application. In particular, the proof of the powerful sufficiency theorem (Theorem

2 below) is based on it.

Criterion (C2) is effective in some cases. For instance in the simplest case that M :=

sup
i∈E

qi <∞, since

∞∑
n=1

q−1
Xmin(τn)

≥
∞∑
n=1

M−1 =∞,

we obtain the uniqueness of the processes. For pure birth process (i.e., qi,i+1 > 0 and

qij = 0 for all j 6= i, i, j ≥ 0), Criterion (C2) says that the process is unique iff

∞∑
n=1

1

qn,n+1
=∞. (2)

Besides, if the minimal process is recurrent, then the term q−1
k will appears infinitely often

in the summation, hence the process should be unique according to the criterion.

Criterion (C3) is more effective once equation (1) is solvable. More precisely, it is

the case if the exit boundary consists at most a single point, for instance the pure birth

processes, the birth-death processes or more general the single birth processes (i.e., for

j > i ≥ 0, qij > 0 iff j = i + 1; for 0 ≤ j < i, qij is nonnegative but free). We will come

back this story soon.
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However, the next model stopped our study for several years at the beginning of

the study (1977 – 1978) on non-equilibrium particle systems. To state our model, we use

operator Ω instead of the matrix Q:

Ωf(i) =
∑
j∈E

qij(fj − fi), i ∈ E.

Of course, in this case, Ωf = Qf . For a Markov chain on a countable set E, by a transform,

one often assumes that E is simply the set Z+ = {0, 1, . . .}. However, such a transform

ignores the original geometry of E and may not be convenient in multidimensional case.

To state our model, we need some notation. Let i = (iu : u ∈ S) and define its updates

iu± and iu,v as follows:

iu±w =

iu ± 1 w = u;

iw w 6= u,
iu,vw =


iu − 1 w = u;

iv + 1 w = v;

iw w 6= u, v,

w ∈ S.

Example 1 (Schlögl’s second model) Let S be a finite set and E = ZS+. Define a

Markov chain on E with operator

Ωf(i) =
∑
u∈S

{
b(iu)

[
f
(
iu+
)
− f(i)

]
+ a(iu)

[
f
(
iu−
)
− f(i)

]}
+
∑
u,v
iup(u, v)

[
f
(
iu,v
)
− f(i)

]
, i = (iu : u ∈ S) ∈ E,

where (p(u, v) : u, v ∈ S) is a “simple” random walk on S, and

b(k) = β0 + β2k(k − 1), β0, β2 > 0,

a(k) = δ1k + δ3k(k − 1)(k − 2), δ1, δ3 > 0.

Here in the first sum of Ω, in each vessel u, there is a birth-death process with birth

rate b(k) and death rate a(k), respectively. This is called the reaction part of the model.

The reactions in different vessels are independent. In the second sum of Ω, a particle

from vessel u moves to vessel v. This is called the diffusion part of the model. Thus, it

is actually a finite-dimensional reaction-diffusion processes. Replacing the finite S with

S = Zd, we obtain formally an operator of infinite-dimensional reaction-diffusion process

which is a typical model from the non-equilibrium statistical physics. Even though the

large systems are quite popular today, in that period, it was rather unusual to study such

a non-equilibrium system. Our original program is to rebuild the mathematical ground

of non-equilibrium statistical physics (cf. Chen (2004; Part IV). An earlier paper on this

topic appeared in 1985 (see Chen, 1985)). For this, the model is meaningful only if it
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is ergodic in every finite dimension. Thus, the finite dimensional model consists the first

doorsill of our program.

In 1983, the author and Yan (see Yan and Chen, 1986), using a comparison technique,

overcame this doorsill, based on a systemic study on the single birth processes. To which,

we obtained explicit criteria not only for uniqueness but also for ergodicity and so on.

This goes back to Yan and Chen (1986), Chen (1986a). Refer to Chen (2004) for updates

and to Chen and Zhang (2014) for a unified treatment. After two more years, using an

approximating approach, we obtained a powerful sufficiency theorem as stated below.

Theorem 2 (Uniqueness criterion) Let Q = (qij) be a Q-matrix on a countable

set E. Then the corresponding Q-process is unique iff the following two conditions hold

simultaneously.

(U1) There exist En ↑ E as n ↑ ∞ and a nonnegative function ϕ such that sup
i∈En

qi <∞

and lim
n→∞

inf
i/∈En

ϕi =∞.

(U2) There exists a constant c ∈ R such that Qϕ ≤ cϕ.

