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Abstract

In this paper, the differentiability and asymptotic properties of Gerber-Shiu expected dis-

counted penalty function (Gerber-Shiu function for short) associated with the absolute ruin time

are investigated, where the risk model is given by classical risk model with additional random

premium incomes. The additional random premium income process is specified by a compound

Poisson process. A couple of integro-differential equations satisfied by Gerber-Shiu function are de-

rived, several sufficient conditions which guarantee the second-order or third-order differentiability

of Gerber-Shiu function are provided. Based on the differentiability results, when the individual

claim and premium income are both exponential distribution, the previous integro-differential e-

quations can be deduced into a third-order constant ordinary differential equation (ODE for short).

With the standard techniques on ODE, we find the asymptotic behavior of absolute ruin probability

when the initial surplus tends to infinity.

Keywords: Absolute ruin time, Gerber-Shiu function, random premium income, differen-

tiability, asymptotic property.
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§1. Introduction

In the classical risk model, the premium rate is constant and the ruin time is defined as

the first time that the surplus drops below zero. However, under safety loading assumption,

the surplus will be positive soon or later, thus the insurer can maintain the practice by a

loan. Consequently, debit interest has to be taken by the insurer for covering the negative

by the loan. This leads to the concept of absolute ruin, which occurs when the premiums

received are not sufficient to make the interest payments on the debt. Gerber (1971)
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considered the probability of absolute ruin in the compound Poisson model when the debt

and credit interest rates are the same. A closed-form solution is given in the case of an

exponential claim amount distribution. Substantial refinements and generalizations are

given by Dassios and Embrechts (1989). From then on, the absolute ruin problem has

attracted a lot of interest in the study of risk theory. Cai and Yang (2014) studied the

decomposition of absolute ruin probability under a compound Poisson risk model with

diffusion. For other literatures concentrating on this topic, see Gerber and Yang (2007),

Yang et al. (2008) and references therein. A unified approach to cope with this quantities

is to study the Gerber-Shiu expected discounted penalty function, which is introduced by

Gerber and Shiu (1997). Now, the Gerber-Shiu function has become a standard concept

to study ruin theory in all kinds of risk models, see Yuan and Hu (2008), Zhu and Yang

(2008, 2009) and the references therein for detailed discussions.

Another extension on classical risk model is to take the randomness of premium

income into account. Melnikov (2004) studied the ruin probabilities in the risk model

with stochastic premium incomes and all capital of an insurer with such surplus process

was invested in stock market. Stepped literatures can be found in Pan and Wang (2009),

Wei et al. (2008), Xu et al. (2014) and Yu (2013) et al.. In view of this, it is natural to

extend the study of Gerber-Shiu penalty function associated with absolute ruin time for

risk model with fixed premium income rate to the one with random premium income and

debit interest. In this paper, we focus on the case that the premium incomes follow a

compound Poisson process. It is worthy of mentioning that Albrecher et al. (2010) studied

the Gerber-Shiu function associated ruin time for a model with both aggregate premium

process and aggregate claim process are compound Poisson process, therefore, the problem

discussed in this paper can be viewed as a generalization of Albrecher et al. (2010) to the

case of absolute ruin time. As results, several sufficient conditions which guarantee the

second-order or third-order differentiability of Gerber-Shiu function are presented. Based

on the differentiability results, when the individual premium and individual claim are both

exponential distribution, the previous integro-differential equations can be transformed

into a third-order ODE with constant coefficients. With standard techniques on ODE, we

find the asymptotic estimation of absolute ruin probability when the initial surplus tends

to infinity.

The rest of this paper is organized as follows. Section 2 presents an introduction to

the model and the problem. Section 3 presents the sufficient conditions that guarantee the

differentiability of the Gerber-Shiu function. Section 4 discusses the asymptotic behavior

of the ruin probability when the initial surplus goes to infinity.

《
应
用
概
率
统
计
》
版
权
所
有



1nÏ M� Ùr² Çww: �Å�¤�.eýé»�VÇ���5±9ìC5 279

§2. Model and Problem

In this paper, the risk process with stochastic premium income is specified as

U(t) = u+ pt+
N1(t)∑
i=1

Xi −
N2(t)∑
i=1

Yi, t ≥ 0, (2.1)

where U(t) is insurer’s surplus at time t, u ≥ 0 is the insurer’s initial surplus, p is the

constant premium income rate,
N1(t)∑
i=1

Xi is the extra stochastic premiums received up to

time t, N1(t) is a Poisson process with intensity λ1, denotes the number of extra premiums

arrived up to time t.
N2(t)∑
i=1

Yi is the total claims by time t, N2(t) is a Poisson process with

intensity λ2, denotes the number of claims arrived up to time t.

