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Abstract

This study has considered the compound Poisson risk model perturbed by diffusion with con-

stant interest and obtained an integral-differential equation for the Gerber-Shiu discounted penalty

function. Asymptotic expression for the ultimate ruin probability also derived across the study.
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§1. Introduction

This study investigates some recent work on perturbing compound Poisson risk model

with constant interest. The surplus process of the insurer satisfies

U(t) = ertx+ c

∫ t

0
er(t−v)dv −

∫ t

0
er(t−v)dSv + σ

∫ t

0
er(t−v)dB(v), (1.1)

where x ≥ 0 is the initial reserve, c > 0 is the constant rate of premium, σ ≥ 0 is a fixed

constant and r is a nonnegative constant, which represents the interest rate. St is taken

to be a compound Poisson process, i.e. St =
N(t)∑
k=1

Xk, t ≥ 0, where N(t) = #{k = 1, 2, . . . :

θk ≤ t} is a Poisson process with intensity λ > 0 and {Xk, k = 1, 2, . . .} is a sequence of

independent, identically distributed (i.i.d.), and nonnegative random variables, in which

Xk represents the amount of the k-th claim, and θk is the arrival time of the k-th claim.

f(·) denotes the probability density function of X1, and F (·) denotes the distribution

function of X1. Furthermore, {B(t), t ≥ 0} denotes a standard Brownian motion. For
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k = 1, 2, . . ., denote by τk the inter-time between the (k − 1)-th claim and the k-th claim.

Then {τk, k ≥ 1} is a sequence of i.i.d. random variables with exponential distribution

with the parameter λ, and θk =
k∑
i=1

τi. {Xk, k = 1, 2, . . .}, {N(t), t ≥ 0} and {B(t), t ≥ 0}

are assumed as mutually independent. Then (1.1) can be rewrote as

U(t) = ertx+
c

r
(ert − 1)−

N(t)∑
k=1

er(t−θk)Xk + σ

∫ t

0
er(t−v)dB(v). (1.2)

Obviously, the risk process is a homogeneous strong Markov process. And the risk model

has been studied in many existing work, see Gao and Liu (2010), Wang and Wu (2008)

and the references therein.

The time of ruin for risk process (1.2) is defined as T = inf{t ≥ 0 |U(t) < 0}. We

define the corresponding ultimate ruin probability ψ(x) = P(T < ∞|U(0) = x). We

consider the Gerber-Shiu discounted penalty function of the surplus immediately prior to

ruin and the deficit at ruin when ruin occurs as a function of initial surplus x, namely,

Φr,δ(x) = Ex[e−δTω(U(T−), |U(T )|)I(T <∞)],

where ω(y1, y2), 0 ≤ y1, y2 <∞, is a nonnegative function and δ is a nonnegative param-

eter. We can interpret exp{−δT} as the “discount factor”.

The financial explanations of ω(y1, y2) can be found in Gerber and Shiu (1998). The

Gerber-Shiu discounted penalty function has been studied by many scholars including

Zhao et al. (2014), Tang and Wei (2010), Sun (2005), Bao and Ye (2007), Cai and Dickson

(2002), Lin and Pavlova (2006), and Cheung (2011). The ruin probability is also a central

research topic in insurance mathematics and applied probability. Studies involve ruin

probability can be found in Wang and Li (2014), Zhou and Zhu (2014), Yang and Wang

(2010), Zhang and Wang (2012), among others.

The rest of the paper consists of two sections. Section 2 presents the integral-differ-

ential equations for the Gerber-Shiu discounted penalty function and the ultimate ruin

probability. While the asymptotic expression for the ultimate ruin probability will be

given after presenting a series of lemmas in Section 3.

§2. Integral-Differential Equation for the Gerber-Shiu

Discounted Penalty Function

Let us first recall the definition of the class S ∗ (Schmidli, 2005). A distribution

function F (x) is in S ∗ if it has finite mean µF and

lim
x→∞

∫ x

0

(1− F (x− y))(1− F (y))

1− F (x)
dy = 2µF .
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This condition can also be written as

lim
x→∞

∫ x/2

0

(1− F (x− y))(1− F (y))

1− F (x)
dy = µF .

If F (x) has a regularly varying tail then F (x) ∈ S ∗. Moreover, the log-normal and

the heavy-tailed Weibull distributions belong to S ∗. Thus, S ∗ contains all heavy-tailed

distribution functions of interest.

