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Abstract

In this paper, we propose a joint mean-variance-correlation modeling approach for longitudi-

nal studies. By applying partial autocorrelations, we obtain an unconstrained parametrization for

the correlation matrix that automatically guarantees its positive definiteness, and develop a regres-

sion approach to model the correlation matrix of the longitudinal measurements by exploiting the

parametrization. The proposed modeling framework is parsimonious, interpretable, and flexible

for analyzing longitudinal data. Real data example and simulation support the effectiveness of the

proposed approach.
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§1. Introduction

In longitudinal studies, it is of fundamental importance to understand the dynamics

in the mean function, variance function, and correlations. Simultaneously modeling the

mean and covariance have recently attracted much attention, as for longitudinal study, the

collected observations of the same subject are intrinsically correlated and misspecification

of the correlation may result in a great loss of efficiency (Wang and Carey, 2003). Diggle

et al. (2002) gave an excellent overview of various approaches to model the mean function

for this type of data sets. However, modeling the covariance matrix is more challenging

than modeling the mean as there are usually more parameters in the covariance matrix

and the positive definiteness of the covariance matrix has to be assured. Pourahmadi
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(1999, 2000) first introduced a modified Cholesky decomposition to factor the covariance

matrix. An attractive property of this decomposition is to provide statistically meaningful

unconstrained parametrization for the positive definite covariance matrix. The entries in

this decomposition can be interpreted as autoregressive parameters and log innovation

variances in a time series context. Regression models can then be applied to these entries

in a manner similar to the mean models, thus permitting parsimonious characterization of

the covariance structure just like the mean. See Pan and MacKenzie (2003), Ye and Pan

(2006), Leng et al. (2010) and Zhang and Leng (2012) for recent developments and related

discussions.

In this class of joint mean-covariance modeling approaches, however, the log inno-

vation variances are not the conditional variances of the longitudinal response given the

covariates. To extract the variance information, one must transform the respective de-

compositions back to the original covariance matrix that gives nontrivial interpretations

with respect to the covariates. Similarly, additional steps are also needed to study the

correlation matrix as an objective of interest in practice for quantifying the correlations

among the longitudinal measurements. Specifically, a correlation matrix has unity diago-

nal entries, and must be positive definite with elements taking values between −1 and 1.

A regression approach based on a direct Cholesky type decomposition of the correlation

matrix can hardly satisfy the requirements, and hence it encounters great difficulty in

this scenario. Therefore, extra effort and caution are required in practice to apply the

aforementioned approaches for interpreting the features in the variance and covariations.

It is of great interest to develop an interpretable, efficient and flexible approach that

targets directly at the variances and correlations in the longitudinal data. Daniels and

Pourahmadi (2009) studied an unconstrained parametrization by exploiting the partial au-

tocorrelation matrix. They parametrized a correlation matrix by the corresponding partial

autocorrelation matrix, the resulting parameters can vary freely in the interval (−1, 1). If

needed, further transformation such as one involving Fisher’s z transformation can give

unconstrained parametrization in the entire real line (−∞,∞). Such parametrization per-

mits us to explore the variance information and interpret the variances with respect to the

covariates directly, and quantify the correlations among the longitudinal measurements by

partial autocorrelation matrix. However, they only focused on the Bayesian approach for

the inference of parameters rather than studying the parsimonious maximum likelihood

approach.

In this paper, by applying partial autocorrelations, we obtain an unconstrained para-

metrization for the correlation matrix that automatically guarantees its positive definite-
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ness, and develop a parsimonious regression approach to model the correlation matrix of

the longitudinal measurements. The proposed modeling framework is parsimonious, inter-

pretable and flexible for analyzing longitudinal data. The maximum likelihood approach

for parameters estimation is then studied. The rest of this paper is organized as follows.

Section 2 elaborates the proposed joint modeling approach, the computational algorithm

and its theoretical properties. We provide extensive numerical examples by applying our

method to real data analysis, and conduct simulation in Section 3. The numerical results

confirm the attractiveness of the new joint modeling approach. We conclude this paper by

summarizing the main findings and outlining future research in Section 4. All technical

proofs are relegated to the Appendix.