To proceed our explorations, we make the following assumptions. The individual

premium amounts X1, X2, . . . are independent, identically distributed positive random

variables with common distribution F (x) = P(X1 ≤ x), F (0) = 0, EX1 = µ1. The indi-

vidual claim amounts Y1, Y2, . . . are independent, identically distributed positive random

variables with common distribution G(y) = P(Y1 ≤ y), G(0) = 0, EY1 = µ2. The safety

loading condition holds: pt+ E
(N1(t)∑
i=1

Xi

)
> E

(N2(t)∑
i=1

Yi
)
, or equivalently, p+ λ1µ1 > λ2µ2.

Processes {N1(t), t ≥ 0}, {Xi, i ≥ 0}, {N2(t), t ≥ 0} and {Yi, i ≥ 0} are mutually indepen-

dent.

We assume that when the surplus is negative or the insurer is on deficit, the insurer

could borrow an amount of money equal to the deficits with a debit interest force δ > 0.

Meanwhile, the insurer will repay debts continuously from her premium income. When

the mean premium income can not cover the debit, we define that the absolute ruin occurs.

That is to say once the negative surplus is below −c/δ, where c = p + λ1µ1, we say that

absolute ruin occurs at this situation.

Denote by Uδ(t) the surplus at time t of the insurer with the debit interest force δ,

the dynamic of Uδ(t) is specified as

dUδ(t) = δUδ(t)I(Uδ(t) < 0)dt+ dY (t)− dZ(t), (2.2)

where Y (t) =
N1(t)∑
i=1

Xi, Z(t) =
N2(t)∑
i=1

Yi and I(C) denotes the indictor function of an event C

throughout this paper. Denote the absolute ruin time of the surplus process {Uδ(t), t ≥ 0}
by Tδ, i.e.

Tδ = inf{t ≥ 0 : Uδ(t) ≤ −c/δ} (2.3)

with the convention that Tδ = ∞ if Uδ(t) > −c/δ for all t ≥ 0. Let Uδ(T
−
δ ) and |Uδ(Tδ)|

denote the surplus immediately before absolute ruin time and the deficit at absolute ruin
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time respectively. Note that the deficit at absolute ruin time is at least c/δ and the surplus

immediately before absolute ruin time is in the range of (−c/δ,∞).

Remark 1 In classical risk model or model with constant premium income rate,

“absolute ruin” is a easygoing concept since once the premium income does not cover the

debit, the ruin will occurs definitely. However, under a risk model with stochastic premium

income process, it is not easy to verify such deterministic behavior. Here, we adopt the

idea presented in Gerber and Yang (2007), where absolute ruin problem is studied under

the risk model with diffusion and the “absolute ruin time” is defined as the time that the

risk process “does not make profit in average”, i.e. the expected total profit of insurer

is negative. Thus, the absolute ruin time and absolute ruin probability in this paper is

similar to the ones studied in Gerber and Yang (2007).

The Gerber-Shiu function associated to the absolute ruin time is defined as

Φ(u) = E
(
e−αTδω(Uδ(T

−
δ ), |Uδ(Tδ)|)I(Tδ <∞)|Uδ(0) = u

)
, (2.4)

where ω(x1, x2), x1 > −c/δ, x2 ≥ c/δ is a bounded, non-negative function and denotes the

penalty due at absolute ruin. One should note that Φ(u) has different sample paths for

u ≥ 0 and −c/δ < u < 0. Hence, to distinguish the two situations, write Φ(u) = Φ+(u)

for u ≥ 0 and Φ(u) = Φ−(u) for −c/δ < u < 0.

§3. Differentiability and Integro-Differential Equations

In this section, we concentrate on the integral equations that satisfied by Φ+(u)

and Φ−(u) firstly, and then we present sufficient conditions for differentiability of Φ+(u)

and Φ−(u) respectively. The following Theorem 3.1 and Theorem 3.2 are basic and the

corresponding proofs are just directly application of the renewal techniques, thus we omit

them here.

