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Abstract

In this paper, we present a logarithm representation of operator scaling stable random fields

which in particular contains a class of Log-fractional stable motion {∆log(x), x ≥ 0}, and investigate

the related sample paths regularity.
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§1. Introduction

Self-similar processes, first studied rigorously by Lamperti (1962) under the name

“semi-stable”, are processes that are invariant under suitable transformations of time and

scale. There has been an extensive literature on self-similar processes. We refer the

reader to Samorodnitsky and Taqqu (1994) for studies on Gaussian and stable self-similar

processes and random fields, and to Embrechts and Maejima (2002) for an overview of

self-similar processes in the one-dimensional case d = 1.

Unfortunately, the classical notion of self-similarity, defined for a field {X(x)}x∈Rd on

Rd by

{X(ax)}x∈Rd
L
= {aHX(x)}x∈Rd

for some H ∈ R, is isotropic, that is variant under rotation of the underlying parameter

space. In many applications, for example the modeling of fractured rock, however, random

fields should have an anisotropic nature in the sense that they have different geometric

characteristic in different directions. For this reason, an increasing interest has been paid

in defining a suitable concept for anisotropic self-similarity. Many authors have developed

techniques to handle anisotropy in the scaling.
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A model of anisotropic self-similar random field is the class of operator scaling random

fields introduced by Biermé et al. (2007). These fields satisfy the following scaling property

{X(aEx)}x∈Rd
L
= {aHX(x)}x∈Rd (1.1)

for some matrix E whose eigenvalues have a positive real part. With this definition,

note that if E = I, the identity matrix, then (1.1) is just the well-known self-similarity

property. The authors present a moving average and a harmonizable representation of

stable operator scaling random fields which are defined, respectively, as follows:

Xϕ(x) =

∫
Rd

(ϕ(x− y)H−q/α − ϕ(−y)H−q/α)Zα(dy), x ∈ Rd, 0 < α ≤ 2, 0 < H < β

(1.2)

and

Xψ(x) = Re

∫
Rd

(ei〈x,y〉 − 1)ψ(y)−H−q/αWα(dy), x ∈ Rd, 0 < α ≤ 2, (1.3)

where Zα(dy) denotes an independently scattered symmetric α-stable (SαS) random mea-

sure on Rd with Lebesgue control measure λd, and Wα(dy) denotes a complex isotropic

SαS random measure with Lebesgue control measure (Samorodnitsky and Taqqu, 1994;

p.281). We refer the reader to Biermé et al. (2007; Theorem 3.1, Theorem 4.1) for the

explicit definitions of (1.2) and (1.3). Biermé and Lacaux (2009) subsequently investigate

the sample paths regularity of operator scaling α-stable random fields.

However, it is obvious that the representation (1.2) is not well defined when we are

taking into account the case H = q/α. Thus in this paper we discuss this case and analyze

related sample paths regularity properties.

The paper is organized as follows. In Section 2, we recall and fix some notations and

notions about operator scaling random fields. In Section 3, we prove the existence of loga-

rithm representation of operator scaling random fields which was called the Log-operator

scaling random fields. In Section 4, we analyze the related sample paths properties.

Throughout this paper, we adopt the following notations.
L
= denotes the equality of all finite dimensional marginal distributions.

We denote Md(R) the matrix with order d× d.

ε+ = {E ∈Md(R): the eigenvalues of E have positive real part}.
Let q = trace(E), where E ∈Md(R).

For any E ∈Md(R), let us define

ρmin(E) = min
λ∈Sp(E)

(|Re(λ)|), ρmax(E) = max
λ∈Sp(E)

(|Re(λ)|),

where Re represents real part of a complex number.
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For any real a > 0, aE denotes the matrix

aE = exp(E log a) =
∞∑
k=0

Ek(log a)k

k!
.

The constant C with or without indexes will denote different constants (depending

on the indexes) whose values are not important.

§2. Preliminaries

Now let us recall and fix some notations and notions about operator scaling random

fields.