§2. The Model and the Estimating Method

Let yi = (yi1, yi2, . . . , yim)′ be the m repeated measurements at time points ti =

(ti1, ti2, . . . , tim)′ on the ith subject (i = 1, 2, . . . , n). In more general setting, tij does not

have to be time, but can be any time-dependent covariate being modeled parametrical-

ly. Let xij be p-vector covariates and x′i = (xi1,xi2, . . . ,xim), in this paper we assume

yi|ti,xi ∼ Nm(µi,Σi) with µi = E(yi|xi, ti) and Var (yi|xi, ti) = Σi = DiRiDi with

Di = diag(σi1, σi2, . . . , σim) a diagonal matrix containing the marginal standard devia-

tions of yij and Ri = (ρijk) the correlation matrix.

The partial autocorrelation between yij and yik (j < k), πijk, is the correlation be-

tween the two variables given the intervening variables (yi(j+1), yi(j+2), . . . , yi(k−1)). Let

Πi be the upper-triangular matrix with elements πijk (j, k = 1, 2, . . . ,m). It can be show

the relationship between Ri = (ρijk) and Πi = (πijk) (Anderson, 1984; Section 2.5) as the

follows

πij(j+1) = ρij(j+1), (2.1)

πijk = r
−1/2
i1 r

−1/2
i2 [ρijk − r′i1(j, k)Ri3(j, k)−1ri2(j, k)], j − k > 1, (2.2)

where r′i1(j, k) = (ρij(j+1), ρij(j+2), . . . , ρij(k−1)), r
′
i2(j, k) = (ρik(j+1), ρik(j+2), . . . , ρik(k−1)),

and Ri3(j, k) is the sub-correlation matrix of Ri corresponding to the variables (yi(j+1),

yi(j+2), . . . , yi(k−1)). The scalar ril (l = 1, 2) are ril = 1 − r′il(j, k)Ri3(j, k)−1ril(j, k).

The partial autocorrelation coefficient πijk can be defined equivalently as the correlation

between yij and yik after correcting for ỹ′ij:k = (yi(j+1), yi(j+2), . . . , yi(k−1)), that is πijk =

corr(yij − b′jỹij:k, yik − b′kỹij:k) with b′jỹij:k and b′kỹij:k the linear least squares predictors

of yij and yik given ỹij:k.

《
应
用
概
率
统
计
》
版
权
所
有



18Ï Ü�² 4�x oa�: p�êâ¥Äu g�'�þ����Ó�ï� 585

It is clear from (2.1)-(2.2) that the mapping from Ri to Πi is invertible. By inverting

the previous operations recursively over increasing lag k − j, one obtains the correlation

matrix by

ρij(j+1) = πij(j+1), (2.3)

ρijk = r′i1(j, k)Ri3(j, k)−1ri2(j, k) + r
1/2
i1 r

1/2
i2 πijk, for k − j > 1. (2.4)

The key advantage in using partial autocorrelation is that parameters are uncon-

strained and can automatically guarantee the positive definiteness of correlation matrix

(Joe, 2006). It is clear that for the correlation matrix Ri, the subset of values in (−1, 1)

that ρijk can take satisfying the positive definite constraint is determined by the configu-

ration of the other elements of Ri. Rousseeuw and Molenberghs (1994) gave a geometric

interpretation of this phenomenon. While for the partial autocorrelation, each πijk can

vary freely in the interval (−1, 1) and takes values in the entire real line after using Fisher’s

z transformation, regardless of the choice of the remaining π′s. Therefore this mapping

suggests a practical alternative by avoiding the complication of the positive definite con-

straint, while providing easily interpretable parameters (Joe, 2006). Thus, we are free to

characterize these parameters via regression as functions of some covariates. In practice,

such a rationale can be initially assessed by examining empirical variances and partial

autocorrelations from the observed longitudinal data. For a balanced longitudinal study

such as the cattle example in Section 3.1, an initial version of the partial autocorrelation

πijk can be obtained from the empirical correlation matrix of the standardized residual-

s after a mean-variance model fitting. By examining the plot of those πijk after using

Fisher’s z transformation against the time lag and logarithm of σij against time in Fig-

ure 1 of following example, we clearly observe a curvature that supports some functional

associations. From there, appropriate models can be used to describe such a curvature.

