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Introduction

Schrödinger operators with stationary, ergodic potentials (to be explained later) are

physical models to describe the movement of electrons in matters containing impurities,

which was proposed by physicist P.W. Anderson in 1958. In this lecture, we consider

dynamical properties of one electron under a stationary ergodic potential Vω(x) = V (Txω)

governed by a Schrödinger equation in Rd:

i
∂u

∂t
= −∆u+ Vωu

(
∆u =

∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
d

)
.

Most of its dynamical properties can be obtained from the spectral properties of a self-

adjoint operator

Hω = −∆ + Vω. (1)

Before proceeding to ergodic Schrödinger equations let us recall a basic fact from

quantum mechanics. Let H be a Schrödinger operator with a deterministic potential V
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and consider a Schrödinger equation

i
∂u

∂t
= Hu = −∆u+ V u, u(0, ·) = f(·) ∈ L2(Rd).

Then

u(t, ·) =
(
e−itHf

)
(·)

holds and the self-adjointness of H implies the unitarity of e−itH for each fixed t ∈ R,

which shows ∫
Rd
|u(t, x)|2dx =

∫
Rd
|f(x)|2dx ≡ ‖f‖2.

Hence, if the L2-norm ‖f‖ is normalized as ‖f‖ = 1, then |u(t, x)|2dx turns to be a

probability measure on Rd. Quantum mechanics tells us that an electron moving under

the potential V can be found in a domain D ⊂ Rd with probability∫
D
|u(t, x)|2dx

at time t. Therefore the mean of the square of the distance from the origin is given by∫
Rd
|x|2|u(t, x)|2dx ≡ D(t),

which measures diffusion speed of the electron. Physically the increase of D(t) implies the

high conductivity of electricity. We compute the asymptotic behavior of D(t) as t → ∞
in two extreme cases. In the simplest case V = 0 one has D(t):

(2π)dD(t) =

∫
Rd

∣∣∇ξû(t, ξ)
∣∣2dξ =

∫
Rd

∣∣∇ξ(e−it|ξ|2 f̂(ξ)
)∣∣2dξ

=

∫
Rd

∣∣− 2itξf̂(ξ) +∇ξ f̂(ξ)
∣∣2dξ,

where f̂ denotes the Fourier transform of f . Therefore, if f has compact support and is

smooth, then

D(t) ∼ 4t2

(2π)d

∫
Rd
|ξ|2
∣∣f̂(ξ)

∣∣2dξ = 4t2
∫
Rd
|∇f(x)|2dx as t→∞,

which shows that free electron moves linearly with respect to t like a classical free particle.

The other extreme case is the one when

V (x)→∞ as |x| → ∞.

In this case, it is known that the operator H has countably many discrete eigenvalues

{λj}. The associated normalized eigenfunctions {ej} forms a complete orthonormal basis

of L2(Rd). Therefore, if f is a finite linear combination of {ej}, then

u(t, x) =
(
e−itHf

)
(x) =

∑
j∈ a finite set

fje
−itλjej(x)

(
fj =

∫
Rd
f(x)ej(x)dx

)
,
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and

D(t) =

∫
Rd
|x|2
∣∣∣ ∑
j∈ a finite set

fje
−itλjej(x)

∣∣∣2dx ≤
(∑

j
|fj |2

)∫
Rd
|x|2

∑
j∈ a finite set

|ej(x)|2dx.

Since ej(x) decays exponentially fast as |x| → ∞, the above right-hand side integral is

finite, which shows D(t) remains bounded as t → ∞. This is consistent with a classical

picture describing a particle moving under the potential V according to the Newton’s law,

because the particle can not exceed the potential barrier caused by V . If D(t) remains

bounded as t → ∞ in a spectral region of H, then it is called that the (dynamical)

Anderson localization occurs in that spectral region.

Although D(t) describes the diffusion behavior of electrons well, it is necessary to

study the time dependent Schrödinger equations to obtain properties for D(t). Generally,

it is much easier to investigate the spectral properties of the Schrödinger operator H. Like

Hermitian matrices on a vector space with inner product any self-adjoint operator H on

a Hilbert space H has a spectral representation

H =

∫
R
λE(dλ),

where {E(dλ)} is a projection operators-valued measure on R, that is

(R1) E(A) is an orthogonal projection on H for each A ∈ B(R).

(R2) It holds E(A)E(B) = E(A∩B) for any A,B ∈ B(R), and E(φ) = 0, E(R) = I (the

identity operator).

Since σf (dλ) = (E(dλ)f, f) is a ordinary measure on R with total mass ‖f‖2, it is not

difficult to see that this {E(dλ)} has a Lebesgue decomposition

E(dλ) = Eac(dλ)⊕ Esc(dλ)⊕ Ep(dλ) (orthogonal sum), (2)

where {Ej(dλ)}j=ac,sc,p are again families of orthogonal projections on H satisfying the

above (R1) and (R2) except the property E(R) = I. {E(dλ)} is called the resolution of

the identity for H and the decomposition

σf (dλ) = (Eac(dλ)f, f) + (Esc(dλ)f, f) + (Ep(dλ)f, f)

yields the ordinary Lebesgue decomposition of the measure σf . On the other hand e−itH

can be expressed as

e−itH =

∫
R

e−itλE(dλ),
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and

u(t, x) =

∫
R

e−itλEac(dλ)f +

∫
R

e−itλEsc(dλ)f +

∫
R

e−itλEp(dλ)f

= uac(t, x) + usc(t, x) + up(t, x).

Therefore, Riemann-Lebesgue theorem for Fourier transform implies

lim
t→∞

uac(t, x) = 0 if x remains in a fixed bounded domain of Rd.

Recalling that |u(t, x)|2dx is a probability measure we see that if Esc(dλ)f = Ep(dλ)f = 0,

then for any R > 0

lim
t→∞

∫
|x|≥R

|u(t, x)|2dx = 1

holds, which implies the quantum particle escapes from any bounded domain as t → ∞.

On the other hand, if Eac(dλ)f = Esc(dλ)f = 0, which is the case if V = 0, then

u(t, x) =
∑
j

e−itλj (f, ej)ej(x)

as before, and under some additional conditions, one sees that the localization occurs. In

this way, the problem of localization or delocalization can be translated into the problem

of existence of the singularity of the resolution of identity, namely the existence of the

absolutely continuous part or the point measure part. Physically D(t) has information of

the electricity conductivity.

The pioneering paper of 1958 by P.W. Anderson [1] considered the electricity con-

ductivity of matters containing impurities, which was nothing but to study the spectral

properties of Hω defined in (1). The ergodic potential Vω is defined by an ergodic

transform {Tx}x∈Rd on a probability space (Ω,F ,P). That is,

(E1) Tx is a measurable map from Ω to Ω for each x ∈ Rd satisfying

Tx+y = TxTy for any x, y ∈ Rd.

(E2) The probability measure P is invariant under {Tx}x∈Rd , namely

P(T−1
x A) = P(A) holds for any A ∈ F and x ∈ Rd.

(E3) {Tx}x∈Rd is ergodic in the sense that

P(T−1
x A	A) = 0 for any x ∈ Rd implies P(A) = 0 or 1.
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For a real valued measurable function V (ω) on Ω an ergodic potential Vω is defined by

Vω(x) = V (Txω).

We give three typical examples of ergodic potentials.

Example 1 (periodic potentials) Ω = Rd/Zd, P is the Lebesgue measure on Ω,

and Txω = ω + π(x), where π is the natural map Rd → Ω. Then for any real valued

measurable function V on Ω

Vω(x) = V (Txω) = V (ω + π(x))

defines a periodic function on Rd.

Example 2 (quasi-periodic potentials) Ω = RNd/ZNd, P is the Lebesgue measure

on Ω, and Txω = ω + π(Ax), where π is the natural map RNd → Ω, and A is an Nd × d
matrix such that

Ax /∈ ZNd for any x ∈ Rd\{0}.

Then, for any real valued measurable function V on Ω

Vω(x) = V (Txω) = V (ω + π(Ax))

defines a quasi-periodic function on Rd.

Example 3 (random potentials) Let {xj(ω)} ⊂ Rd be a set of countably many

random points distributed in Rd according to a Poisson law with parameter µ, namely for

any D ∈ B(Rd)

P(#{xj(ω) ∈ D} = k) = e−µ|D|
(µ|D|)k

k!
for k = 0, 1, 2, . . . ,

and for any disjoint Di ∈ B(Rd), i = 1, 2, . . . , n, the random variables #{xj(ω) ∈ Di} are

independent. Then, for any measurable function f on Rd

Vω(x) =
∑
j
f(x− xj(ω))

defines a stationary ergodic potential.

Another example of random potentials is given by a Gaussian random field {Xx(ω)}x∈Rd
with mean 0 and a correlation

ρ(x− y) = E(Xx(ω)Xy(ω)).
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If ρ(x − y) → 0 as |x − y| → ∞, then {Xx(ω)}x∈Rd is known to be ergodic. For any

measurable function f on Rd

Vω(x) = f(Xx(ω))

defines a stationary ergodic potential.

Exercise 4 Construct suitable Ω, {Tx}x∈Rd , P for Example 3.

It should be pointed out that Anderson [1] was not treating continuous Schrödinger

operators of (1) but discrete Schrödinger operators

(Hωu)(x) = ∆u(x) + Vω(x) (Anderson’s tight binding model)

on `2(Zd), where ∆ is the discrete Laplacian defined by

∆u(x) =
∑

y∈Zd:|x−y|=1

u(y). (3)

Discrete Schrödinger operators sometimes avoid unessential difficulties and all definitions

and examples which have appeared so far can be replaced by analogous discrete ones.

There are two ways to classify this field. One way is to focus on the space dimension

where Schrödinger operators are defined. From the point of view of mathematical tools, in

one dimension there are many tools, whereas in higher dimension there is essentially one

tool called multiscale analysis which is effective to show the existence of point spectrum.

And phenomenologically it is supposed to exist difference between low dimension and high

dimension, although it has not been settled mathematically. The other way is to look at

the phenomena depending on the degree of randomness. For last 15 years the study of

ergodic Schrödinger operators in one dimension has been separated into several fields,

namely quasi-periodic (or more generally almost periodic) potentials, number theoretic

potentials, and random potentials. The purpose of this lecture note is to give a basic

knowledge of this field in one dimension to people who are not familiar with spectral

theory for ergodic Schrödinger operators.

To people who want information of recent development Jitomirskaya [16] is recom-

mendable. A general physical view of this field can be obtained by [28], and mathematical

view by [7], [32]. To understand Anderson localization in general dimension [37], [18] are

suitable to read in random case and [3] in quasi-periodic case.

The contents overlaps with Damanik [10], and will be as follows:

1. General spectral properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Ergodic Schrödinger operators in one dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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2.1 Weyl function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Homologous relation under shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Floquet exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 AC spectrum and reflectionless property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

3.1 Nondeterministic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Support theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Potentials taking finitely many values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Point spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. Some deterministic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

5. Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

In the sequel the following notations are used:

R+ = {x ∈ R; x > 0}, R− = {x ∈ R; x < 0},

C+ = {z ∈ C; Im z > 0}, C− = {z ∈ C; Im z < 0}.
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§1. General Spectral Properties

Firstly we discuss general spectral properties for ergodic Schrödinger operators in

general dimension, which state that each component of the spectrum is independent of

individual samples. These results were obtained by L.A. Pastur [31]. Historically, the

integrated density of states (IDS) was investigated exclusively, and still now plays an

important role. The IDS is usually defined as a thermodynamic limit of the distribution

of eigenvalues for ergodic Schrödinger operators considered in finite domains, although in

this note we take a different approach for the definition.
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For simplicity discrete Schrödinger operators are treated in the proof of several state-

ments in this section, suitable modifications make it possible to obtain analogous results

for continuous Schrödinger operators. Let (Ω,F ,P) be a probability space on which a

multi-parameter ergodic dynamical system {Tx}x∈Zd sits. For a real valued bounded mea-

surable function V on Ω define a Schrödinger operator

Hω = ∆ + Vω,

where ∆ is the discrete Laplacian defined in (3) and Vω(x) = V (Txω). We do not put the

“−” sign in front of ∆. Since ∆ is a bounded self-adjoint operator on `2(Zd), Hω can be

realized as a self-adjoint operator for any ω ∈ Ω. Let {θx} be the shift operator on `2(Zd)
defined by

(θxf)(y) = f(y + x).

Then, a basic observation for Hω is

HTxω = θxHωθ
−1
x for any x ∈ Zd, ω ∈ Ω. (4)

Let Eω(dλ) be the resolution of identity for Hω. Since θx is a unitary operator on `2(Zd),
without difficulty we have

ETxω(A) = θxEω(A)θ−1
x . (5)

Set

H = `2(Zd).

Lemma 5 Suppose random orthogonal projection Pω satisfies

PTxω = θxPωθ
−1
x (6)

for any x ∈ Zd, ω ∈ Ω. Then it holds that
dimPω(H) = 0 a.s. if E(Pωδ0, δ0) = 0

or

dimPω(H) =∞ a.s. if E(Pωδ0, δ0) > 0.

Proof For j ∈ Zd define a complete orthonormal basis of H by

δj(x) =

1 for x = j;

0 for x 6= j.
(7)
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Then, noting

d(ω) ≡ dimPω(H) =
∑
j∈Zd

(Pωδj , δj),

we have from (6)

d(Txω) =
∑
j∈Zd

(θxPωθ
−1
x δj , δj) =

∑
j∈Zd

(Pωθ
−1
x δj , θ

−1
x δj) = d(ω),

since {θ−1
x δj}j is also a complete orthonormal basis in H. Then the ergodicity of ({Tx},P)

implies d(ω) is equal to a constant a.s.. Let

α = E(Pωδ0, δ0).