Definition 2.1 Let E ∈ ε+. A function ρ defined on Rd is a (Rd, E)-pseudo norm,

if it satisfies the three following properties:

(a) ρ is continuous on Rd;
(b) ρ is strictly positive on Rd\{0};
(c) ρ is E-homogeneous, i.e. ρ(aEx) = aρ(x), ∀x ∈ Rd, ∀ a > 0.

Remark 1 The existence of (Rd, E)-pseudo norm for any matrix E ∈ ε+ is proved

in Biermé et al. (2007) or Lemarié-Rieusset (1994).

Let us recall some classical properties of the pseudo norm. First, let us introduce the

anisotropic sphere SE0 (ρ) for the (Rd, E)-pseudo norm ρ defined by

SE0 (ρ) = {x ∈ Rd; ρ(x) = 1}.

The following result can be found in Meerschaert and Scheffler (2001).

Proposition 2.1 For all x ∈ Rd\{0}, there exists a unique couple (r, θ) ∈ R∗+ ×
SE0 (ρ) such that x = rEθ. Moreover SE0 (ρ) is a compact of Rd and the map

(r, θ)→ x = rEθ

is a homeomorphism from R∗+ × SE0 (ρ) to Rd\{0}.

Remark 2 Since ρ(x) = ρ(rEθ) = rρ(θ) and ρ(θ) = 1, we can get r = ρ(x). Then

it follows from Meerschaert and Scheffler (2001) that for a given (Rd, E)-pseudo norm ρ, we

can write any x ∈ Rd\{0} uniquely as x = ρ(x)E`(x), where `(x) ∈ SE0 (ρ). Furthermore,

we have ρ(x) = ρ(−x) and `(x) = −`(−x).

The term of pseudo norm is justified by the fact that these functions satisfy the

triangular inequality which can be get from the following proposition.

《
应
用
概
率
统
计
》
版
权
所
有



472 A^VÇÚO 1n��ò

Proposition 2.2 (Clausel and Vedel, 2011) Let ρ be (Rd, E)-pseudo norm. Then

(a) there exists a constant C > 0 such that for all x, y ∈ Rd,

ρ(x+ y) ≤ C(ρ(x) + ρ(y));

(b) there exists a constant C ′ > 0 such that for all x ∈ Rd,

1

C ′
ρ1(x) ≤ ρ2(x) ≤ C ′ρ1(x).

The following result gives bounds on the growth rate of any (Rd, E)-pseudo norm in

terms of the euclidian norm ‖ · ‖.

Proposition 2.3 (Biermé and Lacaux, 2009) Let ρ be (Rd, E)-pseudo norm. There

exist strictly positive constant C1(ρ), C2(ρ), C3(ρ), C4(ρ) depending only on the pseudo

norm ρ such that

(a) for all x ∈ Rd with ‖x‖ ≤ 1 or ‖x‖E < 1, one has

C1(ρ)‖x‖1/ρmin(E)(1 + | log(‖x‖)|)−d/ρmin(E)

≤ ρ(x) ≤ C2(ρ)‖x‖1/ρmax(E)(1 + | log(‖x‖)|)d/ρmax(E);

(b) for all x ∈ Rd with ‖x‖ ≥ 1 or ‖x‖E > 1, one has

C3(ρ)‖x‖1/ρmax(E)(1 + | log(‖x‖)|)−d/ρmax(E)

≤ ρ(x) ≤ C4(ρ)‖x‖1/ρmin(E)(1 + | log(‖x‖)|)d/ρmin(E).

The following proposition provides an integration in polar coordinates formula which

play an important role in the proof of existence of random integral.

Proposition 2.4 (Biermé et al., 2007) For a given (Rd, E)-pseudo norm ρ, there

exists a unique finite Random measure σ on SE0 (ρ) such that for all f ∈ L1(Rd,dx), we

have ∫
Rd

f(x)dx =

∫ ∞
0

∫
SE
0 (ρ)

f(rEθ)σ(dθ)rq−1dr.

Corollary 2.1 (Biermé et al., 2007) For a given (Rd, E)-pseudo norm ρ, let β ∈ R
and suppose that f : Rd → C is measurable such that |f(x)| = O(ρ(x)β), then

(a) if β > −q, then f is integrable near 0;

(b) if β < −q, then f is integrable near infinity.