Theorem 3.1 For u ≥ 0,

(λ1 + λ2 + α)Φ+(u) = λ1

∫ ∞
0

Φ+(u+ x)dF (x) + λ2

[ ∫ u

0
Φ+(u− y)dG(y)

+

∫ u+c/δ

u
Φ−(u− y)dG(y) +A(u)

]
+ pΦ′+(u), (3.1)

where A(u) =
∫∞
u+c/δ ω(u, y − u)dG(y).

《
应
用
概
率
统
计
》
版
权
所
有



1nÏ M� Ùr² Çww: �Å�¤�.eýé»�VÇ���5±9ìC5 281

Theorem 3.2 Φ−(u) satisfies the following integro-differential equation

(λ1 + λ2 + α)Φ−(u) = (uδ + p)Φ′−(u) + λ1

[ ∫ −u
0

Φ−(u+ x)dF (x)

+

∫ ∞
−u

Φ+(u+ x)dF (x)
]

+ λ2

[ ∫ u+c/δ

0
Φ−(u− y)dG(y)

+

∫ ∞
u+c/δ

ω(u, y − u)dG(y)
]
. (3.2)

Theorem 3.3 Suppose that F (x) has density function f(y), G(y) has density

function g(y) and

(1) ω(x, y) in Equation (2.4) is bounded in x > −c/δ, y ≥ c/δ;
(2) f(x) and g(y) are twice continuously differentiable on [0,∞) with

∫∞
0 |f

′(x)|dx <
∞,

∫∞
0 |f

′′(x)|dx <∞,
∫∞
0 |g

′(y)|dy <∞ and
∫∞
0 |g

′′(y)|dy <∞;

(3) A(y) is twice continuously differentiable on [0,∞) and both A′(y) and A′′(y) are

bounded on [0,∞).

Then Φ+(u) is third continuously differentiable in u ≥ 0 and both Φ′+(u), Φ′′+(u) and

Φ′′′+(u) are bounded in u ≥ 0.

Proof Introduce

k1(u) =

∫ ∞
0

Φ+(u+ x)f(x)dx =

∫ ∞
u

Φ+(t)f(t− u)dt, (3.3)

k2(u) =

∫ u

0
Φ+(u− y)g(y)dy =

∫ u

0
Φ+(t)g(u− t)dt, (3.4)

k3(u) =

∫ u+c/δ

u
Φ−(u− y)g(y)dy =

∫ 0

−c/δ
Φ−(t)g(u− t)dt, (3.5)

and rewrite Equation(3.1) as

Φ′+(u) =
λ1 + λ2 + α

p
Φ+(u)− λ1

p
k1(u)− λ2

p
(k2(u) + k3(u) +A(u)). (3.6)

We first show that Φ′+(u) is continuous and bounded in u ≥ 0. Note that ω(x, y) ≤M
for some constant M large enough, naturally, we have 0 ≤ Φ+(u) ≤ MP(Tδ < ∞) ≤ M

and 0 ≤ Φ−(u) ≤MP(Tδ <∞) ≤M . By assumption (1), it follows that Φ+(u) and Φ−(u)

are bounded and consequently, it is easy to see that k1(u), k2(u) and k3(u) are continuous

since f(u) and g(u) is continuous and Φ+(u) and Φ−(u) are bounded. Furthermore,

k1(u), k2(u) and k3(u) are bounded. Thus, by Equation (3.6), Φ′+(u) is continuous and

bounded. We next prove that Φ+(u) is twice continuously differentiable. Since Φ+(u)

is continuous and f(u) is continuously differentiable in u ≥ 0, we have that k1(u) is
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continuously differentiable when u ≥ 0 and

k′1(u) = −Φ+(u)f(0+)−
∫ ∞
u

Φ+(t)f ′(t− u)dt. (3.7)

Together with assumption (2) and note that the Φ+(u) is bounded, we have

|k′1(u)| ≤M1 for some constants M1 > 0. (3.8)

With the same discussion, we have both k′2(u) and k′3(u) are continuously differentiable

and

|k′2(u)| ≤M2 for some constants M2 > 0, (3.9)

|k′3(u)| ≤M3 for some constants M3 > 0. (3.10)

Equation (3.8) and Equation (3.10) imply that Φ′′+(u) is continuous, bounded and is spec-

ified as

Φ′′+(u) =
λ1 + λ2 + α

p
Φ′+(u)− λ1

p
k′1(u)− λ2

p
(k′2(u) + k′3(u) +A′(u)). (3.11)