Since

0 ≤ (Pωδ0, δ0) ≤ 1,

we have 0 ≤ α ≤ 1. Since

E(Pωδj , δj) = E(Pωθ−jδ0, θ−jδ0) =
(5)

E(PTjωδ0, δ0) =
invariance of Tj

α

holds for any j ∈ Zd, we have

d(ω) = E d(·) =

 0 a.s. if α = 0;

∞ a.s. if α > 0,

which shows Lemma 5. �

In view of Lemma 5 we define a measure on R by

N(dλ) = E(Eω(dλ)δ0, δ0). (8)

The spectrum Σω of Hω is defined as

Σω = suppEω(dλ) = {λ ∈ R;Eω((λ− ε, λ+ ε)) 6= 0 for any ε > 0}.

Then we have

Theorem 6 (Pastur) Σω is independent of ω a.s. and coincides with suppN(dλ).

Proof Since

Eω((λ− ε, λ+ ε)) 6= 0⇐⇒ dimEω((λ− ε, λ+ ε))(H) > 0,

which is equivalent to

N((λ− ε, λ+ ε)) = E(Eω((λ− ε, λ+ ε))δ0, δ0) > 0
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due to Lemma 5, which shows the theorem. �

N(λ) = N((−∞, λ]) is called the integrated density of states (IDS for short) for

the discrete ergodic Schrödinger operator Hω, which is a fundamental object in the study

of ergodic Schrödinger operators.

Physically N(λ) has another equivalent definition, namely for any rectangle Λ of Zd

let {λΛ
ω,k}k=1,2,...,|Λ| be the set of all eigenvalues of Hω restricted to `2(Λ). Then one can

show

N(λ) = lim
Λ↗Zd

1

|Λ|
#{k;λΛ

ω,k ≤ λ} a.s. for any λ ∈ R. (9)

This identity is the origin of the name of N(λ).

Remark 7 It is known that in any discrete ergodic Schrödinger operators

N({λ}) = 0

for any λ ∈ R, namely N is a continuous measure. This fact is believed to be valid also

for continuous ergodic Schrödinger operators, however there has been no proof for this

conjecture yet.

Since the Lebesgue decomposition (2) is unique for any resolution of the identity,

{Eω,j(dλ)}j=ac,sc,p have the property (5) as well. Therefore denoting

Σω,j = suppEω,j(dλ), (10)

similarly we have

Theorem 8 (Pastur) Σω,ac, Σω,sc, Σω,p are independent of ω a.s..

Σω,ac, Σω,sc, Σω,p are called absolutely continuous (ac in short) spectrum, sin-

gular continuous (sc in short) spectrum, point spectrum (p in short) respectively.

Remark 9 Set

Ñj(dλ) = E((Eω,j(dλ)δ0, δ0)).

Then obviously Ñac(dλ) is an absolutely continuous measure. However, it is not generally

valid that Ñac coincides with the absolutely continuous part of N(dλ) although we have

generally

Nac(dλ) ≥ Ñac(dλ).

This is because if {Vω(x)}x∈Zd are i.i.d. random variables whose distribution has a bound-

ed, absolutely continuous density, then it is known that N(dλ) is always absolutely con-

tinuous. On the other hand, as we will see later, in one dimension we have only point

spectrum with probability one. Needless to say, Nj 6= Ñj for j = sc, p in general.
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§2. Ergodic Schrödinger Operators in One Dimension

The previous results can be applied also to one dimensional Schrödinger operators

with ergodic potentials. However, among other things in one dimension one can show

that the IDS N(λ) can determine the absolutely continuous part Σω,ac. The key word

is the reflectionless property which characterize the absolutely continuous spectrum in

general, and as a result it has been shown that ergodic Schrödinger operators have close

relationship with a class of completely integrable systems.

We start with several basic facts of spectral properties of general deterministic 1D

Schrödinger operators developed by Weyl-Stone-Titchmarsh-Kodaira. In one dimension

the arguments are simpler and more transparent in continuous Schrödinger operators than

in discrete operators, so in the proofs we consider mainly continuous models.

2.1 Weyl Function

In this subsection potentials V are deterministic functions. For simplicity we assume

V is bounded. In one dimension the notion of Weyl function (sometimes called as Weyl-

Titchmarsh function) is crucial. It has two important properties; one is its relationship

with the spectrum and the other is its one-to-one correspondence with the potential.

Denote by f+(x, z) the unique solution u whose existence was guaranteed in Lemma

35, and define

m+(z) = f ′+(0, z).

An identity f+(x, z) = f+(x, z) due to V (x) ∈ R shows

m+(z) = m+(z). (11)

Similarly m− is defined by using the solution f−(x, z) on the negative axis:

m−(z) = −f ′−(0, z).

Lemma 10 For any z, w ∈ C\R we have

m+(z)−m+(w)

z − w
=

∫ ∞
0

f+(x, z)f+(x,w)dx.

Proof Integration by parts shows (see Exercise 36)

(z − w)

∫ ∞
0

f+(x, z)f+(x,w)dx =

∫ ∞
0

(−f ′′+(x, z) + V (x)f+(x, z))f+(x,w)dx

−
∫ ∞

0
(−f ′′+(x,w) + V (x)f+(x,w))f+(x, z)dx

= f ′+(0, z)− f ′+(0, w) = m+(z)−m+(w). �
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Setting w = z and noting (11) we have

Imm+(z)

Im z
=

∫ ∞
0
|f+(x, z)|2dx > 0. (12)

m+ is called Weyl function on R+ for the potential V . The Weyl function m− on R−
can be defined similarly. Obviously m± are analytic on C\R and map the upper half plane

into itself. Such a function m is called a Herglotz function. For necessary properties of

Herglotz functions refer to Appendix B. If V = 0, then for z ∈ C\R

f+(x, z) = ei
√
zx, f−(x, z) = e−i

√
zx,

where
√
z is chosen so that Im

√
i = eπi/2. Hence, for V = 0

m+(z) = i
√
z, m−(z) = i

√
z (note here m−(z) = −f ′−(0, z)).

In (ii) of Lemma 37 we showed

|m+(z)− i
√
z| ≤ C

2Im
√
z

(
1 +

C

Im z

)
,

where C = sup |V (x)|. Hence m+(z) is close to i
√
z as Im z → ∞. If V is smooth, then

an analogous calculation shows

m+(z) ∼ i
√
z + V (0)(2i

√
z)−1 − V ′(0)(2i

√
z)−2 + · · · . (13)

The Green function gz(x, y), which is the kernel of the resolvent operator (−∆ +

V − z)−1 has an expression:

gz(x, y) = gz(y, x) = −f+(x, z)f−(y, z)

m+(z) +m−(z)
for x ≥ y. (14)

Note

gz(0, 0) = − 1

m+(z) +m−(z)
. (15)

Since −(m+ + m−)−1 is again a Herglotz function, (ii) of Lemma 37 shows that there

exists a measure σ such that

gz(0, 0) =

∫ ∞
c

1

λ− z
σ(dλ)

(∫ ∞
c

1

1 + |λ|
σ(dλ) <∞

)
, (16)

where c = inf V (x). The measure σ is called the spectral measures of H = −∆ + V . It

is known that the resolution of identity E(dλ) can be described by m±, which is known

as Weyl-Stone-Titchmarsh-Kodaira theorem. A brief introduction to the theorem can be

found in Appendix A.
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2.2 Homologous Relation under Shift

For a function V on R the shift operation θx is defined by

(θxV )(·) = V (·+ x).

Let f, g be functions of potentials V . We say that f, g are homologous with respect to

{θx} if they satisfy

f(θxV )− g(θxV ) =
d

dx
h(θxV )

for an h. This relation will be used to show several identities between different random

variables related to Weyl functions, which was first employed by Johnson-Moser [15].

We denote every quantity depending on a potential V by designating V explicitly if

it is necessary. For instance f+(x, z) is defined through a potential V , so we denote it by

f+(x, z, V ). The fundamental observation is identities

f±(x+ y, z, V ) = f±(x, z, V )f±(y, z, θxV ), (17)

or its differential form:

f ′±(x, z, V ) = ±m±(z, θxV )f±(x, z, V ), (18)

which obeys

f±(x, z, V ) = exp
(
±
∫ x

0
m±(z, θyV )dy

)
. (19)

The identity (17) is easily verified from Lemma 35 as follows. Since f+(x, z, V ) 6= 0, one

can define

g(y) ≡ f+(x+ y, z, V )

f+(x, z, V )
∈ L2(R+),

and see

−g′′ + (θxV )g = zg, g(0) = 1.

Then Lemma 35 shows g(y) = f+(y, z, θxV ). (18) can be derived from (17) by taking the

derivative.

From (18)

m+(z, θxV ) =
f ′+(x, z, V )

f+(x, z, V )

and taking derivative, we see m+ satisfies a Riccati equation:

d

dx
m+(z, θxV ) = V (x)− z −m+(z, θxV )2.
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We have a similar equation for m−, and consequently
d

dx
m+(z, θxV ) = V (x)− z −m+(z, θxV )2,

d

dx
m−(z, θxV ) = −V (x) + z +m−(z, θxV )2.

(20)

(20) leads us to the homologous relations between quantities related to m±. In the lemma

below log is defined on the upper half plane C+ so that it satisfies

log i =
π

2
i.

Lemma 11 The followings are valid. Suppose Im z > 0.

(i) m−(z, θxV )−m+(z, θxV ) =
d

dx
log gz(0, 0, θxV );

(ii) Rem±(z, θxV ) +
1

2

Im z

Imm±(z, θxV )
= ∓1

2

d

dx
log Imm±(z, θxV );

(iii) gz(0, 0, θxV ) +
d

dz
(2gz(0, 0, θxV ))−1 =

d

dx
H(z, θxV ), where

H(z, V ) =
1

2

d

dz
(m+(z, V )−m−(z, V ))

m+(z, V ) +m−(z, V )
.

Proof The identities (i), (ii) are direct from (20), if we note (15). To shorten the

notations we use

m± = m±(z, θxV ).

To show (iii) take the derivative of (20) with respect to z and obtain
d

dx

dm+

dz
= −1− 2m+

dm+

dz
,

d

dx

dm−
dz

= 1 + 2m−
dm−
dz

.

(21)

Then

2
d

dx
H(z, θxV )

=
1

m+ +m−

d

dx

d(m+ −m−)

dz
− 1

(m+ +m−)2

d(m+ +m−)

dx

d(m+ −m−)

dz
.

Using (21), (20) in the first term and the second term respectively, we have

=
1

m+ +m−

{
(m+ −m−)

d(m+ −m−)

dz
− 2
(

1 +m+
dm+

dz
+m−

dm−
dz

)}

= −

1

2

d

dz
(m+ +m−)2 + 2

m+ +m−
=

d

dz
gz(0, 0, θxV )−1 + 2gz(0, 0, θxV ),

which yields (iii). �
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2.3 Floquet Exponent

Originally Floquet exponent was introduced to describe the exponents of f± for pe-

riodic Schrödinger operators, and Johnson-Moser [15] generalized it to almost period-

ic Schrödinger operators. Without any difficulty one can extend it to general ergodic

Schrödinger operators. The properties of Floquet exponent shown in this subsection will

play a central role in the next subsection.

Let (Ω,F ,P) be a probability space and {Tx}x∈R be an ergodic dynamical system.

For a real valued bounded measurable function V on Ω define a Schrödinger operator

Hω = − d2

dx2
+ V (Txω).

For each ω ∈ Ω let m±(z, ω) be the Weyl functions for Hω. The Floquet exponents

w±(z) are defined by

w±(z) = Em±(z, ω). (22)

The identities (19) and the ergodic theorem imply

lim
x→±∞

1

|x|
log f±(x, z, ω) = w±(z) a.s.. (23)

This is a meaning of the Floquet exponents for individual potential. Although for com-

pletely rigorous arguments it is necessary to ensure the finiteness of expectations, we omit

this procedure from now on for simplicity.

Apparently w± are Herglotz functions. Applying Lemma 11, we have

Lemma 12 The following identities are valid.

(i) w+(z) = w−(z);

(ii) Rew±(z) = −1

2
E
( Im z

Imm±(z, ω)

)
;

(iii) w′±(z) = E gz(0, 0, ω).

We omit the proof, since from the homologous relations the identities immediately

follow due to the invariance of P under {Tx}. The identities (i), (iii) were obtained by

Johnson-Moser [15] and (ii) by Kotani [19].

Exercise 13 Show the following identities.

(i) E
m+(z, ω)

m+(z, ω) +m−(z, ω)
= E

m−(z, ω)

m+(z, ω) +m−(z, ω)
=

1

2
;

(ii) E
m+(z, ω)m−(z, ω)

m+(z, ω) +m−(z, ω)
= E

V (ω)− z
m+(z, ω) +m−(z, ω)

.
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Remark 14 m±(z, ω) can be regarded as the random variables expressing the

equilibrium states of a certain stochastic process. To simplify the situation we assume the

potential is Gaussian white noise, namely we consider

H = − d2

dt2
+

dBt
dt

, where {Bt}t∈R is a 1D Brownian motion.

Then, (20) turns to be an SDE

dm−(z, Ttω) = (z +m−(z, Ttω)2)dt− dBt(ω), (24)

and the distribution of m−(z, ω) is nothing but the invariant measure of a diffusion process

Zt ∈ C+ determined by

dZt = (z + Z2
t )dt− dBt.