Certainly, for Schlögl’s model for instance, in condition (U2), it is more convenient

to use Ωϕ instead of Qϕ. Besides, an important fact should be very helpful in practice: if

ϕ satisfies the conditions with c ≥ 0, then so does M + ϕ for every constant M ≥ 0. In

particular, a local modification of Q does not interfere the conclusion.

From Chen (2004; Parts I and II), it is now clear that a large part of the theory of

Q-processes can be generalized to the so-called Markov jump processes on general state

space. To save the space, we will not really go to the last subject but it is worth to

mention the extension. We now use the codes “GS” and “DS” to distinguish the “general

state space” and the “discrete state space”, respectively. The sufficient part of the last

theorem first appeared in Chen (1986a; Theorem 2.37 (GS)) and Chen (1986b; Theorem

(16) (GS)). Because it is regarded as one of the author’s favourite contributions to the

theory of Markov jump processes, this result was then introduced several times in the

author’s publications: Chen (1991; Theorem 1.11 (DS)), Chen and Yan (1991; Theorem

3.9 (GS)), Chen (2004; Theorem 2.25 (GS)), Chen (1997; Theorem 2.1 (DS)), Chen (2005;

Theorem 9.4 (DS)), and Chen and Mao (2007; Theorem 2.9 (DS)).

Theorem 2 is often accompanied in the publications just listed by the next simpler

result.

Corollary 1 Suppose that there exist a function ϕ ≥ q and a constant c ∈ R such

that Qϕ ≤ cϕ on E. Then the Q-process is unique.

Proof Set En = {i ∈ E : qi ≤ n}. If M := sup
i∈E

qi < ∞, then for large enough n,
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we have En = E and so inf
k/∈En

qk = ∞ by standard convention inf
∅
ϕ = ∞. In this case,

condition (U2) is trivial with ϕ = 1 + M . If M = ∞, then inf
k/∈En

qk ≥ n → ∞ as n → ∞.

Combining this with (U2), the conclusion follows from Theorem 2. �

Corollary 1 is almost explicit since one can simply specify ϕ = 1 + q. This enables us

to use it easier in practice. However, such a specification makes the assumption becomes

a little stronger. We will come back this point later.

Let us make some remarks about the conditions in Theorem 2. Condition (U2) is

a relax of the equation in (1): finding a solution to an inequality is easier than finding

a solution to the corresponding equality. Criterion (C3) says that there is only trivial

bounded solution to the equation (1). Conversely, if a solution of the equation is fixed at

some point, say θ, such that ϕθ = 1, then the solution ϕ should be unbounded. This leads

to the condition lim
n→∞

inf
k/∈En

ϕk =∞ in (U1). Using this idea, we prove that the assumptions

in Theorem 2 are necessary for single birth processes (see Chen, 2004; Remark 3.20). The

reason we allow some subset of En to be infinite is to rule out some region of E, on which

sup
i∈En

qi <∞. The key in the proof of this result is an economic approximation by bounded

Q-processes. Certainly, the necessity shows that the assumptions of the theorem are sharp,

and is valuable as illustrated by Chen (1986b; Theorem (25)). However, it does not mean

that the inverse of the conditions can be used in practice to show the non-uniqueness of

the processes. Hence, we went to an opposite way proving the following criterion (see

Chen, 2004; Theorem 2.27 (GS), its proof in 2nd edition uses Lemma 5.18 rather than

Lemma 5.15).

Theorem 3 (Non-uniqueness criterion) For a given Q-matrix Q on a countable

set E, the Q-processes are not unique if for some (equivalently, for all) c > 0, there is a

bounded function ϕ with sup
k∈E

ϕk > 0 such that Qϕ ≥ cϕ. Conversely, these conditions

plus ϕ ≥ 0 are also necessary.

We remark that three results (Theorems 2, 3 and Corollary 1), we have talked so

far are specialized from their original case in GS to the one in DS. Theorems 2 and 3

are somehow the extensions of Criterion (C3) in two opposite directions. As we will see

soon that the extended theorems are much effective than the original Criterion (C3).

Using two opposite sufficiency results instead of a single criterion is often meaningful. For

instance, for recurrence, we have a criterion (see Chen, 2004; Proposition 4.21) which is

accompanied with more practical criteria (see Chen, 2004; Theorems 4.24 and 4.25) for

the recurrence and transiency, respectively. As a companion to Chen (2004; Theorem

4.25), refer to Meyn and Tweedie (2009; Theorem 8.0.2) and Hairer (2010; Proposition

1.3) or more recent criteria. Next, for ergodicity and nonergodicity, refer to Chen (2004;
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Theorem 4.45 (1)) and Kim and Lee (2008; Theorem 1), respectively. For various stability

speeds/principal eigenvalues, in Chen (2005), we have not only the classical variational

formula, but also dual variational formulas to describe their lower and upper bounds,

respectively.