Example 1 We assume a multivariate normal distribution with common mean and

an 11×11 covariance matrix for the treatment group A with n = 30 animals as Pourahmadi

(1999). Figure 1 shows the sample partial autocorrelation coefficients after using Fisher’s

z transformation and logarithm of sample standard deviations. Clearly, these scatter

plots indicate some functional relationships approximately. The partial autocorrelation

and logarithm of standard deviation can be well explained by polynomials in time lag and

time, respectively. Section 3.1 gives more detailed discussion.

Motivated by above considerations and cattle data example, we propose a joint regres-

sion model for the mean, the partial autocorrelations and the marginal standard deviations,
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Figure 1 Sample regressograms for the cattle data. (A) The sample partial auto-

correlation coefficients after using Fisher’s z transformation and the

fitted curve again time lag; (B) logarithm of sample standard deviations

and the fitted curve against time.

as

g(µij) = x′ijβ, F (πijk) = w′ijkγ, log(σij) = z′ijλ. (2.5)

Such modeling approach is also used by many other authors, for example, see Pourahmadi

(1999, 2000) and Pan and MacKenzie (2003). Here g(·) and F (·) are monotone and

differentiable known link functions, which can give unconstrained parametrization in the

entire real line (−∞,∞). We take F as the Fisher’s z transformation in this paper. This

facilitates a convenient and flexible modeling device for the correlation matrix. xij ,wijk

and zij are the p×1, q×1 and d×1 vectors of covariates, respectively. The covariates xij

and zij are those used in regression analysis, while wijk is usually taken as a polynomial

of time difference tij − tik or that of time dependent covariates. Thus, the difference

between observations at two continuous times tij and tik is reflected in wijk that explains

the covariation between yij and yik.

Let θ = (β′, γ′, λ′)′, write the minus twice the log-likelihood function l(θ), up to a

constant, as

−2l(θ) =
n∑
i=1

log |Σi|+
n∑
i=1

(yi − µi)TΣ−1i (yi − µi)

=
n∑
i=1

m∑
j=1

log(σ2ij) +
n∑
i=1

log |Ri(Π)|+
n∑
i=1

(yi − µi)TD−1i Ri(Π)−1D−1i (yi − µi),

(2.6)

where Ri(Π) denotes correlation matrix corresponding to the partial autocorrelation Πi.
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Remark 1 Daniels and Pourahmadi (2009) shows that

|Σi| =
m∏
l=1

σ2il
m∏
j=2

j−1∏
k=1

(1− π2ijk),

thus the log |Ri(Π)| term can be expressed to
m∑
j=2

j−1∑
k=1

log(1− π2ijk).

By taking partial derivatives of l(θ) with respect to these parameters respectively, the

maximum likelihood estimating equations become

U1(β; γ, λ) =
n∑
i=1

x′i∆iΣ
−1
i (yi − µ(xiβ)) = 0,

U2(γ;β, λ) =
1

2

n∑
i=1

∑
j,k

[R−1i D−1i (Si − Σi)D
−1
i R−1i ]jk

∂ρijk
∂γ

= 0, (2.7)

U3(λ;β, γ) =
n∑
i=1

z′i(diag{R−1i D−1i SiD
−1
i } − Im)1m = 0,

where ∆i = ∆i(xiβ) = diag(ġ−1(x′ijβ), . . . , ġ−1(x′imβ)), ġ−1(·) is the derivative of the

inverse of the link function g−1(·) and we have used the notation µ(·) = g−1(·); Si =

(yi − µi)(yi − µi)′; [M ]jk is the (j, k)th element of matrix M ; 1m is a vector of 1’s and

Im is the identity matrix of size m. The partial derivatives {∂ρijk/∂γ} are given in the

Appendix.

The solutions of β, γ and λ satisfy the equations in (2.7). These parameters can be

solved iteratively by fixing the other parameters. An application of the quasi-Newton type

algorithm on equation (2.7) directly yields the numerical solutions for these parameters.

However, computing the explicit form of the expectation of the Hessian or second-order

derivative matrix with respect to (γ′, λ′)′ analytically is cumbersome, see some compu-

tation in the Appendix. Thus, for all our computations here, we use the analytic form

of the first-order derivatives (U ′1, U
′
2, U

′
3)
′ in the following algorithm, but compute the

second-order derivatives ∇2
γ,λl(β, γ, λ) numerically. More specifically, the algorithm works

as follows.