A traditional approach to study the equilibrium state for {Zt} is to analyze the corre-

sponding differential equations. However, the present analysis is a direct calculation using

the SDE (24).

Since we have (i) of Lemma 12, we denote w±(z) by a single w(z). Let σω(dλ) be the

spectral measure for Hω introduced in (16). Then the above identity (iii) of Lemma 12

shows

w′(z) =

∫ ∞
c

1

λ− z
Eσω(dλ). (25)

On the other hand, from

gz(0, 0, ω) =
(
(−∆ + Vω − z)−1δ0, δ0

)
=

∫ ∞
c

1

λ− z
(Eω(dλ)δ0, δ0)

(δ0 denotes the delta function in the continuous case) it follows that

σω(dλ) = (Eω(dλ)δ0, δ0).

Therefore, we have

Eσω(dλ) = E(Eω(dλ)δ0, δ0) = dN(λ), (26)

where N(λ) is the IDS for Hω. Combining this with (25) yields

w′(z) =

∫ ∞
c

1

λ− z
dN(λ). (27)

This identity was first noticed by Johnson-Moser [15]. For z ∈ C+ (ii) of Lemma 12 implies

Rew(z) < 0, which is consistent with f+ ∈ L2(R+) in (23). The quantity

γ(z) = −Rew(z) > 0 (28)
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is called as the Lyapounov exponent. In conclusion, we have

w, w′, −iw are of Herglotz. (29)

The integrated version of (27) is

w(z) = w(i) +

∫ ∞
c
{log(λ− z)−1 − log(λ− i)−1}dN(λ), (30)

and the property Rew(z) < 0 implies that for any finite a < b there exists a constant c

such that ∫ b

a
log

1

|λ− z|
dN(λ) ≤ c for any z satisfying 0 < Im z < 1,

which shows the log-Hölder continuity of N , namely

|N(λ1)−N(λ2)| ≤ −c log |λ1 − λ2| for λ1, λ2 ∈ [a, b] s.t. |λ1 − λ2| ≤ 1. (31)

If a analytic function w on C+ satisfies (29), then Imw′(z) > 0 implies the monotone

increasing property of Rew(λ+ iy) with respect to y > 0, which shows that w has a finite

limit

w(λ+ i0) = lim
ε↓0

w(λ+ iε) for any λ ∈ R.

In the discrete case we have similar identities to those of Lemma 2 (see [34]), and w has

the same properties. Especially (30) takes a simpler form

w(z) =

∫ ∞
−∞

log(λ− z)−1dN(λ)

if we assume the boundedness of V . Taking the real part, we have

γ(z) = −Rew(z) =

∫ ∞
−∞

log |λ− z|dN(λ) for any z ∈ C, (32)

which is called the Thouless formula.

Historically the Lyapounov exponent was introduced to study the exponential growth

of solutions to a system of a first order linear ODE:

d

dx

(
u

v

)
=

(
0 1

Vω − z 0

)(
u

v

)
, (33)

which is equivalent to −u′′ + Vωu = zu. Let Uω(x, z) be the fundamental matrix for (33),

that is, Uω ∈ SL(2,C) is the solution to

d

dx
U(x) =

(
0 1

V (Txω)− z 0

)
U(x), U(0) = I, (34)
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where I is the 2× 2 identity matrix. Then the Lyapounov exponent is defined by

γ̃(z) = lim
x→∞

1

x
log ‖Uω(x, z)‖ a.s..

It should be noted that the other Lyapounov exponent for {Uω(x, z)} is −γ̃(z) since

detUω(x, z) = 1 (see Appendix D). The existence is known by the subadditive ergodic

theorem, and the limit is independent of ω because of the ergodicity. Since f±(x, z, ω) are

linearly independent solutions to −u′′+Vωu = zu for z ∈ C\R, Uω(x, z) can be expressible

by f±:

Uω(x, z) =

(
f+(x, z, ω) f−(x, z, ω)

f ′+(x, z, ω) f ′−(x, z, ω)

)(
f+(0, z, ω) f−(0, z, ω)

f ′+(0, z, ω) f ′−(0, z, ω)

)−1

=

(
f+(x, z, ω) f−(x, z, ω)

f ′+(x, z, ω) f ′−(x, z, ω)

)(
1 1

m+(z, ω) −m−(z, ω)

)−1

from which the identity

γ̃(z) = lim
x→∞

1

x
log ‖Uω(x, z)‖ = −Rew(z) = γ(z) (35)

follows. Although this identity is valid for z ∈ C\R, both sides have finite values for all

z ∈ C. Craig-Simon [8] showed the identity holds for all z ∈ C by using subharmonicity.

Note that γ(λ) may vanish for real λ. Oseledec theorem [30] implies that if γ(λ) > 0, then

there exists a non-trivial solution f which decays exponentially fast with exponent −γ(λ)

as x→∞ (see Theorem 47 in Appendix). This property is closely related to the existence

of point spectrum, or equivalently eigenvalues whose eigenfunctions decay exponentially

fast.

2.4 AC Spectrum and Reflectionless Property

In this subsection, the relation between absolutely continuous spectrum and Floquet

exponent is investigated. The key word is reflectionless property, which was known for

decaying or periodic potentials historically. Most of the results in this subsection were

obtained by the author [19].

The key observation for the main results is an identity

−Rew(z)

Im z
− Imw′(z) = E

{( 1

Imm+
+

1

Imm−

)∣∣∣m+ +m−
m+ +m−

∣∣∣2} (36)

due to Lemma 12, where m± = m±(z, ω). To study the limit of the left hand side of (36)

as Im z ↓ 0, we need two lemmas.
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For the IDS N and the Lyapounov exponent γ set
A =

{
λ ∈ R : lim

ε↓0

N(λ+ ε)−N(λ− ε)
2ε

exists finitely
}
,

Z = {λ ∈ R : γ(λ) = 0},

and for λ ∈ A
N ′(λ) ≡ lim

ε↓0

N(λ+ ε)−N(λ− ε)
2ε

.

Lemma 15 For λ ∈ Z ∩A we have

− lim
ε↓0

Rew(λ+ iε)

ε
= lim

ε↓0
Imw′(λ+ iε) = πN ′(λ).

Proof Set

γ(x, y) = −Rew(x+ iy).

Then, Cauchy-Riemann equation implies

w′(z) = −∂γ
∂x

+ i
∂γ

∂y
.

Therefore, from (27)
∂γ

∂y
(λ, ε) =

∫ ∞
−∞

ε

(x− λ)2 + ε2
dN(x),

and (78) in Appendix shows for λ ∈ A

lim
ε↓0

∂γ

∂y
(x, ε) = πN ′(λ) <∞.

Consequently, we have, for λ ∈ A ∩Z

− lim
ε↓0

Rew(λ+ iε)

ε
= lim

ε↓0

γ(λ, ε)− γ(λ, 0)

ε
= πN ′(λ). �

Set A± = {(λ, ω) ∈ R× Ω : ∃m±(λ+ i0, ω) finitely in C+},

Aω± = {λ ∈ R : (λ, ω) ∈ A±}.
(37)

Then they are measurable sets of B(R) × F . To state the lemma below we need the

notion of essential closure. The essential closure of A ∈ B(R) w.r.t. Lebesgue measure

is defined by

A
ess ≡ {λ ∈ R : for any ε > 0, |A ∩ (λ− ε, λ+ ε)| > 0},

where |A| denotes the Lebesgue measure of A ∈ B(R).
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Lemma 16 There exist measurable sets A± of B(R) such that with probability

one

Aω± = A± a.e., namely |Aω± 	A±| = 0 (38)

hold. Moreover, the ac spectrum Σω,ac of Hω is given by

Σω,ac = A+ ∪A−
ess

a.s.. (39)

Proof Note for the fundamental matrix Uω of (34)

m+(z, Txω)−1 = Uω(x, z) ·m+(z, ω)−1

holds, where for m ∈ C

U ·m =
am+ b

cm+ d
if U =

(
a b

c d

)
.

Since Uω(x, z) are entire w.r.t. z and define elements of SL(2,R) if z ∈ R, we see without

difficulty

ATxω+ = Aω+ for any x ∈ R, ω ∈ Ω.

Hence f(λ, ω) = IA+(λ, ω) obeys f(λ, Txω) = f(λ, ω), which implies that for each λ ∈ R

f(λ, ω) = 1 a.s. or f(λ, ω) = 0 a.s.

holds. Then the function

f(λ) ≡ E f(λ, ω)

takes 1 or 0 for each λ ∈ R. Due to Fubini theorem the set

A+ ≡ {λ ∈ R : f(λ) = 1} ∈ B(R)

satisfies

Aω+ = A+ a.e.

with probability one. For Aω− one can define A− similarly.

For a general Schrödinger operator HV the ac spectrum is the sum of the supports of

the ac parts of the spectral measures for the two Herglotz functions

m1 = −(m+ +m−)−1, m2 = m+m−(m+ +m−)−1.

Define

Ai = {λ ∈ R : ∃mi(λ+ i0) finitely in C+}
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for i = 1, 2. Then, from Lemma 42 in Appendix B without difficulty we see

A1 = A2 a.e.,

and the ac spectrum of HV is given by A1
ess

(= A2
ess

). Since, for each ω ∈ Ω

Aω1 = Aω+ ∪ Aω− a.e.

holds, the ac spectrum of HV is equal to Aω+ ∪ Aω−
ess

= A+ ∪A−
ess

, which yields (39).

�

Now one can show the main theorem. SetΣ = spectrum of Hω = supp dN,

Σac = absolutely continuous spectrum of Hω.

From Theorems 6, 8 we know that Σ, Σac are independent of ω a.s..

Theorem 17 The identity

Σac = Z
ess

(40)

holds. Moreover, with probability one we have

m+(λ+ i0, ω) = −m−(λ+ i0, ω) for a.e. λ ∈ Z . (41)

Proof For simplicity we assume A± are bounded. First we show Σac ⊂ Z
ess

. The

identity
ε

Imm+(λ+ iε, ω)
=
(∫ ∞

c

1

(λ− x)2 + ε2
σ+(dx, ω)

)−1

due to (2) of Lemma 12 implies that the left side is monotone increasing with respect to

ε. Therefore ∫
A+

ε

Imm+(λ+ iε, ω)
dλ

converges to 0 as ε↘ 0 decreasingly, and

2

∫
A+

γ(λ)dλ = lim
ε↓0

∫
A+

2γ(λ+ iε)dλ = lim
ε↓0

E

∫
A+

( ε

Imm+(λ+ iε, ω)

)
dλ = 0.

Similarly we have ∫
A−

γ(λ)dλ = 0,

which shows

γ(λ) = 0 a.e. on A+ ∪A−.
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Therefore, Lemma 16 implies Σac ⊂ Z
ess

.

Secondly we prove Σac ⊃ Z
ess

and (41) simultaneously. For simplicity we assume Z

is bounded. Since A in Lemma 16 satisfies A = R a.e. due to Lebesgue theorem, applying

Lemma 16 to (36), we see

0 = lim
ε↓0

∫
A∩Z

(γ(λ+ iε)

ε
− Imw′(λ+ iε)

)
dλ

= lim
ε↓0

∫
Z

(γ(λ+ iε)

ε
− Imw′(λ+ iε)

)
dλ

= lim
ε↓0

∫
Z
E
{( 1

Imm+
+

1

Imm−

)∣∣∣m+ +m−
m+ +m−

∣∣∣2(λ+ iε)
}

dλ

≥ E
{∫

Z

( 1

Imm+
+

1

Imm−

)∣∣∣m+ +m−
m+ +m−

∣∣∣2(λ+ i0)dλ
}

(Fatou),

hence with probability one( 1

Imm+
+

1

Imm−

)∣∣∣m+ +m−
m+ +m−

∣∣∣2(λ+ i0) = 0 for a.e. λ ∈ Z (42)

holds. Since Imm±(λ + i0) < ∞, 0 < |(m+ + m−)(λ + i0)| < ∞ for a.e. λ ∈ Z , (42) is

valid if and only if (41) holds. It is clear that (41) implies Z ⊂ A+ ∪ A− a.e.. And the

proof is complete. �

In the theorem, the inclusion Σac ⊂ Z
ess

was shown by Ishii [14] and Pastur [31] by

using Lemma 38 and Fubini’s theorem. As for this fact Deift-Simon [11] also gave a proof

by using m±. The inclusion Σac ⊃ Z
ess

and the identity (41) were proved by Kotani [19].

Corollary 18 A+ = A− = Z a.e. and Σ+
ac = Σ−ac = Σac = Z

ess
hold.

The property (41) is very strong. For instance, suppose Z contains an interval I.

Then (41) implies Re gλ+i0(0, 0, ω) = 0 on I, which enables us extend gz(0, 0, ω) analyt-

ically down to C− through I. Therefore, if Z is a sufficiently regular set and Σ = Z ,

then gz(0, 0, ω) can be determined as a analytic function on a Riemannian surface, which

makes it possible to describe the potential V . This was a main theme in 1970s and 1980s

relating to completely integrable systems. If two Herglotz functions m± satisfy

m+(λ+ i0) = −m−(λ+ i0) for a.e. λ ∈ F (43)

for a measurable set F with |F | > 0, then we call {m±} is reflectionless on F . Historically

this property appeared for decaying potentials when the reflection coefficients vanishes,

and in the study of a certain class of completely integrable systems like KdV equation,

non-linear Schrödinger equation etc this property has appeared implicitly. We remark that
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all periodic potentials are reflectionless on their spectrum in this sense, since the spectra

are purely absolutely continuous.