We now prove that Φ+(u) is third continuously differentiable. By Equation (3.8) and

Equation (3.11), it follows that

k′′1(u) = −Φ′+(u)f(0+) + Φ+(u)f ′(0+) +

∫ ∞
u

Φ+(t)f ′′(t− u)dt. (3.12)

Together with assumption (3) and note that Φ+(u) and Φ′+(u) are bounded, we have

|k′′1(u)| ≤M4 for some constants M4 > 0. (3.13)

With a similar discussion, we can have k′′2(u) and k′′3(u) are bounded and the following

equations holds

Φ′′′+(u) =
λ1 + λ2 + α

p
Φ′′+(u)− λ1

p
k′′1(u)− λ2

p
(k′′2(u) + k′′3(u) +A′′(u)) (3.14)

is continuous and bounded. �

Theorem 3.4 Suppose that F (x) has density function f(y), G(y) has density

function g(y) and

(1) ω(x, y) in Equation (2.4) is bounded in x > −c/δ, y ≥ c/δ;
(2) f(x) and g(y) are twice continuously differentiable on [0,∞) with

∫∞
0 |f

′(x)|dx <
∞,

∫∞
0 |f

′′(x)|dx <∞,
∫∞
0 |g

′(y)|dy <∞ and
∫∞
0 |g

′′(y)|dy <∞;

(3) A(y) is twice continuously differentiable on (−c/δ, 0) and both A′(y) and A′′(y)

are bounded on (−c/δ, 0).

Then Φ−(u) is third continuously differentiable in −c/δ < u < 0 and both Φ′−(u), Φ′′−(u)

and Φ′′′−(u) are bounded in −c/δ < u < 0.
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Proof Let

h1(u) =

∫ −u
0

Φ−(u+ x)f(x)dx =

∫ 0

u
Φ−(t)f(t− u)dt, (3.15)

h2(u) =

∫ ∞
−u

Φ+(u+ x)f(x)dx =

∫ ∞
0

Φ+(t)f(t− u)dt, (3.16)

h3(u) =

∫ u+c/δ

0
Φ−(u− y)g(y)dy =

∫ u

−c/δ
Φ−(t)g(u− t)dt, (3.17)

rewrite Equation (3.2) as

Φ′−(u) =
λ1 + λ2 + α

uδ + p
Φ−(u)− λ1

uδ + p
(h1(u) + h2(u))− λ2

uδ + p
(h3(u) +A(u)). (3.18)

It is easy to see that Φ′−(u) is continuous and bounded. We next prove that Φ−(u) is

twice continuously differentiable. Since Φ−(u) is continuous and f(u) is continuously

differentiable in u > 0, we have that h1(u) is continuously differentiable when −c/δ < u <

0 and

h′1(u) = −Φ−(u)f(0+)−
∫ 0

u
Φ−(t)f ′(t− u)dt. (3.19)

Together with assumption (2) and note that the Φ−(u) is bounded, we have

|h′1(u)| ≤ N1 for some constants N1 > 0. (3.20)

With the same discussion, we have both h′2(u) and h′3(u) are continuously differentiable

and

|h′2(u)| ≤ N2 for some constants N2 > 0, (3.21)

|h′3(u)| ≤ N3 for some constants N3 > 0. (3.22)

Equation (3.20) to Equation (3.22) imply that Φ′′−(u) is continuous, bounded and is

specified as

Φ′′−(u) =
(λ1 + λ2 + α)Φ′−(u)− λ1(h′1(u) + h′2(u))− λ3(h′3(u) +A′(u))

uδ + p

− (λ1 + λ2 + α)Φ−(u)δ − λ1(h1(u) + h2(u))δ − λ2(h3(u) +A(u))δ

(uδ + p)2
. (3.23)

Further, similarly, we can show that Φ′′′−(u) is continuous and bounded in −c/δ < u <

0. �
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§4. Exponential Case

In this section we illustrate the impact of stochastic premium income on the Gerber-