It is interesting that there is now a direct way to prove the necessity of Theorem 2 in

the context of DS based on a recent result by Spieksma (2014).

Theorem 4 Everything is the same as in Theorem 2 except (U1) is replaced by

(U1)′ In the original (U1), assume in addition that each En is finite and ignore

“ sup
i∈En

qi <∞”.

It is now the position to illustrate by examples the power of our results and compare

conditions (U1) and (U1)′.

The next two examples show that in Theorem 2, the condition “ lim
n→∞

ϕn =∞” is not

necessary, which is however necessary in a criterion for recurrence used in the proof of

Theorem 4 (see its proof below).

Example 2 Let E be a countable set and Q = (qij) be a bounded conservative

Q-matrix on E. Then assumptions of Theorem 2 hold but its test function ϕ can be

bounded.

Proof (a) Simply set En ≡ E (may be infinite) for every n ≥ 1 and ϕi ≡ 1.

Then it is obvious that 0 = Qϕ ≤ ϕ and lim
n

inf
i/∈En

ϕi =∞ since inf
∅
ϕ =∞ by the standard

convention. Hence by Theorem 2, the process is unique. As we have seen before, Corollary

1 is also applicable in such a trivial case.

(b) Knowing that the process is unique, then by Theorem 4, there should exist a ϕ

satisfying (U1)′, as well as (U2). The problem is that the resulting ϕ is not explicitly

known when E is infinite. In this sense, Theorem 4 is theoretic correct but not practical

in such simplest case. �

Example 3 Let E = Z+ and Q(1) be a bounded conservative Q-matrix on E.

Denote its test function by ϕ(1) ≡ 1 as in the last example. Next, let Q(2) be a conservative

Q-matrix on E satisfying the assumptions of Theorem 2 with a sequence of finite subsets

{En}n≥1 and a test function ϕ(2). Finally, we construct a new Q as follows: on the odd

numbers in E, we use the transition mechanism of Q(1), and on the even numbers in E,

we adopt the one of Q(2). Define ϕ = ϕ(1) on the odd numbers and ϕ = ϕ(2) on the even

numbers. Then the assumptions of Theorem 2 hold but its test function ϕn has no limit

as n→∞: lim
n→∞

ϕn =∞ and lim
n→∞

ϕn = 1.

Proof First, note that for the original Q(2) on E, because each En is a finite subset
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of E, the condition lim
n→∞

inf
k/∈En

ϕ
(2)
k =∞ is equivalent to lim

n→∞
ϕ

(2)
n =∞. Therefore, we have

lim
n→∞

ϕn = lim
n→∞

ϕ(2)
n =∞, lim

n→∞
ϕn = lim

n→∞
ϕ(1)
n = 1.

To show the assumptions in Theorem 2 hold, simply let E0 = {odd integers}, and let

En (n ≥ 1) be the union of E0 and the natural modification of the original En used for

Q(2). Then the resulting En ↑ E as n→∞, sup
k∈En

qk <∞ for each n ≥ 0, and

lim
n→∞

inf
k/∈En

ϕk = lim
n→∞

inf
k/∈En

ϕ
(2)
k = lim

n→∞
ϕ(2)
n =∞.

Finally, because of the independence of Q(1) and Q(2), ϕ(1) and ϕ(2), the condition Qϕ ≤
max{c2, 1}ϕ on the set of odd numbers follows from

Q(1)ϕ(1) ≤ ϕ(1) on E;

and the same condition on the set of even numbers follows from

Q(2)ϕ(2) ≤ c2ϕ
(2) on E.

We have thus obtained the required conclusion.

As mentioned in the last proof, in the present situation, we do not know how to use

Theorem 4. �

Note that the last matrix Q is reducible. However, we can add a connection between

0 and 1 to produce an irreducible version of the example. This is not essential since a local

modification does not interfere the uniqueness problem. Furthermore, one may replace the

set {odd integers} or {even integers} by any infinite subset of E, but not E itself, the set

of primer numbers for instance. The conclusion of Example 3 remains the same by an

obvious modification.

The point is that some En is allowed to be infinite in (U1) but not in (U1)′.