For two positive functions a(·) and b(·), we write a(x) ∼ b(x) if lim
x→∞

a(x)/b(x) = 1.

For notational convenience, we introduce κ = 2λ/σ2 and γ(x) = −ψ′′(x)/κ(1−F (x))

− rxψ′(x)/λ(1− F (x)). We let `(x) = f(x)/(1− F (x)) be the hazard rate.

Theorem 2.1 Consider the insurance risk model introduced in Section 1. The

function Φr,δ(x) satisfies the following integral-differential equation

1

2
σ2Φ′′r,δ(x) + (rx+ c)Φ′r,δ(x)− (λ+ δ)Φr,δ(x)

+ λ

∫ x

0
Φr,δ(x− y)f(y)dy + λ

∫ ∞
x

ω(x, y − x)f(y)dy = 0. (2.1)

Proof For any h > 0, define m(s) = ersx + c(ers − 1)/r + σ
∫ s
0 er(s−v)dB(v) and

T̃h = inf{s > 0|m(s) < 0} ∧ h. By considering the occurrence time θ1 of the first claim,

we have

Φr,δ(x) = Ex[e−δTω(U(T−), |U(T )|)I(T <∞)I(θ1 > h)]

+ Ex[e−δTω(U(T−), |U(T )|)I(T <∞)I(θ1 ≤ h)]

= E1 + E2. (2.2)

By the strong Markov property, we get

E1 = E
[
e−δT̃hE

U(T̃h)
[e−δTω(U(T−), |U(T )|)I(T <∞)]I(θ1 > h)

]
=

∫ ∞
h

E
[
e−δT̃hΦr,δ(U(T̃h))

]
λe−λtdt

= e−λhE
[
e−δT̃hΦr,δ(U(T̃h))

]
. (2.3)

For E2, we have

E2 = Ex[e−δTω(U(T−), |U(T )|)I(T <∞)I(θ1 ≤ h)I(T̃θ1 < θ1)]

+ Ex[e−δTω(U(T−), |U(T )|)I(T <∞)I(θ1 ≤ h)I(T̃θ1 = θ1)]

= E3 + E4. (2.4)
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If T̃θ1 < θ1, then T = T̃θ1 , and thus

E3 = Ex
[
e−δT̃θ1ω(U(T̃θ1−), |U(T̃θ1)|)I(θ1 ≤ h)I(T̃θ1 < θ1)

]
=

∫ h

0
Ex
[
e−δT̃tω(U(T̃t−), |U(T̃t)|)I(T̃t < t)

]
λe−λtdt. (2.5)

For E4, by conditioning on the amount of the first claim, whether the first claim causes

ruin, we get

E4 = Ex[e−δTω(U(T−), |U(T )|)I(T <∞)I(θ1 ≤ h)I(T̃θ1 = θ1)I(X1 ≤ m(θ1))]

+ Ex[e−δTω(U(T−), |U(T )|)I(T <∞)I(θ1 ≤ h)I(T̃θ1 = θ1)I(X1 > m(θ1))]

= E5 + E6. (2.6)

By the strong Markov property, we obtain

E5 = E
[
e−δθ1EU(θ1)[e

−δTω(U(T−), |U(T )|)I(T <∞)]I(θ1 ≤ h)I(T̃θ1 = θ1)

× I(X1 ≤ m(θ1))
]

=

∫ h

0

∫ m(t)

0
e−δtΦr,δ(m(t)− y)P(T̃t = t)f(y)λe−λtdydt. (2.7)

On the other hand, if X1 > m(θ1), then T = θ1, and thus

E6 = Ex[e−δθ1ω(U(θ1−), |U(θ1)|)I(θ1 ≤ h)I(T̃θ1 = θ1)I(X1 > m(θ1))]

=

∫ h

0

∫ ∞
m(t)

e−δtω(m(t), y −m(t))P(T̃t = t)f(y)λe−λtdydt. (2.8)

From equalities (2.2)-(2.8), we see that

Φr,δ(x) = E1 + E3 + E5 + E6.

Using Itô’s formula, we have

lim
h↓0

E1 − Φr,δ(x)

h
=

1

2
σ2Φ′′r,δ(x) + (rx+ c)Φ′r,δ(x)− (λ+ δ)Φr,δ(x).

