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Abstract

Let fn be a non-parametric kernel density estimator based on a kernel function K and a

sequence of independent and identically distributed random variables taking values in Rd. The

goal of this article is to extend the large deviations results in He and Gao (2008), i.e., to prove

large deviations for the statistic sup
x∈Rd

|fn(x)− fn(−x)|.
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§1. Introduction and Main Results

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (i.i.d.) ran-

dom variables taking values in Rd on probability space (Ω,F ,P) with density function f .

Let K be a measurable function. The kernel density estimator of f is defined by

fn(x) =
1

nadn

n∑
i=1

K
(x−Xi

an

)
, x ∈ Rd, (1.1)

where {an, n ≥ 1} is a bandsequence, that is, a sequence of positive numbers sastifying

an → 0, nadn →∞,
nadn

log a−1n
→ +∞ as n→∞. (1.2)

The limit properties for the kernel density estimator were studied widely, for re-

cent references on this we refer to He and Gao (2008), Gao (2003), Giné and Guillou

(2001), Diallo and Louani (2013), Louani (1998) and references therein. The statistic

sup
x∈Rd

|fn(x) − fn(−x)| was used to test the hypothesis that the density function f(x) is

symmetric about 0. He and Gao (2008) studied moderate deviations and large deviations
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(cf. Dembo and Zeitouni, 1998) for sup
x∈Rd

|fn(x)−fn(−x)| of the density f in case d = 1 by

the empirical approach. One could ask whether or not the large deviations results hold

for sup
x∈Rd

|fn(x)−fn(−x)| in general. In this article, we give an affirmative answer to these,

i.e., we establish large deviations for sup
x∈Rd

|fn(x)−fn(−x)| under certain conditions by the

empirical approach (cf. Giné and Guillou, 2001; Talagrand, 1996; Gao, 2003; He and Gao,

2008).

As usual, we denote by ‖g‖∞ = sup
x∈Rd

|g(x)| and ‖g‖p = (
∫
x∈Rd |g(x)|pdx)1/p the supre-

mum norm and the Lp-norm of g respectively. The following assumptions will be used in

this article.

(A1) f is continuous and symmetric and

lim
x→∞

f(x) = 0. (1.3)

(A2) K(x) = P (|ax+ b|), where P (·) is a bounded real function of bounded variation,

a is an m× d matrix, and K(x) is integrable:∫
Rd

|K(x)|dx < +∞.

(A3) f is differentiable and

sup
x
|f ′(x)| <∞. (1.4)

By Nolan and Pollard (1987), the class of functions

F =
{
K
(x− ·
an

)
;x ∈ Rd, an ∈ Rdn \ {0}

}
is a bounded measurable VC class of functions( cf. Gao, 2003). It is clear that if (A2)

holds, then for any p ≥ 1, ‖K‖p <∞ and

ϕ(t) ≡
∫
Rd

(exp{tK(z)} − 1)dz <∞ for any t ≥ 0. (1.5)

Theorem 1.1 Let K be nonnegative, f(0) = 0 and assumptions (A1), (A2) and

(A3) hold. Then, for any λ > 0,

lim
n→∞

1

nadn
logP(‖fn(·)− fn(−·)‖∞ > λ) = −J(λ), (1.6)

where

J(λ) = inf
x∈Rd

sup
t∈R

{
tλ− f(x)

∫
Rd

(exp{tK(z)}+ exp{−tK(z)} − 2)dz
}
. (1.7)
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§2. Large Deviations

Let µ be any probability measure on (S, ϕ) and let P =
∏
i∈N

µi be the product proba-

bility measure of µi = µ, i ∈ N. Let ξ : SN 7→ S, i ∈ N, be the coordinate functions. The

following lemma is taken from Giné and Guillou (cf. Giné and Guillou, 2001; Gao, 2003).

Lemma 2.1 Let F be a measurable uniformly bounded VC class of functions and

let σ2 and U be any numbers, such that σ2 ≥ sup
g∈F

Var P (g), U ≥ sup
g∈F
‖g‖∞, and 0 < σ <

U/2. Then, there exist constants C and L depending only on the characteristic (A, v) of

the class F , such that the inequality

P
(

sup
g∈F

∣∣∣ n∑
i=1

(g(ξi)− Eg(ξi))
∣∣∣ > t

)
< L exp

{
− t

LU
log
(

1 +
tU

L[
√
nσ + U

√
log(U/σ) ]2

)}
is valid for all

t ≥ C
(
U log

U

σ
+
√
nσ

√
log

U

σ

)
. (2.1)

The following pointwise principle is an extension of He and Gao (2008) by Gärtner-

Ellis theorem (Dembo and Zeitouni, 1998).