Definition 2.2 A scalar valued random field is called operator scaling if there

exists a matrix E ∈ ε+ and H > 0 such that

{X(aEx)}x∈Rd
L
= {aHX(x)}x∈Rd .
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Remark 3 The matrix E and the real H are respectively called an exponent (of

scaling) or an anisotropy and a Hurst index of the field. In general, the couple (H,E) of

an operator scaling random field is not unique.

We shall need the following definition which is introduced in Biermé et al. (2007).

Definition 2.3 Let τ be a (Rd, E)-pseudo norm and β > 0. A function ϕ(x) is

called (τ, β, E)-admissible if it satisfies the following three properties:

(a) ϕ(x) is continuous on Rd;
(b) ϕ(x) is strictly positive on Rd\{0};
(c) For any 0 < A < B, there exists a positive constant C > 0, such that, for A ≤

‖y‖ ≤ B,

τ(x) ≤ 1⇒ |ϕ(x+ y)− ϕ(y)| ≤ Cτ(x)β.

Remark 4 As can be seen from Biermé et al. (2007), if a function ϕ(x) is (τ, β, E)-

admissible, then β ≤ ρmin(E).

§3. Log-Operator Scaling Random Fields

In this section we extend the moving average representation to the case H = q/α

and derive its basic properties. We first give sufficient conditions such that the integral

representation exists. Then we can define Log-operator scaling stable random fields.

Throughout this section we choose two fixed (Rd, E)-pseudo norm ϕ and τ with

E ∈ {E ∈ ε+ : ρmin(E) > 1}.

Theorem 3.1 Let β > 1 (≤ ρmin(E)). Let ϕ be a (τ, β, E)-admissible function.

Then for any 0 < α ≤ 2 and 1 < q/α < β, the random field

Xϕ(x) =

∫
Rd

(logϕ(x− y)− logϕ(−y))Zα(dy)

exists and is stochastically continuous.

Before proceeding, we need some preparations.

Lemma 3.1 (Embrechts and Maejima, 2002) Let 0 < α ≤ 2, A ∈ Rd. If∫
A
|f(x)|αdx <∞,

then a stable integral

I(f) :=

∫
A
f(x)dZα(x)

can be defined in the sense of convergence in probability.
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Lemma 3.2 (Samorodnitsky and Taqqu, 1994) Let fj , j = 1, 2, . . ., f be non-

random functions. Let Xj =
∫
Rd fj(x)Zα(dx), j = 1, 2, . . ., and X =

∫
Rd f(x)Zα(dx).

Then

lim
j→∞

Xj = X, a.e.

if and only if

lim
j→∞

∫
Rd

|fj(x)− f(x)|αZα(dx) = 0.

Proof of Theorem 3.1 First we prove the existence of random integral. Let us

recall that Xϕ(x) exists if and only if

Γαϕ(x) =

∫
Rd

| logϕ(x− y)− logϕ(−y)|αdy <∞.

Noting that we can always choose a sufficiently little R1, such that for all τ(y) ≤ R1,

| log τ(−y)| ≤ C1τ(−y)−1, (3.1)

hence by Cr inequality and (b) of Proposition 2.2, we have

| logϕ(x− y)− logϕ(−y)|α ≤ C2(| logα ϕ(x− y)|+ | logα ϕ(−y)|)

≤ C3(| logα τ(x− y)|+ | logα τ(−y)|). (3.2)

For fixed x ∈ Rd\{0}, it is obvious that∫
τ(y)≤R1

| logα τ(x− y)|dy <∞.

By (3.1) and Corollary 2.1, since α < q, we can conclude that∫
τ(y)≤R1

| logα τ(−y)|dy <
∫
τ(y)≤R1

|τ(−y)|−αdy <∞.

Therefore by (3.2), we have∫
τ(y)≤R1

| logϕ(x− y)− logϕ(−y)|αdy <∞.

In the case that y is sufficiently close to x, we can prove similarly that | logϕ(x − y) −
logϕ(−y)|α is integrable.