Example 4 The pure birth process is unique iff (2) holds. In particular, set

qn,n+1 = the nth primer, then Theorem 2 is suitable but Corollary 1 fails.

Proof Note that qk = qk,k+1 for k ≥ 0.

(a) If
∑
k

q−1
k =∞, set En = {0, 1, . . . , n} and

ϕk = 1 +
∑

1≤j≤k−1

1

qj
→∞ as k →∞.

Then Qϕ ≤ ϕ and so Theorem 2 gives us the uniqueness of the processes. In the particular

case that qn,n+1 = n + 1, the above ϕ has order log n. However, we can also choose

ϕn = 1 + n and apply Theorem 2. This shows that there are some freedom in choosing ϕ.
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(b) If M :=
∑
k

q−1
k <∞, set En as above and

ϕk =
1

2
+

∑
1≤j≤k−1

1

qj
−M ∈

[1

2
−M,

1

2

]
.

Then sup
k
ϕk = 1/2 > 0, Qϕ ≥ ϕ, and so by Theorem 3, the processes are not unique.

We remark that it would be awful to use the necessity in Theorems 2 or 4 to prove this

non-uniqueness property.

(c) The last assertion is due to J.L. Zheng (cf. Chen, 1986a; Example 2.3.12; or Chen,

2004; Example 2.26). �

Proof of the uniqueness for Example 1 For i ∈ E = ZS+, define its level by

|i| =
∑
u∈S

iu and set En = {i ∈ E : |i| ≤ n} for n ≥ 1.

(a) Next, define ϕ(i) = 1 + |i|. Then it is clear that lim
n→∞

inf
k/∈En

ϕ(k) =∞. Because the

diffusions do not change the levels, we have

Ωϕ(|i|) =
∑
u∈S

[b(iu)− a(iu)] =
∑
u∈S

[
α0 − α1iu + α2i

2
u − α3i

3
u

]
for some positive {αk}3k=0. Next, since

∑
u∈S

i2u ≤ |i|2,
1

|S|
∑
u∈S

i3u ≥
( |i|
|S|

)3
(Jensen’s inequality),

where |S| is the cardinality of S (finite but arbitrary), we have

Ωϕ(|i|) ≤ α′0 − α′1|i|+ α′2|i|2 − α′3|i|3

for some positive {α′k}3k=0. Now, because the right-hand side becomes negative for large

enough |i|, it is clear that Ωϕ(|i|) ≤ cϕ(|i|) for every i ∈ E and large enough c. The

assertion now follows from Theorem 2. Hopefully, we have seen the role played by the

geometry of E. The proof shows the power of our result. A good sufficiency result may

be more effective than a criterion.

(b) It is also possible to use Corollary 1 to prove the required assertion, simply choose

ϕ(i) = γ
(

1 +
∑
u∈S

i3u

)
. First, choose γ large enough so that ϕ ≥ q. Next, choose c large

enough so that Ωϕ ≤ cϕ. �

It is worthy to mention that in accompany to Theorem 2, we also have a similar,

practical sufficiency result for (exponential) ergodicity. Refer to Chen (1989; Theorem 3

(GS)), Chen (1991; Theorem 1.18 (DS)), Chen (2004; Corollary 4.49 (DS) and Theorem

14.1 (GS)).
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In the past nearly 30 years, Theorem 2 and Corollary 1 have very successful appli-

cations. A list of the literature was collected in Chen (2005; § 9.2). Certainly, the results

used a lot by the author (in Chen (2004) for instance). In particular, it was used at

the first step to construct a large class of infinite-dimensional processes (see Chen, 2004;

§ 13.2), 15 models are included in Chen (2004; § 13.4). Corollary 1 with some extension

was used by Song (1988) in a quite earlier stage for Markov decision processes moving from

bounded to unbounded situation. It is now quite often to see the influence of the study

on Markov jump processes to the theory of Markov decision processes. Based on Chen

(1986b), Theorem 2 was collected into Anderson (1991; Corollary 2.2.16), its originality

was unfortunately ignored, even though the original paper (see Chen; 1986b) is included

in the references of the book. For some corrections and comments on the last book, refer

to Chen (1996). Very recently, Theorem 2 (GS) is applied by Chen and Ma (2014) to

genetic study having continuous state space. Finally, we mention that the results have

already extended to the time-inhomogeneous case by Zheng and Zheng (1987) and Zheng

(1993) using the martingale approach.