Proposition 2.1 Let K be nonnegative, f(0) = 0 and assumptions (A1), (A2)

and (A3) hold. Assume ϕ(t) < ∞ for all t > 0. Then, for any x ∈ Rd, we have that for

any closed set F ⊂ R,

lim sup
n→∞

1

nadn
logP((fn(x)− fn(−x)) ∈ F ) ≤ − inf

λ∈F
Jx(λ), (2.2)

and for any open set G ⊂ R

lim inf
n→∞

1

nadn
logP((fn(x)− fn(−x)) ∈ G) ≥ − inf

λ∈G
Jx(λ), (2.3)

where

Jx(λ) = sup
t∈R

{
tλ− f(x)

(∫
Rd

(exp{tK(z)}+ exp{−tK(z)} − 2)dz
)}
. (2.4)

Proof We show Proposition 2.1 by using the Gärtner-Ellis Theorem. By the defi-

nition of ϕ, we have that

|ϕ(t)| = ϕ(|t|) <∞, t ∈ R.
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Since Xi, i ≥ 1 are independent and identically distributed, it is easy to get

Ψ(n)
x (t) ≡ E(exp{tnadn(fn(x)− fn(−x))})

=
(
E
(

exp
{
t
(
K
(x−X1

an

)
−K

(−x−X1

an

))}))n
=
{
adn

∫
Rd

exp
{
t
(
K(z)−K

(
z − 2x

an

))}
f(x− anz)dz

}n
.

Without loss of generality, we always assume that x 6= 0, since when x = 0, the

proposition is obvious.

First, we assume that K has a bounded support. Since an → 0 as n → ∞, the

supports of K(z − 2x/an) and K(z) have an empty intersection for n large enough, so

Ψ(n)
x (t) =

[
adn

∫
Rd

f(x− anz)dz + adn

(∫
Rd

(exp{tK(z)} − 1)f(x− anz)dz
)

+ adn

∫
Rd

(
exp

{
− tK

(
z − 2x

an

)}
− 1
)
f(x− anz)dz

]n
.

For (A3), f(x − anz) = f(x) + O(adn|z|) (cf. Rudin, 2004: page 113, Theorem 5.19) as

n→∞ uniformly with respect to x, therefore,

Ψ(n)
x (t) =

[
1 + adn

(∫
Rd

(exp{tK(z)} − 1)(f(x) +O(adn|z|))dz
)

+ adn

∫
Rd

(
exp

{
− tK

(
z − 2x

an

)}
− 1
)

(f(x) +O(adn|z|))dz
]n

=
[
1 + adnf(x)

∫
Rd

(exp{tK(z)}+ exp{−tK(z)} − 2)dz +O(a2dn )
]n
.

So

Ψx(t) ≡ lim
n→∞

1

nadn
log Ψ(n)

x (t) = f(x)

∫
Rd

(exp{tK(z)}+ exp{−tK(z)} − 2)dz,

also the limit is uniform with respect to x and t.

Now, we drop the condition of bounded support,

Ψ(n)
x (t) =

[
adn

∫
Rd

f(x− anz)dz + adn

(∫
Rd

(exp{tK(z)} − 1)f(x− anz)dz
)

+ adn

∫
Rd

(
exp

{
− tK

(
z − 2x

an

)}
− 1
)
f(x− anz)dz + adnα

]n
=
[
1 + adnf(x)

∫
Rd

(exp{tK(z)}+ exp{−tK(z)} − 2)dz +O(a2dn ) + adnα
]n
,
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where

α =

∫
Rd

exp
{
t
(
K(z)−K

(
z − 2x

an

))}
f(x− anz)dz

−
∫
Rd

f(x− anz)dz −
∫
Rd

(exp{tK(z)} − 1)f(x− anz)dz

−
∫
Rd

(
exp

{
− tK

(
z − 2x

an

)}
− 1
)
f(x− anz)dz.

By the conditions of the theorem, for any ε > 0, for n large enough, |α| ≤Mε(2 exp{tK0}
+ 4), where M = ‖f‖∞, K0 = sup

z
K(z). Therefore, α = o(1) as n→∞, it is uniform to

x and t. Hence we get

Ψx(t) ≡ lim
n→∞

1

nadn
log Ψ(n)

x (t) = f(x)

∫
Rd

(exp{tK(z)}+ exp{−tK(z)} − 2)dz.