It remains to show that for some sufficiently large R2 = R2(x) > 0, we have∫
τ(y)>R2

| logϕ(x− y)− logϕ(−y)|αdy <∞.
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Through a change of variable, we know that∫
τ(y)>R2

| logϕ(x− y)− logϕ(−y)|αdy <∞,

holds if and only if ∫
τ(y)>R2

| logϕ(x+ y)− logϕ(y)|αdy <∞.

Since τ(y) > R2, ϕ(y) > 0 and ϕ is (Rd, E)-pseudo norm, we have

ϕ(x+ y) = ϕ(ϕ(y)E(ϕ(y)−Ex+ ϕ(y)−Ey)) = ϕ(y)ϕ(ϕ(y)−Ex+ ϕ(y)−Ey).

Again by ϕ(ϕ(y)−Ey) = 1 and ϕ is (τ, β, E)-admissible, we can find C4 > 0 such that

|ϕ(ϕ(y)−Ex+ ϕ(y)−Ey)− 1| ≤ C4τ(ϕ(y)−Ex)β = C4ϕ(y)−βτ(x)β.

Obvious that we can always choose sufficiently large R2, such that for all τ(y) > R2,

C4ϕ(y)−βτ(x)β ≤ 1

2
,

thus we have

ϕ(ϕ(y)−Ex+ ϕ(y)−Ey) ≥ 1

2
. (3.3)

Now by (3.3) and mean valued theorem we can get that for all τ(y) > R2,

| logϕ(x+ y)− logϕ(y)| = | logϕ(ϕ(y)−Ex+ ϕ(y)−Ey)|

= | logϕ(ϕ(y)−Ex+ ϕ(y)−Ey)− log 1|

≤ C5|ϕ(ϕ(y)−Ex+ ϕ(y)−Ey)− 1|

≤ C6ϕ(y)−βτ(x)β.

By (b) of Proposition 2.2, we can get ϕ(y)−β ≤ Cτ(y)−β, and hence we have

| logϕ(x+ y)− logϕ(y)|α ≤ C7τ(y)−βατ(x). (3.4)

Therefore by Corollary 2.1, since q/α < β, we have∫
τ(y)>R2

| logϕ(x− y)− logϕ(−y)|αdy <∞.

Consequently, we obtain that the random field

Xϕ(x) =

∫
Rd

(logϕ(x− y)− logϕ(−y))Zα(dy)
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exists.

Let us now show that Xϕ(x) is stochastic continuous. Since Xϕ(x) is a SαS-random

field, it follows from Lemma 3.2 that Xϕ(x) is stochastically continuous if and only if, for

all x0 ∈ Rd, ∫
Rd

| logϕ(x0 + x− y)− logϕ(x0 − y)|αdy → 0, as x→ 0.

Through a change of variables, this holds if and only if

Γαϕ(x) =

∫
Rd

| logϕ(x− y)− logϕ(−y)|αdy → 0, as x→ 0.

Since ϕ is (Rd, E)-pseudo norm, ϕ is continuous on Rd, so we have that for all y ∈ Rd,

| logϕ(x− y)− logϕ(−y)|α → 0, as x→ 0.

We can split | logϕ(x− y)− logϕ(−y)|α into three parts:

| logϕ(x− y)− logϕ(−y)|α = | logϕ(x− y)− logϕ(−y)|α1τ(y)≤R1

+ | logϕ(x− y)− logϕ(−y)|α|1R1<τ(y)≤R2

+ logϕ(x− y)− logϕ(−y)|α1τ(y)>R2

:= I1 + I2 + I3.

The first term I1 is dealt with as follows. By (a) of Proposition 2.2, we have

{y : τ(x− y) ≤ R1} ⊂ {y : τ(y) ≤ C(R1 + τ(x))},

and hence for α′ > α which is sufficiently close to α and τ(x) ≤ 1, we have

sup
τ(x)≤1

∫
τ(y)≤R1

| logϕ(x− y)|α′dy = sup
τ(x)≤1

∫
τ(x−y)≤R1

| logϕ(y)|α′dy

≤ sup
τ(x)≤1

∫
τ(y)≤C(R1+τ(x))

| logϕ(y)|α′dy

≤ sup
τ(x)≤1

∫
τ(y)≤C(R1+1)

| logϕ(y)|α′dy.