Shiu function and ruin probability and present an explicit expression for the solution of

integro-differential equation obtained in Section 3 when both individual premium and

claim follow exponential distribution. As it was described in Albrecher et al. (2010), ex-

ponential distribution is of great importance in risk research since we can approximate

any individual claims or individual premiums by a linear combination of exponential dis-

tribution. Let F (x) = 1 − e−ax, G(y) = 1 − e−by, a > 0, b > 0, λ1/a > λ2/b, and

ω(x, y) ≡ 1. Introduce ξ+(u) = 1 − Φ+(u) and ξ−(u) = 1 − Φ−(u), then Equation (3.1)

can be reformulated as

− pξ′+(u) + (λ1 + λ2 + α)ξ+(u)

= α+ λ1

∫ ∞
0

ξ+(u+ x)ae−axdx

+ λ2

[ ∫ u

0
ξ+(u− y)be−bydy +

∫ u+c/δ

u
ξ−(u− y)be−bydy

]
. (4.1)

By taking the derivative with respect to u on both sides of Equation (4.1), we have

−pξ′′+(u) = − (λ1 + λ2 + α)ξ′+(u)λ1

[
− aξ+(u) + a

∫ ∞
0

ξ+(u+ x)ae−axdx
]

+ λ2

[
bξ+(u)− b

∫ u

0
ξ+(u− y)be−bydy − b

∫ u+c/δ

u
ξ−(u− y)be−bydy

]
.

Taking the derivative with respect to u again yields

− pξ′′′+ (u) + (λ1 + λ2 + α)ξ′′+(u) + (λ1a− λ2b)ξ′+(u) + (λ1a
2 + λ2b

2)ξ+(u)

= λ1a
2

∫ ∞
0

ξ+(u+ x)ae−axdx+ λ2b
2
[ ∫ u

0
ξ+(u− y)be−bydy +

∫ u+c/δ

u
ξ−(u− y)be−bydy

]
.

Similarly, we have

− p(a− b)ξ′′+(u) + [−pab+ (a− b)(λ1 + λ2 + α)]ξ′+(u)

+ (abα+ λ1a
2 + λ2b

2)ξ+(u)− abα

= λ1a
2

∫ ∞
0

ξ+(u+ x)ae−axdx

+ λ2b
2
[ ∫ u

0
ξ+(u− y)be−bydy +

∫ u+c/δ

u
ξ−(u− y)be−bydy

]
, (4.2)

together with Equation (4.2), it is followed with

pξ′′′+ (u)− (pa−pb+λ1 +λ2 +α)ξ′′+(u)− (pab−λ2a−aα+λ1b+bα)ξ′+(u)+abαξ+(u) = abα

(4.3)
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and

− (uδ + p)ξ′−(u) + (λ1 + λ2 + α)ξ−(u)

= α+ λ1

[ ∫ −u
0

ξ−(u+ x)ae−axdx+

∫ ∞
−u

ξ+(u+ x)ae−axdx
]

+ λ2

∫ u+c/δ

0
ξ−(u− y)be−bydy. (4.4)

Taking derivative with respect to u on both sides of (4.4) yields

− (uδ + p)ξ′′−(u) + (λ1 + λ2 + α− δ)ξ′−(u) + (λ1a− λ2b)ξ−(u)

= λ1a
[ ∫ −u

0
ξ−(u+ x)ae−axdx+

∫ ∞
−u

ξ+(u+ x)ae−axdx
]

− λ2b
∫ u+c/δ

0
ξ−(u− y)be−bydy. (4.5)

Repeating the previous step, we have

− (uδ + p)ξ′′′− (u) + (λ1 + λ2 + α− 2δ)ξ′′−(u) + (λ1a− λ2b)ξ′−(u) + (λ1a
2 + λ2b

2)ξ−(u)

= λ1a
2
[ ∫ −u

0
ξ−(u+ x)ae−axdx+

∫ ∞
−u

ξ+(u+ x)ae−axdx
]

+ λ2b
2

∫ u+c/δ

0
ξ−(u− y)be−bydy. (4.6)

Let (4.4)× ab+ (4.5)× (a− b), it follows that

− (uδ + p)(a− b)ξ′′−(u) + [−(uδ + p)ab+ (a− b)(λ1 + λ2 + α− δ)]ξ′−(u)

+ (λ1a
2 + λ2b

2 + abα)ξ−(u)− abα

= λ1a
2
[ ∫ −u

0
ξ−(u+ x)ae−axdx+

∫ ∞
−u

ξ+(u+ x)ae−axdx
]