Since Ψx(t) is differentiable with respect to t ∈ R, Application of Gärtner-Ellis theorem

yields (2.3) and (2.4) immediately. �

Lemma 2.2 Let assumptions (A1) and (A2) hold. For any 0 < δ < 1, let Bn,k,

k = 1, 2, . . . , ln, be ln cubes with side length δan, such that {Bn,k, k = 1, 2, . . . , ln} is a

covering of [−a−1n , a−1n ]d and

ln ≥ 2d(δa2n)−d + 1.

Take zn,k ∈ Bn,k, 1 ≤ k ≤ ln, n ≥ 1. Then, for any ε > 0,

lim
δ→0

lim sup
n→∞

1

nadn
logP

(
sup

1≤k≤ln
sup

x∈Bn,k

|fn,k(x)− fn,k(−x)| ≥ ε
)

= −∞, (2.5)

where fn,k(x) = fn(x)− fn(zn,k), fn,k(−x) = fn(−x)− fn(−zn,k).

Proof we use Lemma 2.2 in Gao (2003) to see that for any η ∈ (0, ε), there exists

δ0 > 0, such that for any δ < δ0 and for any x ∈ Bn,k,∫
Rd

[
K
(x− y

an

)
−K

(zn,k − y
an

)
−
(
K
(−x− y

an

)
−K

(−zn,k − y
an

))]2
f(y)dy

≤ 4adn‖f‖∞η.

Now, take U = 4‖K‖∞, σ2 = 4adn‖f‖∞η, then by Lemma 2.1, for n large enough,

P
(

sup
1≤k≤ln

sup
x∈Bn,k

|fn,k(x)− fn,k(−x)− E(fn,k(x)− fn,k(−x))| ≥ ε
)

≤ Lln exp
{
− nadnε

4‖K‖∞L
log
(

1 +
ε‖K‖∞

4L‖f‖∞η

)}
,

which implies (2.5) by letting η → 0. �
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Lemma 2.3 Suppose that (A1) and (A2) hold. Then for any ε > 0,

lim sup
n→∞

1

nadn
logP

(
sup

x6∈[−a−1
n ,a−1

n ]d
|fn(x)− fn(−x)| ≥ ε

)
= −∞. (2.6)

Proof For any η ∈ (0, ε), there exists n0 > 0, such that, for n ≥ n0,

sup
x6∈[−a−1

n ,a−1
n ]d

∫
Rd

(
K
(x− y

an

)
−K

(−x− y
an

))2
f(y)dy ≤ ηadn.

Now, let us take U = 2‖K‖∞, σ2 = adnη, it follows from Lemma 2.1 that for any n large

enough,

P
(

sup
x6∈[−a−1

n ,a−1
n ]d
|fn(x)− fn(−x)− E(fn(x)− fn(−x))| ≥ ε

)
≤ L exp

{
− εnadn

2L‖K‖∞
log
(

1 +
εnadn‖K‖∞

2Lnadnη

)}
.

Therefore,

lim sup
n→∞

1

nadn
logP

(
sup

x6∈[−a−1
n ,a−1

n ]d
|fn(x)− fn(−x)| ≥ ε

)
≤ − ε

2L‖K‖∞
log
(

1 +
ε‖K‖∞

2Lη

)
.

Letting η → 0, we get (2.6). �

Lemma 2.4 Let K be nonnegative, and let (A1) and (A2) hold. Then for any

λ > 0,

sup
t∈R

inf
x∈Rd
{tλ−Ψx(t)} = inf

x∈Rd
sup
t∈R
{tλ−Ψx(t)}. (2.7)

Proof Set M = ‖f‖∞ and let

G(t, y) = tλ− y
∫
Rd

(exp{tK(z)}+ exp{−tK(z)} − 2)dz.

Then G : R × [0,M ] 7→ R satisfies the property that for t fixed, G(t, y) is convex as a

function of y, and for y fixed, G(t, y) is concave as a function of t. It follows from the

minimax theorem (cf. Sion, 1958) that

sup
t∈R

inf
y∈[0,M ]

G(t, y) = inf
y∈[0,M ]

sup
t∈R

G(t, y),

that is, (2.7) holds. �
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Lemma 2.5 Let K be nonnegative, and let (A1) and (A2) hold. Set

h(t) =

∫
Rd

(exp{tK(z)} − exp{−tK(z)})K(z)dz.