Theorem 17 asserts that the ac spectrum is supported exactly on Z . However it does

not exclude the possibility of the existence of the singular spectrum in Z . The theorem

below is related to this problem. The spectral measure σω was defined as the measure

satisfying

gz(0, 0, ω) =

∫ ∞
c

1

λ− z
σ(dλ, ω),

where gz(x, y, ω) is the Green function of Hω = −∆ + Vω. Let

σ(dλ, ω) = σac(dλ, ω) + σs(dλ, ω)

be the Lebesgue decomposition. Then

N(dλ) = E(σ(dλ, ω)) = E(σac(dλ, ω)) + E(σs(dλ, ω)) (44)

holds, and clearly E(σac(dλ, ω)) is absolutely continuous. However, E(σs(dλ, ω)) may

have non-trivial absolutely continuous part, hence (44) does not necessarily yield the

Lebesgue decomposition of N(dλ). The result obtained in Kotani [26] is clarified as follows.

Decompose Z into three parts by the IDS N as

Z = Zac ∪Zs ∪Zex,

where 

Zac = Z ∩A =
{
λ ∈ Z : lim

ε↓0

N(λ+ ε)−N(λ− ε)
2ε

<∞
}
,

Zs =
{
λ ∈ Z : lim

ε↓0

N(λ+ ε)−N(λ− ε)
2ε

=∞
}
,

Zex = Z \(Zac ∪Zs).

Each subset can be redefined also through w′:

Zac =
{
λ ∈ Z : lim

ε↓0
Imw′(λ+ iε) <∞

}
,

Zs =
{
λ ∈ Z : lim

ε↓0
Imw′(λ+ iε) =∞

}
,

Zex =
{
λ ∈ Z : lim

ε↓0
Imw′(λ+ iε) does not exist

}
.

It should be noted that the IDS N is purely absolutely continuous on Zac if |Z | > 0.

Theorem 19 It holds that

|Z | = |Zac|, |Zs| = 0, N(Zex) = 0, (45)
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and E(σac(dλ, ω)) = N(dλ ∩Zac) = Nac(dλ ∩Zac),

E(σs(dλ, ω)) = N(dλ ∩ (Zs ∪ (R\Z ))) = Ns(dλ ∩Zs) +N(dλ ∩ (R\Z )).
(46)

Therefore, if |Z | > 0, then the ac spectrum of Hω is concentrated on Zac and no other

spectra on Zac.

Proof (45) follows from Lemma 42 in Appendix immediately. On the other hand,

from Theorem 17

E(σac(dλ, ω)) = E(σac(dλ ∩Zac, ω))

holds and clearly this is dominated by Nac(dλ ∩Zac) from above. To show the converse

we use

pε(x) =
1

π

ε

ε2 + x2
,

and for a bounded set K of Z define

p̃ε(λ, x) = Cε(λ)−1pε(λ− x), where Cε(λ) =

∫
K
pε(λ− x)dx.

Schwarz inequality shows(∫
K
f(x)−1p̃ε(λ, x)dx

)−1
≤
∫
K
f(x)p̃ε(λ, x)dx

for any non-negative f . Applying this inequality to

f(x) =
1

Imm+(x+ i0, ω)
,

we have

Cε(λ)2
(∫

K
Imm+(x+ i0, ω)pε(λ− x)dx

)−1
≤
∫
K

1

Imm+(x+ i0, ω)
pε(λ− x)dx. (47)

Note∫
K

Imm+(x+ i0, ω)pε(λ− x)dx ≤ 1

π

∫ ∞
−∞

ε

(λ− x)2 + ε2
Imm+(x+ i0, ω)dx

≤
∫ ∞
−∞

ε

(λ− x)2 + ε2
σ+(dx, ω) = Imm+(λ+ iε, ω).

Then (47) turns to

Cε(λ)2(Imm+(λ+ iε, ω))−1 ≤
∫
K

1

Imm+(x+ i0, ω)
pε(λ− x)dx,
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and taking the expectation leads us to

Cε(λ)2 2γ(λ+ iε)

ε
≤
∫
K

(
E

1

Imm+(x+ i0, ω)

)
pε(λ− x)dx. (48)

From Theorem 17

Im gx+i0(0, 0, ω) = −Im
1

m+(x+ i0, ω) +m−(x+ i0, ω)

= −Im
1

m+(x+ i0, ω)−m+(x+ i0, ω)

=
1

2

1

Imm+(x+ i0, ω)

follows, and (48) yields

Cε(λ)2γ(λ+ iε)

ε
≤
∫
K
E(Im gx+i0(0, 0, ω))pε(λ− x)dx.

Since Cε(λ)→ 1 for a.e. λ ∈ K, Lemma 15 shows

π

∫
K
N ′(λ)dλ ≤

∫
K
E(Im gλ+i0(0, 0, ω))dλ = π E(σac(K,ω)),

which implies

E(σac(dλ, ω)) = Nac(dλ ∩Zac).

Moreover, applying (iii) of Lemma 42 in Appendix to w′ we have Ns(R\Zs) = 0, hence

N(Zac) = Nac(Zac). Consequently E(σs(dλ, ω)) = N(dλ ∩ (Zs ∪ (R\Z ))) holds. �

Since the IDS N completely determines the Lyapounov exponent γ, Theorem 17

asserts that the IDS completely characterizes the ac spectrum and the singular spectrum

for any one-dimensional ergodic Schrödinger operators.

It should be noted that Theorem 19 implies

Corollary 20 Hω has purely ac spectrum if and only if N(R\Zac) = 0 or equiva-

lently

N(dλ) is absolutely continuous and N(R\Z ) = 0

holds.

The main theorems 17, 19 are stated by the IDS N and the Lyapounov exponent

γ. Its significance lies in the constructive definitions (9), (35) of N , γ, which sometimes

makes it possible to compute N, γ in some way.

For discrete Schrödinger operators a theorem analogous to Theorem 17 was estab-

lished by Simon [34]. Theorem 19 can be shown for discrete systems without any change

of the proof. As for the extension of Theorem 17 refer Kotani-Simon [24].
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§3. Applications

Theorem 17 has several applications because of the reflectionless property of the ac

spectrum. In this section, we provide several theorems obeying from Theorem 17. There is

a common belief that the increase of randomness creates the irregularity of the spectrum.

The first two applications realize this belief.

3.1 Nondeterministic Potentials

Lemma 43 in Appendix B and Lemma 46 in Appendix C imply that the Weyl functions

m± given on A ⊂ B(R) with positive Lebesgue measure recover the potential V on R+

and R− respectively. On the other hand, For a random process {Xx(ω)}x∈R are said to

be deterministic if two σ-fields

F− = σ-{Xx(ω) : x < 0}, F+ = σ-{Xx(ω) : x > 0}

for {Xx(ω)}x∈R satisfy

F− = F+ a.s..

On the contrary, if F− 6= F+ a.s. holds, then the process is called nondeterministic. If

the process is random intuitively, then it is supposed to be non-deterministic. Combining

the two lemmas in Appendix with Theorem 17, this notion makes it possible to state

Theorem 21 (Kotani [19]) Assume {V (Txω)}x∈R is nondeterministic. Then, the

Lyapounov exponent γ(λ) is a.e. positive, and there is no absolutely continuous spectrum

a.s..

In discrete case, if a potential {Vn(ω)}n∈Z is i.i.d., then it is certainly nondetermin-

istic. Therefore, in this case the corresponding discrete Schrödinger operator has no ac

spectrum. Historically, the positivity of the Lyapounov exponents for i.i.d. potentials was

known by applying Furstenberg theorem.

3.2 Support Theorem

To compare the randomness of two ergodic potentials we use their induced probability

measures on a set of potentials on R.

Let C be a positive constant and set

V = {V : V is real valued measurable on R and |V (x)| ≤ C for all x ∈ R}.

《
应
用
概
率
统
计
》
版
权
所
有



622 A^VÇÚO 1n��ò

We impose a metric on V , for instance, for {ϕn}n=1,2,... ⊂ C∞0 (R) which are dense in

C0(R) define

d(V1, V2) =
∞∑
n=1

1

2n

(∣∣∣ ∫
R

(V1(x)− V2(x))ϕn(x)dx
∣∣∣ ∧ 1

)
.

On V the shift θx is defined by (θxV )(·) = V (·+x). Then one can consider a shift invariant

probability measure on V , and the notion of ergodicity with respect to {θx}x∈R can be

defined as usual. Let P be the set of all ergodic probability measures on V . An ergodic

potential {V (Txω)} in the previous sense on a certain probability space (Ω,F ,P) can be

regarded as an ergodic potential in the present sense by a map

φ : Ω→ V , φ(ω)(x) = V (Txω),

if we define µ ∈P by

µ(A) = P(φ−1(A)), A ∈ B(V ) : the Borel σ-field on V .

For µ ∈P the support is

suppµ = {V ∈ V : µ(O) > 0 for any open O such that O 3 V }.

One can think that the larger the support is, the more random the ergodic potential is.

Since the spectrum and three spectral components depend only on µ ∈ P, we denote

them by

Σµ, Σµ
ac, Σµ

sc, Σµ
p.

Theorem 22 (Kotani [22]) Suppose µ1, µ2 ∈P satisfy suppµ1 ⊂ suppµ2. Then

(i) (this is valid in any dimension)

Σµ1 ⊂ Σµ2 .

(ii) (this is valid only in one dimension)

Σµ1
ac ⊃ Σµ2

ac .

Proof First note that the convergence of Vn to V in V implies the convergence of

the associated m±n (see Exercise 23), that is

m±n (z)→ m±(z) for any z ∈ C+. (49)

Let I be a bounded open interval such that I ⊂ R\Σµ2 . Then, σV (I) = 0 holds for a.s.

V with respect to µ2. (49) and Lemma 45 imply σV (I) = 0 holds for any V ∈ suppµ2,

hence for any V ∈ suppµ1, which shows R\Σµ2 ⊂ R\Σµ1 .
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The second statement follows similarly. Suppose m±V are reflectionless on A for a.e.

V with respect to µ2. Then, (49) and Lemma 45 imply m±V are reflectionless on A for any

V ∈ suppµ2, hence for any V ∈ suppµ1, which shows Σµ1
ac ⊃ Σµ2

ac . �

Exercise 23 Show that the convergence of Vn to V in V implies the convergence

of the associated m±n .

Theorem 22 says that the increase of the support implies the less ac spectrum. We

provide typical applications of the theorem in discrete system. Let

(HV u)(x) =
∑

y: |y−x|=1

u(y) + V (x)u(x).

Assume {V (x)}x∈Zd are i.i.d. with distribution F (x). Then

Claim 24 Suppose supp dF = [a−, a+]. Then

Σ = specHV = [−2d+ a−, 2d+ a+]. (50)

This is shown as follows. Let µ be the probability measure on V induced by the i.i.d.

potentials. The spectrum of ∆ is [−2d, 2d]. Let a ∈ supp dF . Then, the potential Va(x) =

a (constantly) is an element of suppµ, hence (i) of the theorem implies Σ ⊃ [−2d, 2d] + a,

hence

Σ ⊃ [−2d, 2d] + supp dF = [−2d+ a−, 2d+ a+].

Conversely, since a− ≤ Vω(x) ≤ a+ a.s., we have

(−2d+ a−)‖u‖2 ≤ (HV u, u) ≤ (−2d+ a+)‖u‖2 for any u ∈ `2(Z),

it is clear that Σ ⊂ [−2d+ a−, 2d+ a+].

As an example to apply (ii) of the theorem we consider a one dimensional discrete

system with potential

Vω(x) = f(Xx(ω)),

where {Xx(ω)}x∈Z is a stationary Gaussian process with mean 0 and covariance

ρ(x− y) = E(Xx(ω)Xy(ω)) =

∫ 2π

0
eiλ(x−y)ν(dλ),

where ν is a finite measure on [0, 2π) with no atoms. Then, {Xx(ω)}x∈Z becomes ergodic.

Suppose f is a bounded continuous function on R. Then f(Xx(ω)) induces an ergodic

probability measure µ on V . Since, for any x1 < x2 < · · · < xn ∈ Z the matrix

(ρ(xi − xj))1≤i,j≤n
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is strictly positive definite, the support of the distribution of {Xxi(ω)}1≤i≤n is Rn. There-

fore, in view of the locality of the distance of V it follows that any periodic potential

taking its value in [inf f, sup f ] is contained in suppµ. Conversely we easily see that any

V ∈ suppµ can be approximated by periodic functions, hence we have

suppµ = {periodic potential taking its value in [inf f, sup f ]}.

Consequently, an identity

Σ = [−2d+ inf f, 2d+ sup f ]

follows from (i) of the theorem. Moreover, for any interval I of Σ one can create a periodic

potential V with bounds inf f and sup f such that (spec, HV ) ∩ I = φ. Then, applying

(ii) of the theorem to µ and the probability measure µ1 on V generated by {θxV }x∈Z, we

have

I ⊂ (Σµ1)c = (Σµ1
ac )c ⊂ (Σµ

ac)
c,

which implies Σµ
ac = φ. The boundedness of f can be removed.

Claim 25 Let {Xx(ω)}x∈Z be an ergodic stationary Gaussian process and f be a

nonconstant continuous function. Then, the discrete Schrödinger operator with an ergodic

potential Vω(x) = f(Xx(ω)) has no ac spectrum a.s..