1. Initialize the parameters as β(0), γ(0) and λ(0). Set k = 0.

2. Compute Σi using γ(k) and λ(k). Update β as

β(k+1) = β(k) + [I−111 (θ)U1(β; γ, λ)]|β=β(k) , (2.8)

where I11 = −E[∂2l(θ)/∂β∂β′] =
n∑
i=1

x′i∆iΣ
−1
i ∆ixi.

3. Given β = β(k+1), update γ and λ using(
γ(k+1)

λ(k+1)

)
=

(
γ(k)

λ(k)

)
−

[
(E∇2

γ,λl(β, γ, λ))−1

(
U2(γ;β, λ)

U3(λ;β, γ)

)] ∣∣∣∣∣
γ=γ(k),λ=λ(k)

. (2.9)
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4. Set k ← k + 1 and repeat Steps 2-3 until a pre-specified convergence criterion is

met.

A natural starting value for β is to use identity matrices for Σi’s in (2.7). γ and λ can

be initiated by their estimates based on empirical covariance. It is not difficult to see that

these initial estimates are
√
n-consistent. From the theoretical analysis in Theorem 1 in

Section 2.1 and the proofs in the Appendix, the log-likelihood function is asymptotically

convex around a small neighborhood of the true parameters. To ensure that the optimum

is global, we may try multiple initial values for the parameters. For our data analysis and

simulation studies, the algorithm is quite stable and convergence was usually obtained

within several iterations.

2.1 Asymptotic Properties

Since we use maximum likelihood for estimation, the resulting estimators are efficient.

To formally establish the theoretical properties of the estimates, we impose the following

regularity conditions.

Condition A1: The dimensions p, q and d of covariates xij , wijk and zij are fixed;

n→∞ and m is bounded.

Condition A2: The parametric space Θ is a compact subset of Rp+q+d, and the

parameter value θ0 = (β′0, γ
′
0, λ
′
0)
′ is in the interior of the parameter space Θ.

Condition A1 and A2 are standard in longitudinal data analysis. The asymptotic

property of the maximum likelihood estimation involves the negative of the expected

Hessian matrix, I(θ) = −E(∂2l/∂θ∂θ′) with θ = (β′, γ′, λ′)′. Here the expectation is

conditional on the covariates xij , wijk and zij .

Condition A3: When n→∞, I(θ0)/n converges to a positive definite matrix I (θ0).

Condition A3 is standard in regression analysis. Formally, we have the following

asymptotic results for the maximum likelihood estimates of the mean coefficients β, the

moving average coefficients γ and the innovation coefficients λ.

Theorem 2.1 If n → ∞ and regularity conditions A1-A3 hold, we have that:

(a) the maximum likelihood estimator (β̂′, γ̂′, λ̂′)′ is strongly consistent for the true value

(β′0, γ
′
0, λ
′
0)
′; and (b) (β̂′, γ̂′, λ̂′)′ is asymptotically normally distributed as

√
n(θ̂ − θ0)→ N [0, {I (θ0)}−1].

It is shown in the Appendix that β̂ and (γ̂′, λ̂′)′ are asymptotically independent.

The asymptotic covariance matrix I (θ0) can be estimated by using Bootstrap method or

numerical second-order derivatives of likelihood evaluated at the θ̂.

《
应
用
概
率
统
计
》
版
权
所
有



18Ï Ü�² 4�x oa�: p�êâ¥Äu g�'�þ����Ó�ï� 589

§3. Data Analysis and Simulations

3.1 Cattle Data

We first apply our approach to a balanced longitudinal data set in Kenward (1987),

where cattle were assigned randomly to two treatment groups A and B, and their weights

were measured 11 times over a 133-day period. As in Pourahmadi (2000) and Pan and

MacKenzie (2003), we focus on the 30 animals in group A using a saturated mean model

with 11 parameters. By examining the sample partial autocorrelation coefficients after

using Fisher’s z transformation versus the time lag between measurements in Figure 1, we

see a clear curvature pattern that can be reasonably captured by a polynomial. Figure 1

also indicates a curvature pattern by examining the log sample variances versus the time

of measurements. Thus, we propose two polynomials of time that defines wijk and zij for

modeling the partial autocorrelations and the log-variances.