Noting that we can always choose a sufficiently little R, such that for all τ(y) ≤ R,

| log τ(−y)| ≤ Cτ(−y)−1,

then by (b) of Proposition 2.2 and Corollary 2.1, since α′ < q, we have∫
τ(y)≤C(R1+1)

| logϕ(y)|α′dy

≤
∫
τ(y)≤R

| logϕ(y)|α′dy +

∫
R<τ(y)≤C(R1+1)

| logϕ(y)|α′dy

≤ C
∫
τ(y)≤R

|τ(y)|−α′dy +

∫
R<τ(y)≤C(R1+1)

| logϕ(y)|α′dy <∞.
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This implies that

sup
τ(x)≤1

∫
τ(y)≤R1

| logϕ(x− y)|α′dy <∞,

and hence we obtain that {| logϕ(x − y)|α}τ(x)≤1 is uniformly integrable. Consequently,

applying Vitali dominated convergence theorem, we have∫
τ(y)≤R1

| logϕ(x− y)− logϕ(−y)|αdy → 0, as x→ 0. (3.5)

For the term I2, it is obvious that∫
R1<τ(y)≤R2

| logϕ(x− y)− logϕ(−y)|αdy → 0, as x→ 0. (3.6)

Now we deal with the term I3. By (3.4), we have

| logϕ(x− y)− logϕ(−y)|α1τ(y)>R2
≤ C4τ(−y)−βα1τ(y)>R2

.

Therefore by
∫
τ(y)>R2

τ(−y)−βαdy < ∞ and Lebesgue dominated convergence theorem,

we have ∫
τ(y)>R2

| logϕ(x− y)− logϕ(−y)|αdy → 0, as x→ 0. (3.7)

Then from (3.5), (3.6) and (3.7), we deduce that Xϕ(x) is stochastic continuous. �

According to this theorem, we can define Log-operator scaling random fields.

Definition 3.1 Let β > 1 (≤ ρmin(E)), ϕ be (Rd, E)-pseudo norm, and (τ, β, E)-

admissible. Then for 0 < α ≤ 2, 1 < q/α < β, we define Log-operator random fields

Xϕ(x) as follows:

Xϕ(x) =

∫
Rd

(logϕ(x− y)− logϕ(−y))Zα(dy).

Remark 5 It is worth mentioning that Log-operator scaling random fields extends

the definition of Log-fractional stable motion {∆log(x), x ≥ 0} (cf. Samorodnitsky and

Taqqu, 1994; Section 7.6) which was defined as follows:

∆log(x) =

∫ ∞
−∞

log
∥∥∥x− y

y

∥∥∥Zα(dy), 1 < α ≤ 2.

Log-operator scaling random fields have stationary increment and operator scaling.

Theorem 3.2 Under the condition of Theorem 3.1, the random field Xϕ(x) has

the following properties:

(a) Operator scaling, that is, for any c > 0, the random field Xϕ(x) satisfies the

following property

{Xϕ(cEx)}x∈Rd
L
= {cq/αXϕ(x)}x∈Rd ;
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(b) Stationary increments, that is, for any h ∈ Rd, the random field Xϕ(x) satisfies

the following property

{Xϕ(x+ h)−Xϕ(h)}x∈Rd
L
= {Xϕ(x)}x∈Rd .

Proof (a) For any fixed x1, x2, . . . , xp ∈ Rd, and t1, t2, . . . , tp ∈ R, c > 0, if we can

show that
p∑
j=1

tjXϕ(cExj)
L
=

p∑
1
tjc

q/αXϕ(xj),

then we can get the conclusion. By a change of variable together with ϕ(cEx) = cϕ(x)

and Zα(cEdz)
L
= cq/αZα(dz), we can get that

p∑
j=1

tjXϕ(cExj) =

∫
Rd

p∑
j=1

tj(logϕ(cEx− y)− logϕ(−y))Zα(dy)

=

∫
Rd

p∑
j=1

tj(logϕ(cEx− cEz)− logϕ(−cEz))Zα(dy)

d
= cq/α

∫
Rd

p∑
j=1

tj(logϕ(x− z)− logϕ(−z))Zα(dz)

= cq/α
p∑
j=1

tjXϕ(xj),

and the proof is completed.