In this way Theorem 22 is useful to show the absence of the ac spectrum for some

deterministic potentials. A further application of the theorem can be found in Kirsch-

Kotani-Simon [17].

3.3 Potentials Taking Finitely Many Values

Under a certain situation, Theorem 21 has a stronger statement, especially for the

discrete system when ergodic potentials take only finitely many values. A typical example

is the Sturmian potential (see Damanik [9]): for κ > 0 and θ ∈ (0, 1) irrational

Vω(x) = κχ[1−θ,1)(xθ + ω), x ∈ Z, ω ∈ Ω ≡ [0, 1).

In this section we give a result which is valid for general such potentials.

Before we state the result we prepare a lemma. For a finite subset S of R set

Ω = SZ, Ω− = SZ− , where Z− = {x ∈ Z : x ≤ −1}.

Define a projection π− : Ω→ Ω− by

π−(ω)(x) = ω(x) for x ∈ Z−.
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Ω turns to be compact by a metric d:

d(ω1, ω2) =
∑
x∈Z

2−|x||ω1(x)− ω2(x)|.

One can define a similar metric on Ω−, and abuse the same notation. Define a shift

operation on Ω by

(θxω)(·) = ω(·+ x).

Lemma 26 Let Ω1 be a shift invariant closed subset of Ω satisfying

π− : Ω1 → Ω− is injective. (51)

Then Ω1 becomes a finite set, and any element of Ω1 is periodic.

Proof The condition (51) implies that there exists a bijection φ between π−(Ω1)

and Ω1. Since π− is continuous and Ω1 is compact, φ turns to be continuous. Therefore,

for any ε > 0 there exists δ > 0 such that

∑
x≤−1

2x|ω1(x)− ω2(x)| < δ =⇒ |ω1(0)− ω2(0)| < ε.

Since S is a finite set, we have

δ0 = min
a,b∈S, a 6=b

|a− b| > 0, δ1 = max
a,b∈S

|a− b| <∞.

Choose ε < δ0. Then, for n > log2(δ1/δ)

∑
x≤−n−1

2x|ω1(x)− ω2(x)| ≤ δ1
∑

x≤−n−1
2x = δ12−n < δ

holds. Therefore, we have

ω1(x) = ω2(x) for any − n ≤ x ≤ −1

=⇒
∑
x≤−1

2x|ω1(x)− ω2(x)| < δ =⇒ |ω1(0)− ω2(0)| < ε =⇒ ω1(0) = ω2(0).

Since Ω1 is shift invariant, this property of Ω1 implies that for any ω ∈ Ω1 the value ω(x)

is determined from {ω(−1), ω(−2), . . . , ω(−n)}. Consequently we see #Ω1 ≤ (#S)n <∞.

The rest of the proof is easy. �

Theorem 27 (Kotani [25]) Suppose V (ω) takes finitely many values. Then, the

associated ergodic Schrödinger operators have no ac spectrum a.s., unless they are periodic.
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Proof Let S be all possible values taken by V and Ω1 be the closure of the set of all

potentials V (Txω). Then Ω1 becomes a shift invariant closed set of Ω ≡ SZ. Assume the

corresponding Schrödinger operators have ac spectrum. Then, the Weyl functions satisfy

m+(λ+ i0, ω) = −m−(λ+ i0, ω) for a.e. λ ∈ Z , (52)

and, Lemma 45 in Appendix implies that for any ω ∈ Ω1 (52) holds. Hence, from (ii) of

Lemma 43 we know that Ω1 satisfies the condition (51). Applying Lemma 26, we have

the conclusion. �

3.4 Point Spectrum

Generally the IDS can not distinguish singular continuous spectrum and point spec-

trum. There are examples indicating this fact. They are discrete quasi-periodic Schrö-

dinger operators defined by

Hω = ∆ + κ tan(2παn+ ω) on l2(Z) for irrational α.

This operator has the IDS

Nκ(λ) =
1

π
Im

∫ ∞
−∞

1

x− λ− iκ
dN0(x),

where N0 is the IDS for the free Laplacian ∆. The IDS Nκ(λ) is independent of α. For α

a quantity

L(α) = lim sup
n→∞

(−n−1 log | sinπαn|)

measures a distance between α and rational numbers, since there exist integers pn, qn such

that ∣∣∣α− qn
pn

∣∣∣ ∼ e−L(α)qn .

Simon [35] proved thatL(α) = 0 =⇒ the spectrum is pure point,

L(α) =∞ =⇒ the spectrum is purely singular continuous,

which implies that the IDS can not determine the components of the singular spectrum.

It should be noted, however, that these potentials are not quasi-periodic in an ordinary

sense, since tanx is unbounded.

There is a method to show the existence of the point spectrum, which was discovered

by Carmona [4] and developed by Kotani [23], [26]. This method is useful only in one

dimension when potentials are nondeterministic.
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Define the future and the past by

F+ = σ-{V (Txω);x ≥ 0}, F− = σ-{V (Txω);x ≤ 0}.

Let σ(dλ, ω) be the spectral measure of the Herglotz function gz(0, 0, ω). The conditional

expectation

E(σ(dλ, ω)|F±)

can be realized as measures on R for fixed ω by using the regular conditional probability

given F±.

Theorem 28 (Lemma 2 in Kotani [23]) Assume an ergodic potential {V (Txω)} is

nondeterministic. Let µ be the Lebesgue measure on R. For a Borel subset A of R with

µ(A) > 0 assume with probability one

E(σ(dλ, ω)|F±) are absolutely continuous on A w.r.t. µ. (53)

Then, the corresponding schrödinger operators Hω have purely point spectrum on A and

all the eigenfunctions decay like e−γ(λ)|x|.

Proof Set

S±(ω) =
{
λ ∈ A; lim

x→±∞

1

|x|
log ‖Uω(x, λ)‖ = γ(λ) > 0

}
.

Then, the assumption and the subadditive ergodic theorem imply that

µ(A\S±(ω)) = 0 a.s. (54)

holds. Define

f±(λ, ω) = χA\S±(ω)(λ).

Since f+ is measurable with respect to B(R)×F+, we have

E
(∫

A
f+(λ, ω)σ(dλ, ω)

)
= E

(∫
A
f+(λ, ω)E(σ(dλ, ω)|F+)

)
,

which is equal to 0 due to (53), (54). Hence

σ(A\S+(ω), ω) =

∫
A
f+(λ, ω)σ(dλ, ω) = 0 a.s.,

and

σ(A\S+(ω), ω) = 0 a.s..

Similarly we have

σ(A\S−(ω), ω) = 0 a.s..
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Therefore, we see that for a.e. λ ∈ A with respect to σ(dλ, ω) there exist solutions u± to

Hωu± = λu± satisfying

u±(x), u′±(x) ∼ e−γ(λ)(±x) as x→ ±∞,

and any other solution u to Hωu = λu which is independent of u± satisfies

u(x)2 + u′(x)2 ∼ e∓xγ(λ) as x→ ±∞ (see Theorem 47).

On the other hand, it is known that for a.e. λ with respect to σ(dλ, ω) there exists a

nontrivial solution f to

Hωf = λf on R satisfying f(x)2 + f ′(x)2 = O(|x|ρ) as |x| → ∞,

for some finite ρ > 0 (see Lemma 40). Therefore, this f should be

f(x) =

const.u+(x) for x > 0;

const.u−(x) for x < 0,

which means f is an element of L2(R), and σ(dλ, ω) has only point part on A. �

If {V (Txω)}x∈R is deterministic, namely F−= F+ holds, then F−= F+ = the whole

σ-field F , hence

E(σ(dλ, ω)|F−) = σ(dλ, ω)

is valid, hence the condition (53) is useless. Assume {V (Txω)}x∈R is nondeterministic on

the contrary, and set

Fn = σ-{V (Txω);x ≤ n}, F−∞ =
⋂

n≤−1
Fn.

Then, it is easily seen that f−(λ, ω) is measurable w.r.t. B(R) × Fn for any n ≤ −1,

hence

E
(∫

A
f−(λ, ω)σ(dλ, ω)

)
= E

{
E
(∫

A
f−(λ, ω)E(σ(dλ, ω)|Fn)

)}
.

One might be tempted to take the limit n→ −∞ and conclude

E
(∫

A
f−(λ, ω)σ(dλ, ω)

)
= E

{
lim

n→−∞
E
(∫

A
f−(λ, ω)E(σ(dλ, ω)|Fn)

)}
= E

{
E
(∫

A
f−(λ, ω)E(σ(dλ, ω)|F−∞)

)}
. (55)

This identity is valid if f−(λ, ω) is measurable w.r.t. B(R)×F−∞, but generally

B(R)×F−∞  
⋂

n≤−1
(B(R)×Fn),
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and one can not hope (55).

The first application of Theorem 28 is to discrete Schrödinger operators with i.i.d.

potentials.

Claim 29 Assume that the potential {V (x, ω)} are i.i.d., and the common dis-

tribution has a bounded density τ(x). Then, the corresponding Hω has purely point

spectrum and every its eigenfunction decays exponentially fast with probability one.

Proof We use the identity

gz(0, 0, ω) = − 1

m+(z, ω) + z − V (1, ω) +m−(z, ω)
,

where m±(z, ω) are the Weyl functions on x ≥ 2 and x ≤ 0 respectively. Set

w = m+(z, ω) + z +m−(z, ω) ∈ C+.

Noting the independence of w and V (1, ω), we see

E(Im gz(0, 0, ω)|F−) = E(E(Im gz(0, 0, ω)|{V (x, ω);x 6= 1})|F−)

=

∫ ∞
−∞

Im
1

x− w
τ(x)dx ≤ c

∫ ∞
−∞

Im
1

x− w
dx = cπ,

independently of w. Therefore, we have

E(σ(dλ, ω)|F−) ≤ cdλ. (56)

Since a similar argument shows (56) for F+, one can apply Theorem 28. �

The pure point property of the spectrum of discrete Schrödinger operators with i.i.d.

random potentials was first established by Goldsheid-Molchanov-Pastur [13] under some

regularity condition on the distribution of V (x, ω). Carmona-Klein-Martinelli [5] removed

the regularity condition by applying the multiscale analysis method and proved the An-

derson localization (pure point property of the spectrum) under a quite general condition

on the distribution of V (x, ω) including Bernoulli distribution.

Another application of Theorem 28 is to Gaussian potentials of Claim 25. Let

{Xx(ω)}x∈Z be a stationary Gaussian process with mean 0 and covariance ρ(x). Bochner’s

theorem asserts that ρ(x) is expressed by a finite measure ν on [0, 2π) as

ρ(x) =

∫ 2π

0
eixλν(dλ).
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Lemma 30 Assume that the absolutely continuous part of ν has a density ν ′

satisfying ∫ 2π

0

1

ν ′(λ)
dλ <∞. (57)

Then, for any function f on R such that for positive α, β

|f ′(x)| ≥ αe−β|x| (58)

holds on R, the potential f(Xx(ω)) satisfies the condition (53).

Proof We give a sketch of the proof. It can be shown that the condition (57) is

equivalent to

F1 ≡ σ-{Xx(ω);x 6= 1} $ σ-{Xx(ω);x ∈ Z}. (59)

Therefore, the random variable X0(ω) has a Gaussian distribution with variance v(ω) > 0

a.s. under the regular conditional probability given F1. Then, denoting the mean and the

variance of X0(ω) by m(ω), v(ω) respectively, we have

E(gz(0, 0, ω)|F0) = E
( 1

f(X0(ω))− w

∣∣∣F0

)
=

1√
2πv(ω)

∫ ∞
−∞

1

f(x)− w
e−(x−m(ω))2/2v(ω)dx

=

∫ sup f

inf f

1

y − w
τω(y)dy,

where

τω(y) = e−(f−1(y)−m(ω))2/2v(ω) 1

f ′(f−1(y))
.

The condition (58) implies the boundedness of τω(y), hence

E(Im gz(0, 0, ω)|F0) ≤ c(ω)

∫ ∞
−∞

Im
1

y − w
dy = πc(ω).

Therefore, the measure E(σ(dλ, ω)|F0) is absolutely continuous for each fixed ω with

respect to Lebesgue measure, hence so is E(σ(dλ, ω)|F−). �

Since (59) implies that {f(Xx(ω))} is nondeterministic, we have

Claim 31 Under the conditions of Lemma 30, the Schrödinger operator Hω has

pure point spectrum and every its eigenfunction decays exponentially fast.

A typical example of purely nondeterministic Gaussian process satisfying the condi-

tion (57) is a stationary Gaussian process with covariance

ρ(x) = c(1 + |x|)−α

with c, α > 0.
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Exercise 32 Show that the spectral density

ν ′(λ) ≡ c

2π

∑
x∈Z

e−ixλ(1 + |x|)−α

is positive and continuous by using the fact:

d(x) = ρ(x)− ρ(x+ 1) is positive and decreasing for x ≥ 0.

Consequently, one can say that whatever the speed of decay of correlation of {Xx(ω)}x∈Z
is, we have always Anderson localization, namely, pure point property of the spectrum.

This method of averaging the spectral measures has been further developed as a rank

one perturbation theorem by Simon-Wolff [36], which is sometimes effective also in higher

dimension.

There is another method called multiscale analysis which was initiated by Fröhlich-

Spencer (see [18], [37]). This method is effective also for deterministic potentials and in

higher dimension.