F (πijk) = γ0 + γ1(tj − tk) + · · ·+ γ4(tj − tk)4;

log(σij) = λ0 + λ1tj + λ2t
2
j .

Using the algorithm (2.8) and (2.9), we obtain the maximum likelihood estimates,

γ̂0 = 2.9820.346, γ̂1 = −2.3950.394, γ̂2 = 0.6510.152, γ̂3 = −0.0730.023, γ̂4 = 0.0030.001

and λ̂0 = 2.2311.761, λ̂1 = 0.1150.563, λ̂2 = −0.0040.046, the standard deviation in the

parentheses are estimated using Bootstrap method that resamples with respect to the

subjects in Kenward’s cattle data 100 times. Figure 1 shows the fitted lines by Loess and

our models which basically coincide with each other.

3.2 Simulation Studies

In this section we investigate the finite sample performance of the proposed estimation

and inference methods with Monte Carlo simulation studies. We generate 500 data sets

respectively, each consisting of n subjects. We consider the sample size n = 50, 150 and

250 respectively.

Study 1: This is to demonstrate the asymptotic properties in Section 2.1. The data

sets are generated from the model

yij = β0 + xij1β1 + xij2β2 + eij , (i = 1, 2, . . . , n; j = 1, 2, . . . ,m),

F (πijk) = γ0 + wijk1γ1 + wijk2γ2, (3.1)

log(σij) = λ0 + zij1λ1 + zij2λ2,

《
应
用
概
率
统
计
》
版
权
所
有



590 A^VÇÚO 1n��ò

where m = 6, and the measurement time tij = 1, 2, . . . , 6. The true parameters β =

(1,−0.5, 0.5)′, γ = (0.5,−1, 0.5)′ and λ = (0.5,−0.5, 0)′. The covariate xij = (1, xij1, xij2)
′

is generated from a multivariate normal distribution with mean zero, marginal variance 1

and AR(1) correlation with the parameter equals to 0.5. We take zij = (1, tij , t
2
ij)
′, and

wijk = (1, tij − tik, (tij − tik)2)′.
Table 1 shows the accuracy of the estimated parameters in terms of their mean

(Mean), mean absolute biases (MAB) and standard deviations. It is clearly that our

estimating methods literally yield unbiased estimates for the parameters, and all the bi-

ases are relatively small especially when n is large. Additionally, to evaluate the inference

procedure, we compare the sample standard deviation (SD) of 500 parameter estimates to

the sample average of 500 standard errors (SE) using numerical Hessian. They are close,

especially for larger n. And we should note that the mapping form correlation to partial

autocorrelation is nonlinear and complex, the standard deviations for γ̂ are reasonably

larger than that for β̂ and λ̂ according to the delta theorem.

Table 1 Simulation results over 500 replications

n = 50 n = 150 n = 250

Mean MAB SDSE Mean MAB SDSE Mean MAB SDSE

β0 1.003 0.063 0.0790.057 1.001 0.037 0.0450.033 0.998 0.029 0.0360.026

β1 -0.495 0.100 0.1240.080 -0.504 0.051 0.0640.047 -0.504 0.045 0.0560.036

β2 0.495 0.099 0.1220.081 0.505 0.051 0.0630.048 0.505 0.042 0.0520.037

γ0 0.474 0.541 0.6680.486 0.508 0.317 0.4070.288 0.490 0.242 0.3030.216

γ1 -1.000 2.023 2.5161.830 -1.056 1.188 1.4991.077 -0.995 0.907 1.1170.800

γ2 0.545 1.786 2.2291.635 0.546 1.044 1.3060.951 0.509 0.791 0.9700.706

λ0 0.476 0.144 0.1850.137 0.493 0.083 0.1040.083 0.493 0.063 0.0790.060

λ1 -0.448 0.564 0.7170.532 -0.481 0.322 0.4040.331 -0.486 0.244 0.3070.236

λ2 -0.043 0.470 0.5940.447 -0.022 0.271 0.3380.278 -0.011 0.203 0.2580.197

Study 2: By decomposing the covariance matrix, Pourahmadi (2000) proposed an un-

constrained joint mean-covariance modeling (MCD) approach based on normal likelihood