Since

lim
h↓0

E3

h
= 0,

lim
h↓0

E5

h
= λ

∫ x

0
Φr,δ(x− y)f(y)dy,

and

lim
h↓0

E6

h
= λ

∫ ∞
x

ω(x, y − x)f(y)dy,

we can get the equation (2.1). �
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Corollary 2.1 Consider the insurance risk model introduced in Section 1. The

ultimate ruin probability ψ(x) satisfies the following integral-differential equation

1

2
σ2ψ′′(x) + (rx+ c)ψ′(x)− λψ(x) + λ

∫ x

0
ψ(x− y)f(y)dy + λ(1− F (x)) = 0. (2.9)

Proof When δ = 0 and ω(y1, y2) ≡ 1, Φr,δ(x) = ψ(x). Thus, by the equation (2.1)

we can get the equation (2.9). �

§3. Asymptotic Expression for the Ultimate Ruin

Probability

Lemma 3.1 The ultimate ruin probability

ψ(x) = κ

∫ ∞
x

[
ae−rz

2/σ2
+ e−rz

2/σ2

∫ z

0
ery

2/σ2
(1− F (y))γ(y)dy

]
dz,

where a = −ψ′(0)/κ.

Proof The definition of γ(x) can be expressed as

(ψ′(x)erx
2/σ2

)′ = −κerx
2/σ2

γ(x)(1− F (x)).

Integration yields

ψ′(x) = −κ
[
ae−rx

2/σ2
+ e−rx

2/σ2

∫ x

0
ery

2/σ2
(1− F (y))γ(y)dy

]
.

Integrating the above equation from x to ∞, we get

ψ(x) = κ

∫ ∞
x

[
ae−rz

2/σ2
+ e−rz

2/σ2

∫ z

0
ery

2/σ2
(1− F (y))γ(y)dy

]
dz. �

Lemma 3.2 Suppose F ∈ S ∗ and lim
x→∞

`(x) = 0. Let g(x) = −ψ′(x)/(1− F (x)),

then lim
x→∞

g(x) = 0.

Proof By the equation (2.9) of Corollary 2.1, we obtain

1

2
σ2ψ′′(x) + (rx+ c)ψ′(x)− λ

∫ x

0
ψ′(x− y)(1− F (y))dy + λδ(0)(1− F (x)) = 0,

where δ(0) = 1 − ψ(0) ∈ (0, 1). Substituting ψ′(x) = −g(x)(1 − F (x)) and ψ′′(x) =

g(x)f(x)− g′(x)(1− F (x)) in the above equation, we see that,

1

2
σ2g(x)f(x)− 1

2
σ2g′(x)(1− F (x))− (rx+ c)g(x)(1− F (x))

+ λ

∫ x

0
g(x− y)(1− F (x− y))(1− F (y))dy + λδ(0)(1− F (x)) = 0.
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Dividing by 1− F (x), we get

1

2
σ2g(x)`(x)− 1

2
σ2g′(x)− (rx+ c)g(x)

+ λ

∫ x

0
g(x− y)

(1− F (x− y))(1− F (y))

1− F (x)
dy + λδ(0) = 0. (3.1)

We first show that g(x) is bounded. Suppose the opposite. Let {xn} be a sequence

tending to infinity such that g(xn) ≥ g(z) for all z ≤ xn. Such a sequence exists if g(x) is

unbounded. Clearly, g′(xn) ≥ 0. By the equation (3.1), we can obtain

g(xn)
[1

2
σ2`(xn)− (rxn + c) + λ

∫ xn

0

(1− F (xn − y))(1− F (y))

1− F (xn)
dy
]

+ λδ(0)

≥ 1

2
σ2g′(xn) ≥ 0.

Because F ∈ S ∗ the integral is bounded. Because the hazard rate tends to zero the left

hand side can be made arbitrarily small, in particular much smaller than zero. Thus, g(x)

must be bounded. By the equation (3.1), it follows that σ2g′(x)/2 + rxg(x) is bounded.

If g(x) would not converge then there must be a sequence {xn} tending to infinity such

that g(xn) → lim
x→∞

g(x) > 0 and g′(xn) = 0. But then σ2g′(xn)/2 + rxng(xn) would be

unbounded. Thus, g(x) converges. Suppose that the limit is not zero. Because σ2g′(x)/2+

rxg(x) is bounded this is only possible if g′(x)/g(x) ≤ −ε for x large enough. Integration

over (x0, z) yields g(z) ≤ g(x0)e
−ε(z−x0). Thus, lim

x→∞
g(x) = 0. �

Lemma 3.3 Under the conditions of Lemma 3.2, we have lim
x→∞

γ(x) = 1.