Then, for λ ≥ 0,

J(λ) = λh−1(λ/M)−M
∫
Rd

(exp{h−1(λ/M)K(z)}+ exp{−h−1(λ/M)K(z)} − 2)dz,

where M = ‖f‖∞ and h−1 denotes the inverse of h. In particular, J is continuous on

[0,∞).

Proof It is trivial that h is strictly increasing on [0,∞) and h(0) = 0, lim
t→∞

h(t) =∞,

hence, h−1 exists, and it is strictly increasing and continuous on [0,∞). Let

G(t, y) = tλ− y
∫
Rd

(exp{tK(z)}+ exp{−tK(z)} − 2)dz, t ∈ R, y ∈ [0,M ].

Then, ∂G(t, y)/∂t = λ− yh(t), and so

sup
t∈R

G(t, y) =

G(h−1(λ/y), y) if y 6= 0;

+∞ if y = 0.

Since

G(h−1(λ/y), y) = sup
t≥0

G(t, y) = sup
t≥0

{
tλ−y

∫
Rd

(exp{tK(z)}+exp{−tK(z)}−2)dz
}

(2.8)

is decreasing with respect to y ∈ [0,M ], we have

J(λ) = inf
y∈[0,M ]

sup
t≥0

G(t, y) = G(h−1(λ/M),M).

In particular, J is continuous on [0,∞). �

Proof of Theorem 1.1 Now we prove (1.6). The proof of Theorem 1.1 comes

from that of Theorem 1.2 in Gao (2003). For sake of convenience, we give a complete

proof here. First, for any x ∈ Rd, by Proposition 2.1, we have

lim inf
n→∞

1

nadn
logP(‖fn(·)− fn(−·)‖∞ > λ)

≥ lim inf
n→∞

1

nadn
logP(‖fn(x)− fn(−x)‖∞ > λ) ≥ −Jx(λ).

Hence

lim inf
n→∞

1

nadn
logP(‖fn(·)− fn(−·)‖∞ > λ) ≥ −J(λ).
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To prove the reverse inequality, we note

‖fn(·)− fn(−·)‖∞

= max
{

sup
x∈[−a−1

n ,a−1
n ]d
|fn(x)− fn(−x)|, sup

x6∈[−a−1
n ,a−1

n ]d
|fn(x)− fn(−x)|

}
and

sup
x∈[−a−1

n ,a−1
n ]d
|fn(x)− fn(−x)|

≤ max
1≤k≤ln

{
sup

x∈Bn,k

|fn,k(x)− fn,k(−x)|+ |fn(zn,k)− fn(−zn,k)|
}
,

by Lemmas 2.2 and 2.3, we have that for any 0 < ε < λ/2,

lim sup
n→∞

1

nadn
logP(‖fn(·)− fn(−·)‖∞ > λ)

= lim sup
n→∞

1

nadn
logP

(
sup

x∈[−a−1
n ,a−1

n ]d
|fn(x)− fn(−x)| > λ

)
≤ lim

δ→0
lim sup
n→∞

1

nadn
log
(
P
(

max
1≤k≤ln

sup
x∈Bn,k

|fn,k(x)− fn,k(−x)| ≥ ε
)

+ P
(

max
1≤k≤ln

|fn(zn,k)− fn(−zn,k)| > λ− ε
))

= lim
δ→0

lim sup
n→∞

1

nadn
logP

(
max

1≤k≤ln
|fn(zn,k)− fn(−zn,k)| > λ− ε

)
. (2.9)

On the other hand, by the Chebyshev’s inequality,

P
(

max
1≤k≤ln

|fn(zn,k)− fn(−zn,k)| > λ− ε
)

≤ ln max
1≤k≤ln

{exp{−nadn(λ− ε)t}}Ψn
zn,k

(t). (2.10)

Now, Combining (2.9) and (2.10) we get

lim sup
n→∞

1

nadn
logP(‖fn(·)− fn(−·)‖∞ > λ) ≤ −

{
(λ− ε)t− sup

x∈Rd

Ψx(t)
}
.

Then, by Lemma 2.4,

lim sup
n→∞

1

nadn
logP(‖fn(·)− fn(−·)‖∞ > λ) ≤ −J(λ− ε).

Therefore, by the continuity of J ,

lim sup
n→∞

1

nadn
logP(‖fn(·)− fn(−·)‖∞ > λ) ≤ −J(λ). �
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