approach. To compare the proposed approach with this kind of mean-covariance modeling

approach, we define the following error measurements

‖µ̂d‖ =
1

n

n∑
i=1
‖xT

i (β̂ − β0)‖, KL =
1

n

n∑
i=1

KLi(fi1|fi0),

‖Σ̂d‖ =
1

n

n∑
i=1
‖Σ̂i − Σ0i‖, ‖R̂d‖ =

1

n

n∑
i=1
‖R̂i −R0i‖,
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where KL is the Kullback-Leibler divergence between a fitted model fi1 = N(µ̂i, Σ̂i) and

the true model f0i = N(µ0i,Σ0i) for the ith subject. We consider the following three

cases under sample sizes n = 50, 100. (I) We take the model (3.1) in Study 1 to generate

data sets. In this case, the covariance model for the MCD approach is misspecified. (II)

A similar model structure as in Case I is implemented by changing F (πijk) and log(σij)

in (3.1) to the generalized autoregressive coefficient and log-innovation, respectively. In

this case, the variance function and correlation structure in our approach are misspecified.

(III) To compare these two methods when models are misspecified for both approaches,

we take the same mean model as in Case I with the marginal variance σ2(t) = 0.5et and

ARMA(1,1) correlation structure

corr(εt, εs) = γρ|t−s|,

for t 6= s. We consider γ = 0.85 and ρ = 0.6 corresponding to moderately correlated

errors. In this case, both approaches use misspecified models for the covariance, since this

correlation structure does not exactly correspond to either decomposition. The best these

two approaches can do is to capture some signals in this correlation with their respective

model specifications.

Table 2 Comparison between the proposed method and MCD method over 500

replications

Results for PCA Results for MCD

n ‖µ̂d‖ ‖Σ̂d‖ ‖R̂d‖ KL ‖µ̂d‖ ‖Σ̂d‖ ‖R̂d‖ KL

Case I

50 0.3100.153 1.0550.422 0.3870.177 0.1120.067 0.3190.155 1.4740.297 0.5720.150 0.1750.061

100 0.2230.106 0.7300.302 0.2560.125 0.0500.028 0.2280.110 1.2550.201 0.4860.102 0.1160.028

Case II

50 0.2610.126 1.7570.255 0.7750.181 0.3850.081 0.2460.115 0.9650.409 0.3860.168 0.1210.060

100 0.1780.096 1.6380.197 0.7200.131 0.3070.043 0.1640.088 0.6580.281 0.2590.120 0.0550.027

Case III

50 0.2390.141 1.8960.307 1.4590.204 0.6450.091 0.2520.148 1.9840.234 1.4740.183 0.8360.078

100 0.1690.100 1.8650.229 1.4410.136 0.5700.040 0.1800.106 1.9430.176 1.4550.126 0.7680.042

Table 2 shows the average of estimated error measurements over 500 replications and

their sample standard deviations (in subscripts). It is not surprising from Table 2 that

our approach substantially outperforms the alternative MCD approach in all the error
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measurements under Case I, since the data are generated from our model. The MCD ap-

proach is recommended when the true model follows the modified Cholesky decomposition

as seen by Case II. However, when the true model does not correspond to either of the

competing models, our method still yields acceptable results in terms of the norms of the

bias and the KL divergence, and performs much better than the Cholesky decomposition.

§4. Conclusion

We have proposed a joint maximum likelihood approach for modeling the mean, the

variance and the correlation in longitudinal data analysis. Our approach permits un-

constrained parametrization, fast computation and easy interpretation of the parameters.

Unlike previous approaches, this approach targets directly at correlations and variances,

and provides general form of the covariance structure. Our approach can also handle

datasets observed at irregular time and highly unbalanced. In addition, the current re-

gression model is fully parametric and based on likelihood. When nonlinearity arises, more

flexible models may be called for.
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Appendix

A.1 The Derivative of the Correlation Coefficient

It is trivial for the case that j = k and k = j + 1, for case of j 6= k, we can obtain

∂ρijk/∂γ by using (2.3) and (2.4), the sth element of derivative ∂ρijk/∂γ,

∂ρijk
∂γs

=
∂r′i1
∂γs

(Ri3)
−1ri2 + r′i1(Ri3)