Before going to the proofs, note that equation (1) is equivalent to

Π(λ)u = u, 0 ≤ u ≤ 1 on E, λ > 0, (3)

where

Π(λ) =
((1− δij)qij

λ+ qi
: i, j ∈ E

)
.

Here the matrix Π(λ) is sub-stochastic. We introduce a fictitious state ∆ and define on

the enlarged state space E∆ = E ∪ {∆} a new transition probability matrix

Π∆
ij(λ) =


Πij(λ) if i, j ∈ E;

λ

λ+ qi
if i ∈ E, j = ∆;

pj if i = ∆, j ∈ E,

where (pj : j ∈ E) is a positive probability measure on E. The enlarged transition

probability matrix is irreducible even the original one may be not.

Lemma 1 The equation (1) has zero solution only iff so does the equation

Π∆(λ)(u1E) = u, 0 ≤ u ≤ 1 on E∆, λ > 0. (4)

Thus, the original Q-process is unique iff the Π∆(λ)-chain is recurrent.

Proof Noting that u∆ =
∑
k∈E

pkuk, it is clear that u∆ = 0 iff uk = 0 for all k ∈ E

since pk > 0 for all k ∈ E. Equation (4) restricted to E coincides with (3) and then (1).

This proves the first assertion.
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To prove the second assertion, it suffices to note that Π∆(λ)-chain is recurrent iff

equation (4) has only trivial solution. The last result comes from Yan and Chen (1986),

Chen (1986a; Lemma 12.1.27), or Chen (2004; Lemma 4.51). We remark here that the

regularity assumption used in the cited references can be replaced by the minimal process,

due to the equivalence of recurrence of the minimal process and its embedded chain. Refer

to Chen (1986a; Lemma 12.3.1), or Chen (2004; Theorem 4.34). �

Proof of Theorem 4 When |E| <∞, the conclusion is trivial and the assumptions

hold for the specific En ≡ E and ϕi ≡ 1 as seen from proof (a) of Example 2. Hence we

may assume that E = Z+. Since each En is finite, the condition lim
n

inf
k/∈En

ϕk =∞ becomes

lim
n→∞

ϕn =∞. In this case, conditions (U1)′ and (U2) consist a criterion for the recurrence

of the Markov chain Π∆(λ), refer to Chen (2004; Theorem 4.24) and its references within.

We remark that it is at this point, the finiteness of En is required and so the present

sufficiency proof is not suitable for Theorem 2. At the moment, we do not know how to

extend the necessity result of Theorem 4 from DS to GS.

Here is a part of an alternative proof given in Spieksma (2014). Let Pmin(λ) be the

Laplace transform of Pmin(t). Using the second successive approximation scheme for the

backward Kolmogorov equation (goes back to Feller (1940; Theorem 1)), we obtain

Pmin(λ) =
∞∑
n=0

Π(λ)ndiag
( 1

λ+ q

)
(cf. Chen, 2004, page 75, line -6). Hence

λPmin(λ) column (1) =
∞∑
n=0

Π(λ)n column
( λ

λ+ q

)
.

The process is unique iff the left-hand side equals 1 at some/every i ∈ E, the right-hand

side is the probabilistic decomposition of the time that the Markov chain Π∆(λ) starts

from some i ∈ E, first visits ∆ at some step n ≥ 1, which equals 1 iff the irreducible

Markov chain Π∆(λ) is recurrent. We have thus come back to the last lemma. �

Proof of Theorem 2 Here we adopt a circle argument.

(U1)′ + (U2) =⇒ (U1) + (U2). This is easy since (U1) is weaker that (U1)′.

(U1)+(U2) =⇒ uniqueness. This is the sufficiency part of Theorem 2 and was proved

long time ago, even for GS.

Uniqueness =⇒ (U1)′ + (U2). This is the necessity part of Theorem 4. �

We remark that a similar phenomena is appeared in Theorem 3, the conditions for

sufficiency are weaker than the ones for necessity. As we have seen from Example 4, this is

very helpful in practice. However, these conditions are actually equivalent: conditions for

necessity =⇒ conditions for sufficiency =⇒ non-uniqueness =⇒ conditions for necessity.
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In view of these discussions, one may combine Theorems 2 and 4 into one having the

style of Theorem 3.

In conclusion, this note as well as the practice during the past 30 years confirm that

the sufficient part of Theorem 2 and Theorem (Criterion) 3 are not only powerful but

also sharp, even though at the moment we are still unable to prove the necessity part of

Theorem 2 for general state spaces.
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