(b) For any fixed x1, x2, . . . , xp ∈ Rd, and t1, t2, . . . , tp ∈ R, h ∈ Rd, if we can show

that
p∑
j=1

tj(Xϕ(xj + h)−Xϕ(h)
L
=

p∑
1
tjXϕ(xj),

then we can get the conclusion. By a change of variable, we get

p∑
j=1

tjXϕ((xj + h)−Xϕ(h)) =
p∑
j=1

tj

(∫
Rd

(logϕ(xj + h− y)− logϕ(h− y))Zα(dy)
)

=

∫
Rd

p∑
j=1

tj(logϕ(xj + h− y)− logϕ(h− y))Zα(dy)

d
=

∫
Rd

p∑
j=1

tj(logϕ(xj − z)− logϕ(−z))Zα(dz)

=
p∑
1
tjXϕ(xj),

and the proof is completed. �
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§4. Hölder Critical Exponent of Log-Gaussian Operator

Scaling Random Fields

In this section, we are interested in the smoothness of the sample paths of Log-

Gaussian operator scaling random fields. Through this section, we fix E ∈ ε+, with

1 < a1 < a2 < · · · < ap denoting the real parts of the eigenvalues of E. Following

Meerschaert and Scheffler (2001; Section 2.1), let V1, V2, . . . , Vp be spectral decomposition

of Rd with respect to E. For i = 1, 2, . . . , p, let us define Wi = V1 ⊕ V2 ⊕ Vi and W0 = 0.

Observe that E|Wi has 1 < a1 < a2 < · · · < ai as real parts of the eigenvalues.

Definition 4.1 (Biermé et al., 2007) Let γ ∈ (0, 1). A random field {X(x)}x∈Rd is

said to have Hölder critical exponent γ whenever it satisfies the following two properties:

(a) For any s ∈ (0, γ), the sample paths of random fields {X(x)}x∈Rd satisfy almost

surely a uniform Hölder condition of order s on any compact set, that is, for any compact

set K ⊆ Rd, there exists a positive random variable A such that for all x, y ∈ K,

|X(x)−X(y)| ≤ A‖x− y‖s.

(b) For any s ∈ (γ, 1), almost surely the sample paths of random field {X(x)}x∈Rd

fail to satisfy any uniform Hölder condition of order s.

Proposition 4.1 (Biermé et al., 2007) Let {X(x)}x∈Rd be a Gaussian random

field with stationary increments.

(a) Let γ ∈ (0, 1), and assume that

γ = sup{s > 0;E((X(x)−X(0))2) = o‖x‖→0(‖x‖2s)},

then, for any s ∈ (0, γ), any continuous version of random field {X(x)}x∈Rd satisfy almost

surely a uniform Hölder condition of order s on any compact set.

(b) If moreover

γ = inf{s > 0; ‖x‖2s = o‖x‖→0(E(X(x)−X(y))2)},

then any continuous version of random field {X(x)}x∈Rd admit γ as the Hölder critical

exponent.

Definition 4.2 (Biermé et al., 2007) Let Sd−1 be the Euclidean unit sphere. A

real-valued random field {X(x)}x∈Rd admits γ(u) as directional regularity in u ∈ Sd−1, if

the process {X(tu)}t∈R admits γ(u) Hölder critical exponent.
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Let us investigate sample paths properties for (E, q/2)-Log-Gaussian operator scaling

random field.

Theorem 4.1 Let β > 1 (≤ a1), 1 < q/2 < β. Let Xϕ be Log-Gaussian operator

scaling random field given by Definition 3.1. Then any continuous version Xϕ admits

q/(2ap) as Hölder critical exponent. Moreover, for any i = 1, 2, . . . , p, if u ∈ (Wi \Wi−1)∩
Sd−1, the random field Xϕ admits q/(2ai) as directional regularity in the direction u.