Proof From Lemma 3.2 we know that lim
x→∞

g(x) = 0. Choose ε > 0. There is x0

such that g(x) < ε for all x > x0. Thus,∫ x/2

0
g(x− y)

(1− F (x− y))(1− F (y))

1− F (x)
dy < ε

∫ x/2

0

(1− F (x− y))(1− F (y))

1− F (x)
dy,

for x > 2x0. Using the arbitrariness of ε, we see that,

lim
x→∞

∫ x/2

0
g(x− y)

(1− F (x− y))(1− F (y))

1− F (x)
dy = 0.

Similarly, we can obtain

lim
x→∞

∫ x/2

x0

g(y)
(1− F (x− y))(1− F (y))

1− F (x)
dy = 0.

Moreover,

lim
x→∞

∫ x0

0
g(y)

(1− F (x− y))(1− F (y))

1− F (x)
dy =

∫ x0

0
g(y)(1− F (y))dy,
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it follows that

lim
x→∞

∫ x

0
g(x− y)

(1− F (x− y))(1− F (y))

1− F (x)
dy

= lim
x→∞

∫ x/2

0
(g(y) + g(x− y))

(1− F (x− y))(1− F (y))

1− F (x)
dy

=

∫ ∞
0

g(y)(1− F (y))dy

= ψ(0).

From (3.1), we can get

lim
x→∞

[ σ2ψ′′(x)

2(1− F (x))
+

rxψ′(x)

1− F (x)

]
= −λ.

Thus,

lim
x→∞

γ(x) = 1. �

Theorem 3.1 Consider the insurance risk model introduced in Section 1 in which

the claim-size distribution F belongs to the class S ∗. Then

ψ(x) ∼ 2λ

σ2

∫ ∞
x

e−rz
2/σ2

∫ z

0
ery

2/σ2
(1− F (y))dydz.

Proof Let us first assume that lim
x→∞

`(x) = 0. Applying Lemma 3.1, we obtain

ψ(x) = κ

∫ ∞
x

[
ae−rz

2/σ2
+ e−rz

2/σ2

∫ z

0
ery

2/σ2
(1− F (y))γ(y)dy

]
dz.

Because
∫ z
0 ery

2/σ2
(1 − F (y))dy/erz

2/σ2
tends to zero as z → ∞, we can use L’Hospital’s

rule and Lemma 3.3 to obtain

lim
x→∞

ψ(x)

κ

∫ ∞
x

e−rz
2/σ2

∫ z

0
ery

2/σ2
(1− F (y))dydz

= lim
x→∞

a+

∫ x

0
ery

2/σ2
γ(y)(1− F (y))dy∫ x

0
ery

2/σ2
(1− F (y))dy

= lim
x→∞

γ(x)

= 1.

This proves the result if `(x) tends to zero as x→∞.

On the other hand, if `(x) would not tend to zero as x→∞. As proved in Rolski et

al. (1999) there is always a tail equivalent differentiable distribution function F̃ (x) whose
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hazard rate ˜̀(x) converges to zero. Tail equivalent means that 1 − F̃ (x) ∼ 1 − F (x).

Construct F1(x) such that 1 − F (x) ≤ 1 − F1(x), 1 − F (x) ∼ (1 − ε)(1 − F1(x)) and

`1(x) → 0. The corresponding ultimate ruin probability of the claims with distribution

function F1(x) is defined by ψ1(x). Because the claims with distribution function F (x) are

smaller than the claims with distribution function F1(x) we have ψ(x) ≤ ψ1(x). Therefore,

lim
x→∞

ψ(x)

κ

∫ ∞
x

e−rz
2/σ2

∫ z

0
ery

2/σ2
(1− F (y))dydz

≤ lim
x→∞

ψ1(x)

(1− ε)κ
∫ ∞
x

e−rz
2/σ2

∫ z

0
ery

2/σ2
(1− F1(y))dydz

=
1

1− ε
.

Similarly, we can obtain

lim
x→∞

ψ(x)

κ

∫ ∞
x

e−rz
2/σ2

∫ z

0
ery

2/σ2
(1− F (y))dydz

≥ 1

1 + ε
.

Using the arbitrariness of ε, we can get the result. �
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