+ λ2b
2

∫ u+c/δ

0
ξ−(u− y)be−bydy, (4.7)

together with (4.6), it follows that

(uδ + p)ξ′′′− (u)− [(uδ + p)(a− b) + λ1 + λ2 + α− 2δ]ξ′′−(u)

+ [−(uδ + p)ab+ λ2a+ aα− aδ − bλ1 − bα+ bδ]ξ′−(u) + abαξ−(u)

= abα. (4.8)

In the rest of this section, we focuses on the asymptotic estimation when initial surplus ap-

proaches to infinity, say u→∞, thus we just need to concentrate on Equation (4.3). Note
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that Equation (4.3) takes the form of the following third-order constant linear ordinary

differential equation

y′′′xxx + a2y
′′
xx + a1y

′
x + a0y =

abα

p
, (4.9)

whose corresponding homogeneous equation is

y′′′xxx + a2y
′′
xx + a1y

′
x + a0y = 0. (4.10)

Denote by

ζ(λ) = λ3 + a2λ
2 + a1λ+ a0. (4.11)

Then there are two probably solutions to the homogeneous equation.

(1) If the characteristic polynomial ζ(λ) is factorizable and

ζ(λ) = (λ− λ01)(λ− λ02)(λ− λ03), (4.12)

where λ01, λ02, λ03 are real numbers. Solution:

y =


C1e

λ01x + Cλ02x2 + Cλ03x3 if all roots are different;

(C1 + C2x)eλ01x + Cλ03x3 if λ01 = λ02 6= λ03;

(C1 + C2x+ C3x
2)eλ01x if λ01 = λ02 6= λ03.

(4.13)

(2) If

ζ(λ) = (λ− λ01)(λ2 − k1λ+ k0) = 0, (4.14)

then the solution is of the form

y = C1e
λ01x + e−k1x(cos θx+ C3 sin θx), (4.15)

where θ =
√
b0 − b21.

Obviously, since the ruin time Tδ → ∞ when u → ∞, it follows that Ψ+(u) → 0

and ξ+(u) is positive and ξ+(u) → 1. Note that ξ+(u) ≡ 1 is a special solution to

Equation (4.3), together with preceding analysis and Equations (4.13)-(4.15), we claim

that asymptotic estimation of the Gerber-Shiu penalty function is

Ψ+(u) ∼ C̃eλ̃01u, u→∞, (4.16)

where the coefficients C̃ is the largest real number among C1, C2, C3 subject to the con-

straints {λk > 0}, which is to be determined according to the solution of characteristic

polynomial ζ(λ) = 0 and comparing coefficients method.
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Particularly, by putting ω ≡ 1 and α = 0, Ψ+(u) is reduced to ruin probability.

Denoted by Ψ+(u) the ruin probability and Ψ+(u) = 1−Ψ+(u), then we have

pΨ
′′′
+(u)− (p(a− b) + λ1 + λ2)Ψ

′′
+(u)− (pab− λ2a− λ1b)Ψ

′
+(u) = 0. (4.17)

Denote by g(u) the Ψ
′
+(u), then preceding equations is rewritten as

pg′′(u)− (p(a− b) + λ1 + λ2)g
′(u)− (pab− λ2a− λ1b)g(u) = 0. (4.18)

The characteristic equation of Equation (4.18) is

pλ2 − (p(a− b) + λ1 + λ2)λ− (pab− λ2a− λ1b) = 0. (4.19)

With standard calculations on constant linear second-order ODE, we have

g(u) = C1e
λ01u + C2e

λ02u. (4.20)

Thus Ψ(u) ∼ 1− C̃eλ̃u and

Ψ(u) ∼ C̃eλ̃u, (4.21)

where C̃(> 0) and λ̃(< 0) is determined by comparison coefficients method.

Remark 2 Due to the fact that most distribution function can be approximated by

the linear combination of exponential distribution. If the distribution of individual claims

and individual random premiums are both finite combination of exponential distribution,

we can easily come to an an exponential asymptotic estimation of ruin probability, with

an analogue form of Equation (4.21). Motivated by such a result, it is easy to find that

when the individual random premium income and individual claim are both “light tailed”

distributed, the decay of absolute ruin probability does not differ to the one for the model

without extra random premium income. As to the case that both individual random

premium and claim are both heavy-tailed, Wei et al. (2008) shows that under the decay of

ruin probability is mainly dominated by the decay of the distribution function of individual

claim. It is a remaining topic for the absolute ruin probability under the model with

random premium income.
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