Proof By Remark 2, we can write any x ∈ Rd\{0} uniquely as x = τ(x)E`(x) for

a given (Rd, E)-pseudo norm τ(x), where ` ∈ SE0 (τ). Observing that Xϕ(0) = 0, hence we

define

Γ2
ϕ(x) := E[(Xϕ(x)−Xϕ(0))2] =

∫
Rd

| logϕ(x− y)− logϕ(−y)|2dy.

Thus by the (E, q/2)-operator scaling of Xϕ, it is straightforward to see that

Γ2
ϕ(x) = τ(x)qΓ2

ϕ(`(x)).

As in the proof of Theorem of 3.1, since SE0 (τ) is a compact of Rd, we have that Γ2
ϕ(x) is

continuous and positive on the x ∈ SE0 (τ). Thus for all θ ∈ SE0 (τ), 0 < m ≤ Γ2
ϕ(θ) ≤M .

Let u ∈ (Wi \Wi−1) ∩ Sd−1, with 1 ≤ i ≤ p. According to Proposition 2.3, for |t|
small enough,

C1(τ)|t|1/ai(1 + | log |t||)−d/ai ≤ τ(tu) ≤ C2(τ)|t|1/ai(1 + | log |t||)d/ai .

Thus we have

mCq1(τ)|t|q/ai(1 + | log |t||)−dq/ai ≤ Γ2
ϕ(tu) ≤MCq2(τ)|t|q/ai(1 + | log |t||)dq/ai .

Therefore by Proposition 4.1, Xϕ admits q/(2ai) as directional regularity in the directional

u ∈ (Wi \Wi−1) ∩ Sd−1.
Since q/(2ap) is Hölder critical exponent of Xϕ in any u ∈ (Wp \Wp−1) ∩ Sd−1, it

follows from this that for any s ∈ (q/(2ap), 1) almost surely the sample paths of Xϕ fail to

satisfy any uniform Hölder condition of order s. Again by Proposition 2.3, we know that

for |x| small enough,

τ(x) ≤ C2(τ)‖x‖1/ap(1 + | log(‖x‖)|)d/ap .

Then for |x| small enough, we have

Γ2
ϕ(x) ≤MCq2(τ)‖x‖q/ap(1 + | log(‖x‖)|)dq/ap .

《
应
用
概
率
统
计
》
版
权
所
有



1ÊÏ Üu: Log�fIÝ�Å| 481

Therefore according to Proposition 4.1, it follows that any continuous version of Xϕ sat-

isfies almost surely a uniform Hölder condition of order s < q/(2ap) on any compact set.

Then Xϕ admits q/(2ap) as Hölder critical exponent. �

The authors proved in Biermé and Lacaux (2009) that harmonizable operator scaling

stable random fields share many properties with Gaussian operator scaling random fields.

In particular, they have locally Hölder sample pathes and critical directional Hölder ex-

ponent depending on the directions. However, for stable laws (α ∈ (0, 2)), Log-operator

scaling random fields do not have the same behavior with Gaussian operator scaling ran-

dom fields as we see in this section. The following theorem turn out this fact.

Theorem 4.2 Let β > 1 (≤ a1), 0 < α < 2, 1 < q/α < β. Let {X(x)}x∈Rd be

Log-operator scaling random fields given by Definition 3.1. Then, any modification of the

random field {X(x)}x∈Rd are almost surely unbounded on every open ball.

Proof For any open ball U , let U∗ = U ∩ Qd be a dense sequence in U . Noting

that ϕ is a (Rd, E)-pseudo norm, then for any y ∈ U , we have

f∗(U∗, y) , sup
x∈U∗

| logϕ(x− y)− logϕ(−y)| = +∞,

and hence
∫
Rd f

∗(U∗, y)αdy = +∞. Again by necessary condition for sample boundedness

(cf. Samorodnitsky and Taqqu, 1994; Theorem 10.2.3), we obtain that any modification of

the random field {X(x)}x∈Rd are almost surely unbounded on every open ball and hence

conclude the proof. �
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