−1∂Ri3

∂γs
(Ri3)

−1ri2 + r′i1(Ri3)
−1∂ri2
∂γs

− 1

2
πijk

{∂r′i1
∂γs

(Ri3)
−1ri1 + r′i1(Ri3)

−1∂Ri3

∂γs
(Ri3)

−1ri1 + r′i1(Ri3)
−1∂ri1
∂γs

}
r
−1/2
i1 r

1/2
i2

− 1

2
πijk

{∂r′i3
∂γs

(Ri3)
−1ri3 + r′i1(Ri3)

−1∂Ri3

∂γs
(Ri3)

−1ri3 + r′i3(Ri3)
−1∂ri3
∂γs

}
r
1/2
i1 r

−1/2
i2

+ [1− r′i1(Ri3)
−1ri1]

1/2[1− r′i2(Ri3)
−1ri2]

1/2wijk,s. (4.1)
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A.2 The Expectation of the Hessian

The computation of I11 is trivial. Since Σ only depends on γ and λ, it is easy to see

that

I12(θ) = −E
( ∂2l

∂β∂γ′

)
= −E

[ n∑
i=1

x′i∆i
∂Σ−1i
∂γ′
{yi − µ(xiβ)}

]
= 0.

Similarly I13(θ) = 0. For I33, it is easy to see that

I33 = −E
( ∂2l

∂λ∂λ′

)
= −E∂U2

∂λ′
= E

n∑
i=1

∂

∂λ′
[z′i(diag{R−1i D−1i SiD

−1
i }1m]

= 2
n∑
i=1

z′i(Im + Σ−1i ◦ Σi)zi, (4.2)

where ◦ represents the Hadamard product.

But computing I22 and I23 analytically are cumbersome,

I22(θ) = −E
( ∂2l

∂γ∂γ′

)
= −E∂U2

∂γ′

=
1

2

n∑
i=1

∑
j,k

∂ρijk
∂γ

E
{ ∂

∂γ′
[R−1i D−1i (Si − Σi)D

−1
i R−1i ]jk

}
, (4.3)

and

I23(θ) = −E
( ∂2l

∂γ∂λ′

)
= −E∂U2

∂λ′

=
1

2

n∑
i=1

∑
j,k

∂ρijk
∂γ

E
{ ∂

∂λ′
[R−1i D−1i (Si − Σi)D

−1
i R−1i ]jk

}
. (4.4)

A.3 The Proof of Theorem 1

Proof The proof is essentially the same as that of Theorem 1 in Pourahmadi (2000)

[17] and Theorem 1 and 2 in Chiu et al. (1996) [4].

(a) Let li = log fi(yi, θ), where fi is the probability density function of Nm(µi,Σi)

(i = 1, 2, . . . , n). Then ignoring the constant m log(2π)/2, we obtain that

li = −1

2
log(|Σi|)−

1

2
{yi − µ(xiβ)}′Σ−1i {yi − µ(xiβ)}.

Thus the mean and the variance of li when θ = θ0 are respectively

E0(li) = −1

2
log(|Σi|)−

1

2
tr(Σ−1i Σ0i)−

1

2
{µ(xiβ)− µ(xiβ0)}′Σ−1i {µ(xiβ)− µ(xiβ0)},

Var 0(li) =
1

2
[tr(Σ−1i Σ0i)

2 + 2{µ(xiβ)− µ(xiβ0)}′Σ−1i Σ0iΣ
−1
i {µ(xiβ)− µ(xiβ0)}],
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where Σi = DiRiD
T
i and Σ0i = D0iR0iD

T
0i. It follows from the compactness of the param-

eter space and boundedness of the covariates that Var 0(li) ≤ K, for all i where K is a

constant. Therefore by Kolmogorov’s strong law of large numbers, we have that

1

n

n∑
i=1

li −
1

n

n∑
i=1

E0(li)→ 0, a.s.. (4.5)

Notice that the above constant K is independent of θ and it can be shown that (1/n)

·
n∑
i=1

E0(li(θ)) is equicontinuous in θ, then following the proof of Theorem 1 in Chiu et

al. (1996) [4], it is easy to show the consistency of θ̂.

The proof of (b) is essentially the same as that of Theorem 2 in Chiu et al. (1996) [4].

�
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