§4. Some Deterministic Potentials

If ergodic potentials are nondeterministic, then we know that the corresponding

Schrödinger operators have no ac spectrum, and in most of purely nondeterministic poten-

tials the spectra consist only of point part. The next task is to investigate the spectrum

for deterministic ergodic potentials. It should be remarked though that Theorems 22, 27

are applicable to some deterministic potentials. Since the definition of nondeterminism

F− = F+ is too wide to obtain some significant results, we restrict ourselves to a narrower

class including almost periodic potentials. Namely, we assume Ω is a compact metric space

and {Tx} is a continuous flow on it. In this section we give one theorem on ac spectrum

which holds for every ω ∈ Ω (not for a.e. ω) under the condition that the underlying

flow is uniquely ergodic. A flow on a compact metric space is called uniquely ergodic if

it posses a unique invariant probability measure µ such that suppµ = Ω.

Theorem 33 (Avron-Simon [2]) The spectrum is independent of any ω ∈ Ω.

Proof We omit the proof. �

Theorem 34 (Theorem 7.4 of Kotani [26]) For a continuous function V (ω) on

Ω the corresponding Schrödinger operator Hω with ergodic potential V (Txω) has the ac

spectrum coinciding with Z
ess

for every ω ∈ Ω. Moreover, m±(z, ω) are reflectionless on

Z for every ω ∈ Ω.
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Proof Theorem 17 obeys for a.e. ω

Σω,ac = Z
ess
,

and the reflectionless property on Z , namely

m+(λ+ i0, ω) = −m−(λ+ i0, ω) for a.e. λ ∈ Z .

Therefore, Lemma 45 in Appendix implies for every ω ∈ Ω

Σω,ac ⊃ Z
ess

holds and m±(z, ω) are reflectionless on Z . To show the converse inclusion we use The-

orem 52. Let H±(ω) be the Schrödinger operators on L2(R±) respectively with Dirichlet

boundary condition at 0. Then, H(ω) is a rank one perturbation of H+(ω) ⊕ H−(ω),

hence their ac spectrum coincides. Therefore, for a.e. λ w.r.t. the ac part of the spectral

measure of H(ω), one of the equations

−u′′ + V (Txω)u = λu on R± with u(0) = 0

has a nontrivial polynomially bounded solution (see Lemma 38). Suppose the equation on

R+ has such a solution ψλ. Then, one has (assuming V ≥ 0, hence λ > 0)

lim
x→∞

1

x
log
√
ψ′(x, λ)2 + λψ(x, λ)2 = 0.

Then, applying Theorem 52 γ(λ) = 0 follows, which implies Σω,ac ⊂ Z
ess

for each ω ∈ Ω.

�

A similar result was shown by Last-Simon [27] when the underlying flow is minimal,

that is, the orbit {Txω;x ∈ R} is dense in Ω for each ω ∈ Ω, which is milder than the

unique ergodicity.

The almost Mathieu operator is a typical quasi-periodic discrete Schrödinger op-

erator in one dimension:

(Hω,α,κu)(x) = u(x+ 1) + u(x− 1) + κ cos(2π(αx+ ω))u(x),

where κ > 0 and α is irrational. This operator arises in connection with quantum Hall

effect in condensed matter physics. The basic facts for this operator arethe Lebesgue measure of Σα,κ = 2|2− κ|

γα,κ(λ) = max{0, log(κ/2)} for λ ∈ Σα,κ
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hold for any ω and any irrational α, where Σα,κ and γα,κ denote the spectrum of Hω,α,κ

and the Lyapounov exponent. To establish these results many people have contributed,

especially for the second one by Bourgain-Jitomirskaya. Applying Theorem 34, we have

for every irrational α and ω

the ac spectrum of Hω,α,κ = Z
ess

if 0 < κ < 2.

However, Theorem 34 does not say anything about the pure ac property of the spectrum,

although Corollary 20 implies that Hω,α,κ has purely ac spectrum for a.e. ω, since the

absolute continuity of the IDS is known by Avila-Damanik. And Avila finally has proved

that Hω,α,κ has purely ac spectrum for every ω and any irrational α.

The Cantor nature of the spectrum was called “Ten martini problem”, and solved

completely by Avila-Jitomirskaya. One of the reasons for the Fields prize awarded to

Avila in 2014 was his great contribution to the spectral theory for the almost Mathieu

operator. Many efforts by many people now have completed the study of the almost

Mathieu operator except for several very delicate problems. In all these problems, a serious

point to overcome was to extend a.e. α or ω statements to every α or ω statements.

§5. Open Problems

Open problems in the field of ergodic Schrödinger operators are divided into two

parts:

[a] Higher dimensional problems

[b] One dimensional problems.

The most important open problem in [a] is “delocalization problem” or “Metal-Insulator

transition problem”, which states that in dimension three Schrödinger operators with

random enough potentials have a critical energy Ec such thatthe spectrum on [E0, Ec] is purely point spectrum,

the spectrum on [Ec,∞] is purely ac spectrum,

where E0 is the bottom of the spectrum. Only progress for this problem is the result that

there exists an energy E1 strictly greater than E0 such that the spectrum on [E0, E1] is

of pure point, which was a great achievement of multiscale analysis exploited by Frölich-

Spencer. However, for these 30 years essentially no progress has been made. One of

the reasons of the difficulty in higher dimension is a lack of suitable quantity measuring
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localization. In one dimension, to prove the localization (existence of point spectrum)

the Lyapounov exponents played a big role because they are computable. Among several

possibilities to challenge this problem there is one way which might be computable. The

underlying space Zd+1 can be decomposed to Z× Zd, so, instead of Zd+1 we consider the

problem in Z× [−L,L]d. Then, the operator will be

(Hu)(x, y) = u(x+ 1, y) + u(x− 1, y) + (Au(x, ·))(y) + V (x, y)u(x, y),

where y ∈ [−L,L]d and for v(y) the operator A is defined by

(Av)(y) =
∑

z∈[−L,L]d; dz−ye=1

v(z). (60)

A is a (2L)d × (2L)d symmetric matrix. This is a quasi one dimensional model, which

approximate the original higher dimensional model by letting L → ∞. A merit of this

model is to be able to define Lyapounov exponents, since eigenvalue equation Hu = λu

for H turns to(
u(x+ 1)

u(x)

)
=

(
λI − V (x)−Au(x) −I

I 0

)(
u(x)

u(x− 1)

)
, (61)

where u(x) = (u(x, y))y∈[−L,L]d ∈ R(2L)d , I is the (2L)d× (2L)d identity matrix and V (x)

is a (2L)d × (2L)d diagonal matrix for fixed x with elements V (x, y). Define

T (x) =

(
λI − V (x)−Au(x) −I

I 0

)
.

Then (
u(x+ 1)

u(x)

)
= T (x)T (x− 1) · · ·T (1)

(
u(1)

u(0)

)
,

which makes it possible to study asymptotic behavior of u(x) as x → ∞ by using the

Lyapounov exponents for this product of matrices. A general theory as an extension

of one dimensional ergodic operators was obtained by Kotani-Simon [24]. Due to the

symplectic property of T (x) the Lyapounov exponents turn out to be symmetric w.r.t. 0,

namely

−γd(λ) ≤ −γd−1(λ) ≤ · · · ≤ −γ1(λ) ≤ 0 ≤ γ1(λ) ≤ γ2(λ) ≤ · · · ≤ γd(λ).

The magnitude of localization can be measured by the smallest Lyapounov exponent γ1(λ).

Generally H has no ac spectrum if γ1(λ) > 0. And if the potential V (x, y) are i.i.d., it is
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known that γ1(λ) > 0 for every λ and the spectrum is of pure point a.s.. This is valid for

any d and L. Denote the Lyapounov exponent by γL1 (λ). An interesting problem here is

to show, if d ≥ 2

lim
L→∞

γL1 (λ) = 0 (62)

for λ near the middle of the spectrum of H on Zd+1. This is already a very hard problem

and nobody has succeeded to give any answer, although computer simulations indicate its

validity. Our experiences suggest that sometimes continuous versions are computable, so

we consider the problem in R × [−L,L]d ([−L,L] denotes here an interval consisting of

integers), and Gaussian white noise potential in place of i.i.d. random potential. Then,

(61) turns to

d

(
u(t)

u′(t)

)
=

(
0 Idt

−Adt− λIdt+ dBt 0

)(
u(t)

u′(t)

)
,

where Bt is a d-dimensional Brownian motion. Then one can obtain the positive minimum

Lyapounov exponent γL1 (λ), and the problem is to prove or disprove (62). This proposes

a very important and interesting problem to stochastic analysis. If d = 0 (in the original

space d+ 1 = 1), the Lyapounov exponent is explicitly computable.

As for [b] one basic problem in which the author is interested is to extract properties

of ergodic potentials with a given IDS N or equivalently Lyapounov exponent γ. One

may call it as the inverse spectral problem for ergodic potentials. Let us formulate the

problem: For a fixed real number c set

Ω = Ωc = {V ;V is real valued, bounded on R and inf specHV ≥ c}.

One can introduce a metric on Ω as in Section 3.2 and a shift operation θx. Let P be the

set of all shift invariant ergodic probability measures on Ω and w = wµ be the Floquet

exponent for a µ ∈P. Then, as necessary conditions for w we have

(i) w is analytic on C\[c,∞), real valued on (−∞, c) and

w(z) = i
√
z +

c1

i
√
z

+ o
(√
z
−1)

as
√
z →∞;

(ii) w, w′, −iw are Herglotz functions.

Conversely, for w satisfying (i), (ii) set

Pw = {µ ∈P;wµ = w}.
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Then the fundamental problem is

to investigate the structure of Pw. (63)

First of all we have to show Pw 6= φ, which is nontrivial, although we believe its validity.

It is easy to show the existence of a shift-invariant probability measure µ on Ω satisfying

wµ = w, however, to choose ergodic one among them is nontrivial. The only result we

have is Pw 6= φ if ∫ ∞
c

γ(λ)dN(λ) = 0 (64)

(see Kotani [20], [21], and Carmona-Kotani [6]).

Once Pw 6= φ is established, then the next step is to investigate the structure of Pw.

As we have seen in Section 3.4, if γ(λ) > 0 for all λ, then there is a possibility that a

quasi-periodic potential and a quite random potential may have the same w, which implies

Pw is too large to give a reasonable description of its structure. On the other hand, if γ

vanishes on supp dN (= the spectrum) like (64) and supp dN is a disjoint sum of finite

numbers of intervals. Then we have a complete description of m± from the reflectionless

property of m± on supp dN , which results in

V (x) = c− 2
d2

dx2
log Θ(xa+ b) (Its-Matveev),

where c ∈ R, a, b ∈ Rn, and Θ is the θ-function on a compact Riemannian surface relating

to supp dN . Especially we know that Θ is a smooth function on Rn/Zn, hence V (x) is

quasi-periodic. Therefore, in this case our problem can be reduced to a finite dimensional

problem. This argument leads us to the following working hypothesis: Suppose w satisfies
(1) N(λ)

(
=

1

π
Imw(λ+ i0)

)
is absolutely continuous,

(2) γ(λ) (= −Rew(λ+ i0)) = 0 a.e. w.r.t. dN.

(65)

The condition (65) is equivalent to the pure ac property of the spectrum of the corre-

sponding ergodic operators (Corollary 20).

Suppose the Floquet exponent w for an ergodic Schrödinger operator

satisfies (65). Then, the corresponding potentials are almost periodic?
(66)

Sodin-Yuditski solved (66) affirmatively under some homogeneity condition on supp dN .

However, recently counter examples to (66) were discovered, so the problem determining

the structure of Pw for w satisfying (65) remains open.
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There was another remarkable evolution concerning the reflectionless property. Rem-

ling [33] found a deterministic version of our main Theorem 17. Namely, let V be a

potential defined on R+ and H+
V be the corresponding Schrödinger operator on R+ with

Dirichlet boundary condition at 0. Assume H+
V has ac spectrum on A. Then, he proved

that for any limit point Ṽ (under some weak topology on potentials) of {θxV }x>0 as

x→∞ the corresponding H
Ṽ

has the reflectionless property on A.

Finally the author would like to remark the other possibility which should be consid-

ered as an extension of the present framework. In our argument, the property on the shift

operation θx:

HTxω = θxHωθ
−1
x (67)

played a central role. In the KdV hierarchy, the shift operation is considered to be the first

equation and KdV equation is the second one. The hierarchy is a collection of infinitely

many nonlinear differential equations (only the first equation concerning the shift). P.

Lax found relations similar to (67) with some unitary transforms in place of θx for every

equation belonging to the KdV hierarchy. Recently the author could prove invariance

of the Floquet exponent under the time evolution by one of the KdV hierarchy, which

may have some relationship with the above inverse spectral problem. The difficult open

problem here is to construct solutions to KdV equation starting from general nondecaying

initial functions.

Appendix

A Generalized Eigenfunctions Expansion

This section is devoted to a brief introduction to Weyl-Stone-Titchmarsh-Kodaira

theorem. This theorem can be considered as a generalized eigenfunctions expansion for

Schrödinger operators (more generally Sturm-Liouville operators), which is a continuous

analogue of the correspondence between Jacobi matrices and moment problems or orthog-

onal polynomials.

A.1 Existence and Uniqueness of L2-Solution

The following lemma is fundamental to introduce Weyl function. The proof is per-

formed by using functional analysis. Let

D = {u ∈ L2(R+);u′′ ∈ L2(R+) and u(0) = 0},
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and define self-adjoint operators on L2(R+) with domain D by

H+
0 = − d2

dx2
, H+ = − d2

dx2
+ V. (68)

Lemma 35 (Unique existence of L2-solution) For any fixed z ∈ C\R there exists

uniquely a solution u ∈ L2(R+) to

−u′′ + V u = zu, u(0) = 1.

Proof The self-adjoitness of H+ implies that for z ∈ C and u ∈ D

‖H+u− zu‖2 = ((H+ − Re z)u− (i Im z)u, (H+ − Re z)u− (i Im z)u)

= ‖(H+ − Re z)u‖2 + |Im z|2‖u‖2 (69)

is valid. Hence, letting

D0 = {u ∈ D ;u′(0) = 0},

we see that (H+ − z)D0 is closed in L2(R+) if Im z 6= 0. Since (H+ − z)−1 exists as a

bounded operator and (H+ − z)−1L2(R+) = D , we have

(H+ − z)D0  L2(R+).

Therefore, there exists a u ∈ L2(R+) such that

0 6= u ∈ ((H+ − z)D0)
⊥
.

This u satisfies

−u′′ + V u− zu = 0.

Suppose u(0) = 0. Then (69) shows u = 0, which is a contradiction again, and we see

u(0) 6= 0. One can assume u(0) = 1. The uniqueness can be shown by contradiction.

Suppose v ∈ L2(R+) satisfies

−v′′ + V v − zv = 0, v(0) = 1.

Then, w = u− v ∈ L2(R+) satisfies w(0) = 0, hence w ∈ D . Applying (69) to w, we have

w = 0, which concludes the lemma. �

Exercise 36 By showing that u, u′′ ∈ L2(R+) implies

lim
x→∞

u(x) = lim
x→∞

u′(x) = 0

prove the closedness of (H+ − z)D0 in L2(R+) if Im z 6= 0.
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To show the existence of L2-solutions there is a traditional method by which the

boundedness of V can be relaxed to a milder condition V ∈ L1
loc(R), namely the limit

circle and limit point method which was first used by H. Weyl in 1910. Suppose Im z > 0.

For a > 0 define

Da =
{
w ∈ C;

∫ a

0
|ϕ(x) + wψ(x)|2dx ≤ Imw

Im z

}
,

where ϕ, ψ are linearly independent solutions to

−u′′ + V u− zu = 0, ϕ(0) = ψ′(0) = 1, ϕ′(0) = ψ(0) = 0. (70)

Da becomes a non-empty (actually ψ(a) 6= 0 and −ϕ(a)/ψ(a) ∈ Da) closed disc in C+,

and decreases as a increases. Then

D∞ =
⋂
a>0

Da

becomes a non-empty closed disc or one point. For w ∈ D∞ we have easily∫ ∞
0
|ϕ(x) + wψ(x)|2dx ≤ Imw

Im z
=⇒ ϕ+ wψ ∈ L2(R+).

The boundary ∞ is called as limit circle type if D∞ is a disc, and is called as limit

point type if D∞ is one point. Lemma 35 shows that if V is bounded, then ∞ is of limit

point type.

A.2 Estimate of Green Functions for Large z

In this subsection, we estimate the Green functions of H+, H and the Weyl functions

m±(z). For z ∈ C\R denote

R(z) = (H+ − z)−1, R0(z) = (H+
0 − z)

−1.

A key is the following identity:

R(z) = R0(z)−R0(z)V R0(z) +R0(z)V R(z)V R0(z). (71)

Rewriting (71) by the Green functions g+(x, y) of H+ and g0
+(x, y) of H+

0 yields

g+(x, y) = g0
+(x, y)−

∫ ∞
0

g0
+(x, s)V (s)g0

+(s, y)ds

+

∫ ∞
0

g0
+(x, s)V (s)ds

∫ ∞
0

g+(s, t)V (t)g0
+(t, y)dt, (72)
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where the spectral parameter z ∈ C\R is fixed. On the other hand, it is known that

g+(x, y), g0
+(x, y) are given by

g+(x, y) = g+(y, x) = ψ(x, z)f+(y, z)

g0
+(x, y) = g0

+(y, x) =
1√
z

sin(
√
zx)ei

√
zy

(73)

for 0 ≤ x ≤ y, where ψ(x, z) is the solution ψ of (70). Set

C ≡ sup |V (x)|, δ(z) = dist(z, specH+) (≥ |Im z|).

Lemma 37 The followings hold.

(i) |g+(x, x)− g0
+(x, x)| ≤

Im g0
+(x, x)

Im z
C(1 + Cδ(z)−1);

(ii) |m+(z)− i
√
z| ≤ C

2Im
√
z

(1 + Cδ(z)−1).

Proof Since ‖R(z)‖ ≤ δ(z)−1, we have∫ ∞
0

ds
∣∣∣ ∫ ∞

0
g+(s, t)V (t)g0

+(t, x)dt
∣∣∣2 ≤ δ(z)−2

∫ ∞
0
|V (t)g0

+(t, x)|2dt

≤ C2δ(z)−2

∫ ∞
0
|g0

+(t, x)|2dt

= C2δ(z)−2(Im z)−1Im g0
+(x, x).

In the last step we have used the resolvent identity

g0
+(x, y, z)− g0

+(x, y, w)

z − w
=

∫ ∞
0

g0
+(x, s, z)g0

+(s, y, w)ds.

Then, Schwarz inequality shows∣∣∣ ∫ ∞
0

g0
+(x, s)V (s)ds

∫ ∞
0

g+(s, t)V (t)g0
+(t, x)dt

∣∣∣
≤ C

∫ ∞
0
|g0

+(x, s)|ds
∣∣∣ ∫ ∞

0
g+(s, t)V (t)g0

+(t, x)dt
∣∣∣

≤ C2δ(z)−1

√∫ ∞
0
|g0

+(x, s)|2ds
√

(Im z)−1Im g0
+(x, x)

= C2δ(z)−1(Im z)−1Im g0
+(x, x).

Therefore, (i) can be obtained by (72).

To show (ii) first note

m+(z) = lim
y→0

∂2

∂x∂y
g+(x, y)

∣∣∣
0<x<y

,
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which follows from (73). This together with (72) yields

m+(z) = i
√
z −

∫ ∞
0

e2is
√
zV (s)ds+

∫ ∞
0

eis
√
zV (s)ds

∫ ∞
0

g+(s, t)V (t)eit
√
zdt.

The rest of the proof is the same as that of (i). �

The estimate for the Green function of H can be obtained similarly.

A.3 Generalized Eigenfunctions

In this subsection we consider the eigenfunctions expansion for the self-adjoint oper-

ators H+, H. Let ϕ(x, z), ψ(x, z) be the solutions ϕ, ψ to (70) respectively. Then

f+(x, z) = ϕ(x, z) +m+(z)ψ(x, z),

hence, for 0 ≤ x ≤ y the Green function of H+ is

g+
z (x, y) = ψ(x, z)f+(y, z) = ψ(x, z)ϕ(y, z) +m+(z)ψ(x, z)ψ(y, z).

Denote by σ+ the representing measure of m+(z) (see (76)). Then g+
z (x, x) is

g+
z (x, x) = Gx(z) + ψ(x, z)2

∫ ∞
−∞

( 1

λ− z
− λ

1 + λ2

)
σ+(dλ),

where

Gx(z) = ψ(x, z)ϕ(x, z) + (α+ βz)ψ(x, z)2.

Noting that Gx(z) takes real values for z ∈ R, we see

lim
ε↓0

1

π

∫ b

a
Im g+

λ+iε(x, x)dλ =

∫ b

a
ψ(x, λ)2σ+(dλ)

for any a < b. Therefore, from (77) the representing measure of g+
z (x, x) turns to

ψ(x, λ)2σ+(dλ). On the other hand, (i) of Lemma 37 implies

g+
z (x, x) = O

(
z−1/2

)
as z →∞. Consequently, the α and β terms vanish and we have

g+
z (x, x) =

∫ ∞
c

ψ(x, λ)2

λ− z
σ+(dλ).

Here we have used the fact g+
z (x, x) is analytic on C\(c,∞) and takes real values on

(−∞, c), where c = inf V (x). Since

c1c1g
+
z (x, x) + c1c2g

+
z (x, y) + c2c1g

+
z (y, x) + c2c2g

+
z (y, y)
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is a Herglotz function for any complex c1, c2, without difficulty we obtain a formula

g+
z (x, y) =

∫ ∞
c

ψ(x, λ)ψ(y, λ)

λ− z
σ+(dλ) (74)

for any x, y ≥ 0. ψ(x, λ) are the generalized eigenfunctions of H+ for a.e. λ w.r.t. σ+.

As a corollary we have

Lemma 38 For a.e. λ ∈ R with respect to σ+ generalized eigenfunctions ψ(x, λ)

of H+ satisfy

ψ(x, λ) = O(xρ) as x→∞

for any ρ > 2.

Proof Choose λ0 < 0 such that

λ0 < −C.

Then, λ0 /∈ specH+, hence the estimate (i) of Lemma 37 shows∫ ∞
1

g+
λ0

(x, x)x−βdx <∞

for any β > 1. Therefore, (74) implies∫ ∞
c

1

λ− λ0

{∫ ∞
1

ψ(x, λ)2x−βdx
}
σ+(dλ) <∞,

and consequently, for a.e. λ ∈ R with respect to σ+∫ ∞
1

ψ(x, λ)2x−βdx <∞

holds. On the other hand, from the equation

ψ(x, λ) = x+

∫ x

0
(x− y)(V (y)− λ)ψ(y, λ)dy,

it follows that

|ψ(x, λ)| ≤ x+ C1

∫ x

0
y|ψ(y, λ)|dy

with C1 = sup |V (y)− λ| <∞. Hence

|ψ(x, λ)| ≤ x+ C1

∫ 1

0
y|ψ(y, λ)|dy + C1

√∫ x

1
y2+βdy

√∫ x

1
ψ(y, λ)2y−βdy,

which completes the proof. �
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Although the generalized eigenfunctions expansion of H on the whole R is unnecessary

in this note, it may be better to briefly explain it. The Green function gz(x, y) of H is

given by (14), namely

gz(x, y) = gz(y, x) = −f+(x, z)f−(y, z)

m+(z) +m−(z)
for x ≥ y.

f± can be expressed by ϕ(x, z), ψ(x, z)ψ as

f+(x, z) = ϕ(x, z) +m+(z)ψ(x, z), f−(x, z) = ϕ(x, z)−m−(z)ψ(x, z).

Therefore, introducing
M(z) =

 − 1

m+(z) +m−(z)
− m+(z)

m+(z) +m−(z)
+

1

2

− m+(z)

m+(z) +m−(z)
+

1

2

m+(z)m−(z)

m+(z) +m−(z)

 ,

φ(x, z) = (ϕ(x, z), ψ(x, z)),

we have for x ≥ y

gz(x, y) = φ(x, z)M(z)φ(y, z)T +
1

2
(ϕ(x, z)ψ(y, z)− ϕ(y, z)ψ(x, z)). (75)

Exercise 39 For m± ∈ C+ define a symmetric matrix M by

M =

 − 1

m+ +m−
− m+

m+ +m−
+

1

2

− m+

m+ +m−
+

1

2

m+m−
m+ +m−

 .

Then, show ImM = (M −M∗)/(2i) is positive definite.

This exercise implies that for any u ∈ C2

Im(M(z)u,u) ≥ 0,

which means that (M(z)u,u) is a Herglotz function. Then one can show that there exist

a self-adjoint matrix A, a nonnegative definite matrix B and a matrix valued nonnegative

definite measure Σ(dλ) such that

M(z) = A+Bz +

∫ ∞
−∞

( 1

λ− z
− λ

1 + λ2

)
Σ(dλ).

Then (75) shows

gz(x, y) =

∫ ∞
−∞

( 1

λ− z
− λ

1 + λ2

)
φ(x, z)Σ(dλ)φ(y, z)T +Gx,y(z),
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where

Gx,y(z) = φ(x, z)(A+Bz)φ(y, z)T +
1

2
(ϕ(x, z)ψ(y, z)− ϕ(y, z)ψ(x, z)).

Gx,y(z) is an entire function for each fixed x, y, and takes real values if z ∈ R and x = y.

Then, the rest of the argument is almost similar to that of H+ and we see∫ ∞
c

1

1 + |λ|
φ(x, λ)Σ(dλ)φ(x, λ)T <∞

and

gz(x, y) =

∫ ∞
c

1

λ− z
φ(x, λ)Σ(dλ)φ(y, λ)T.

From this formula a generalized Fourier transform is obtained as follows. For f ∈
L2(R) define a transform by

f̂(λ) =

∫ ∞
−∞

f(x)φ(x, λ)dx.

Then, we see that an inversion formula

f(x) = lim
z→∞
{−zGzf(x)} =

∫ ∞
c
φ(x, λ)Σ(dλ)f̂(λ)T,

and Parseval’s identity∫ ∞
−∞
|f(x)|2dx = lim

z→∞
{−z(Gzf, f)} =

∫ ∞
c

f̂(λ)Σ(dλ)f̂(λ)T

hold. Fourier transform is nothing but the case of V = 0, namely H = −∆.

The generalized eigenfunctions of H is defined as follows. Set

τ(dλ) = trΣ(dλ).

Then, every element of Σ(dλ) is absolutely continuous with respect to σ, since Σ(dλ)

is nonnegative definite, and its density is denoted by fij(λ). Let µ1(λ), µ2(λ) (≥ 0)

be the eigenvalues and e1(λ), e2(λ) be the eigenvectors of the matrix (fij(λ)). Then,

φj(x, λ) =
√
µj(λ)(φ(x, λ), ej(λ)) (j = 1, 2) are called generalized eigenfunctions for

H, and it holds that

φ(x, λ)Σ(dλ)φ(x, λ)T =
(
φ1(x, λ)2 + φ2(x, λ)2

)
τ(dλ).

The definition of τ implies that at least one of {µ1(λ), µ2(λ)} is nondegenerate for a.e.

λ ∈ R with respect to τ . One can obtain the polynomial growth of the generalized

eigenfunctions in this case also.
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Lemma 40 For a.e. λ ∈ R with respect to τ generalized eigenfunctions φj(x, λ)

(j = 1, 2) of H satisfy

φj(x, λ) = O
(
|x|ρ
)

as |x| → ∞

for any ρ > 2.

For a general V ∈ L1
loc(R) one can not expect to have Lemma 37. However, the

Weyl’s limit circle and limit point method makes it possible to perform a similar argument,

and the established result is called the Weyl-Stone-Titchmarsh-Kodaira generalized

expansion theorem.

B Herglotz Functions

A Herglotz function m is a analytic function on C+ satisfying Imm(z) > 0. In this

section we prepare several basic facts which are necessary for our theorems.

Lemma 41 m has a representation

m(z) = α+ βz +

∫ ∞
−∞

( 1

λ− z
− λ

1 + λ2

)
σ(dλ) (76)

with

α ∈ R, β ≥ 0,

∫ ∞
−∞

1

1 + λ2
σ(dλ) <∞.

Proof The upper half plane C+ is transformed onto the unit disc D by

ζ =
z − i
z + i

(
=⇒ z = i

1 + ζ

1− ζ

)
.

Since m(ζ) is analytic on D and satisfies Imm > 0,

Imm(ζ) = Im
i

2π

∫
[0,2π)

eiθ + ζ

eiθ − ζ
τ(dθ)

with a finite measure τ . Hence, for some α ∈ R

m(ζ) = α+
i

2π

∫
[0,2π)

eiθ + ζ

eiθ − ζ
τ(dθ) = α+ βz +

i

2π

∫
(0,2π)

eiθ + ζ

eiθ − ζ
τ(dθ)

holds, where β = σ({0})/2π ≥ 0. Setting

λ = − cot
θ

2
= i

1 + eiθ

1− eiθ

(
=⇒ i

eiθ + ζ

eiθ − ζ
=
λz + 1

λ− z

)
,

we have

m(z) = α+ βz +

∫ ∞
−∞

λz + 1

λ− z
τ(dλ) = α+ βz +

∫ ∞
−∞

( 1

λ− z
− λ

λ2 + 1

)
σ(dλ),
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where σ(dλ) = (λ2 + 1)τ(dλ). �

Let σ be a measure appearing in (76) for a Herglotz function m and

σ = σac + σs

be the Lebesgue decomposition of σ.

Lemma 42 σ, σac, σs are obtained from m as follows.

(i)

σ(I) =
1

π
lim
ε↓0

∫
I

Imm(λ+ iε)dλ (77)

for any finite open interval I such that σ(∂I) = 0.

(ii)

lim
ε↓0

Imm(λ+ iε) = π lim
ε↓0

σ(λ+ ε)− σ(λ− ε)
2ε

(σ(λ) ≡ σ([0, λ])) (78)

holds if one of the sides exists finitely, hence the density σ′(λ) of σac is obtained by

σ′(λ) =
1

π
lim
ε↓0

Imm(λ+ iε) (79)

for a.e. λ ∈ R.

(iii) Let

S ≡
{
λ ∈ R : lim

ε↓0
Imm(λ+ iε) =∞

}
.

Then σs(R\S) = 0.

Proof Note∫
I

Imm(λ+ iε)dλ =

∫ ∞
−∞

(∫
I

ε

(λ− x)2 + ε2
dλ)dσ(x)

and

lim
ε↓0

∫
I

ε

(λ− x)2 + ε2
dλ = π


1 if x ∈ I;

1

2
if x ∈ ∂I;

0 if x ∈ R\I,

which implies (i). Moreover

Imm(λ+ iε) =

∫ ∞
0

ε

u+ ε2
ds(u)

holds with

s(u) ≡ 1

π

∫ x+
√
u

x−
√
u
σ(dλ) for u ≥ 0.
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Then Hardy-Littlewood Taubelian theorem (and Abelian theorem) concludes (ii). (iii)

was proved by Vallée Poussin. �

The lemma below is due to a theorem holding for the Nevanlinna class N . An

analytic function f on C+ belongs to N , if log+ |f(z)| has a harmonic majorant, where

log+ x = max{log x, 0} for x ≥ 0.

If f is a nontrivial Herglotz function, then one can define h = log(−if) as an analytic

function satisfying 0 < |Imh| < π/2, hence, for p ∈ (0, 1)

Re(−if)p = Re eph = epReh cos(p Imh) ≥ epReh cos(pπ/2),

and

|f(z)|p = epReh(z) ≤ Re(−if(z))p

which implies

log+ |f(z)| ≤ 1

p
|f(z)|p ≤ (p cos(pπ/2))−1Re(−if(z))p.

Since the right hand side is harmonic, f is an element of N . Clearly N is a linear space.

Therefore, from theorem 5.3 in page 67 of Garnett [12] we have

Lemma 43 Herglotz functions satisfy the following properties.

(i) For a Herglotz function m there exists a finite limit m(λ+ i0) for a.e. λ ∈ R.

(ii) If two Herglotz functions m1, m2 satisfy

m1(λ+ i0) = m2(λ+ i0) for a.e. λ ∈ A

for a measurable set A with positive Lebesgue measure, then m1 = m2 identically.

A sequence of Herglotz functions mn is said to converge to a Herglotz function m if

mn(z)→ m(z) for any z ∈ C+.

From this convergence we would like to obtain a convergence of their boundary values

mn(λ+ i0). For this purpose, first, for f ∈ L2(R) and z ∈ C+ set

S(f)(z) =

∫ ∞
−∞

1

λ− z
f(λ)dλ.

Defining the Fourier transform f̂ of f by

f̂(t) =

∫ ∞
−∞

e−2πiλtf(λ)dλ,
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we have

S(f)(z) = 2πi

∫ ∞
0

e2πiztf̂(t)dt,

which shows

S(f)(λ) ≡ lim
ε↘0

S(f)(λ+ iε)

exists for a.e. λ ∈ R and

‖S(f)‖ ≤ 2π‖f‖. (80)

Lemma 44 For fn ∈ L2(R) assume there exists a constant C such that

‖fn‖ ≤ C (81)

holds for any n ≥ 1. For an f ∈ L2(R), if S(fn)(z) converges to S(f)(z) for any z ∈ C+,

then S(fn)(λ) converges to S(f)(λ) weakly in L2(R).

Proof Let

L =
{
ϕ;ϕ(λ) =

∑
j: finite sum

cj
λ− zj

, cj ∈ C, zj ∈ C−
}
.

Then, L is dense in L2(R), and the assumption implies

lim
n→∞

∫ ∞
−∞

fn(λ)ϕ(λ)dλ =

∫ ∞
−∞

f(λ)ϕ(λ)dλ

for any ϕ ∈ L . This combined with (81) yields the weak convergence of {fn} to f . The

weak convergence of {S(fn)} is immediate from (80). �

We discuss one property about reflectionlessness of (43). For a Herglotz function m

one has Im logm = argm ∈ (0, π), hence logm is a Herglotz function. Since Im logm =

argm is uniformly bounded, in the expression (76) for logm, we do not have the β-term,

hence
logm(z)− logm(i)

z − i
=

1

π

∫ ∞
−∞

1

λ− z
argm(λ)

λ− i
dλ. (82)

Lemma 45 Suppose two sequences of Herglotz functions m±n are reflectionless on

A, and m±n converge to Herglotz functions m± respectively. Then, m± are reflectionless

on A as well.

Proof Set

fn(λ) =
1

π

argmn(λ)

λ− i
.

Then, {fn} satisfies the two conditions in Lemma 44, and the identity (82) shows the weak

convergence of
logmn(λ+ i0)− logmn(i)

λ− i
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in L2(R), which implies that of (logmn(λ+ i0))/(λ− i), since logmn(i)→ logm(i). Since

the reflectionless property of m±n on A is equivalent to

logm+
n (λ+ i0) = logm−n (λ+ i0) + πi for a.e. λ ∈ A, (83)

and the weak convergence preserves the property (83), the proof is complete. �

C Inverse Spectral Problem

The next theme is the inverse spectral problem, which was developed by Gelfand-

Levitan and Marchenko. We defined m+ from a potential V (on [0,∞)) through the

operator H = −∆ + V . The inverse spectral problem considers the problem of recovering

V from m+. Historically this problem has its origin in the classical moment problem,

that is, the correspondence between a measure σ on R and its moments {mk}k≥0

mk =

∫
R
λkσ(dλ).

We explain the inverse spectral problem in discrete operators, which is related to the

moment problem. In the discrete case let H+ be

(H+u)(x) =


∑

y∈Z:|x−y|=1

u(y) + V (x)u(x), if x ≥ 2;

u(2) + V (1)u(1), if x = 1.

Since H+ is a self-adjoint operator on `2(Z+), the inverse (H+− z)−1 exists as a bounded

operator for z ∈ C\R. Set f = (H+ − z)−1δ1 ∈ `2(Z+). Then f satisfies
∑

y∈Z:|x−y|=1

f(y) + V (x)f(x) = zf(x) + δ1(x) = zf(x) for x ≥ 2,

f(2) + V (1)f(1) = 1 + zf(1).

Extend f to Z− ∪ {0} so that f satisfies∑
y∈Z:|x−y|=1

f(y) + V (x)f(x) = zf(x)

for all x ∈ Z. For instance f(0) should be the value determined by solving

f(2) + f(0) + V (1)f(1) = zf(1),

which means

f(0) = 1.
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Then f+(x, z) = f(x)/f(0) and

m+(z) =
f(1)− f(0)

f(0)
= f(1)− 1 = ((H+ − z)−1δ1, δ1)− 1.

Here note

((H+ − z)−1δ1, δ1) = −z−1
∞∑
k=0

((z−1H+)kδ1, δ1) = −
∞∑
k=0

z−k−1(Hk
+δ1, δ1)

for z such that |z| > ‖H+‖. Therefore, knowing m+(z) is equivalent to knowing (Hk
+δ1, δ1)

for all k ≥ 0. From

(H+δ1, δ1) = V (1)

one can know V (1). Assume one can know {V (x)}1≤x≤n from {(Hk
+δ1, δ1)}1≤k≤n. Since

(Hn+1
+ δ1, δ1) = V (n+ 1) + a function of {V (x)}1≤x≤n,

one can know V (n), which shows that m+(z) can recover completely {V (x)}x≥1.

In the continuous case the problem was not simple and we had to wait for the works

by Gelfand-Levitan and Marchenko. We give the lemma without proof. For the proof

refer to [29].

Lemma 46 Suppose a potential V is bounded. Then, V |R+ can be completely

recovered from m+.

The boundedness of V is unessential. However, for a general V ∈ L1
loc(R+), if the

boundary is of limit circle type, one has to impose a boundary condition to define m+.

From this m+ one can recover V |R+ as well as the boundary condition at ∞.

D Oseledec Theorem (Deterministic Version)

Suppose {A(n)}n≥1 be a family of invertible l × l matrices satisfying
lim
n→∞

1

n
log ‖A(n)‖ = 0

lim
n→∞

1

n
log ‖A(n)−1‖ = 0

(84)

and set

T (n) = A(n)A(n− 1) · · ·A(1).

Let {µ1(n) ≤ µ2(n) ≤ · · · ≤ µl(n)} be the eigenvalues of (T (n)∗T (n))1/2 and assume

lim
n→∞

1

n
logµi(n) = γi for i = 1, 2, . . . , l (85)
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exists. {γi}1≤i≤l are called Lyapounov exponents for {T (n)}n≥1 and let {γ̂i}1≤i≤r be

the distinct set of {γi}1≤i≤l arranged so that γ1 < γ2 < · · · < γr. Set

Γi = {1 ≤ j ≤ l; γj = γ̂i}, 1 ≤ i ≤ r,

ki = #Γi.

Denoting by fi(n) the normalized eigenvector for (T (n)∗T (n))1/2 corresponding to µi(n),

we define

Li(n) = span{fj(n); j ∈ Γi}.

Denote by PL the orthogonal projection to a subspace L.

Theorem 47 We assume the conditions (84) and (85).

(i) For 1 ≤ i ≤ r there exists a subspace Li such that the following limit exists.

lim
n→∞

PLi(n) = PLi .

(ii) {Li}1≤i≤r are orthogonal and dimLi = ki. Moreover we have

(T (n)∗T (n))1/2n →
r∑
i=1

kie
γiPLi .

Set

Vi = L1 + L2 + · · ·+ Li, V0 = {0}.

(iii) For f ∈ Vi\Vi−1 it holds

lim
n→∞

1

n
log ‖T (n)f‖ = γi.

Proof First note

(T (n+ 1)fi(n+ 1), T (n+ 1)fj(n)) = (T (n+ 1)∗T (n+ 1)fi(n+ 1), fj(n))

= µi(n+ 1)2(fi(n+ 1), fj(n)).

Then, observing

‖T (n)fi(n)‖ = (T (n)fi(n), T (n)fi(n))1/2 = (T (n)∗T (n)fi(n), fi(n))1/2 = µi(n),

we see

|(T (n+ 1)fi(n+ 1), T (n+ 1)fj(n))| ≤ ‖T (n+ 1)fi(n+ 1)‖‖T (n+ 1)fj(n)‖

≤ µi(n+ 1)‖T (n+ 1)fj(n)‖

≤ µi(n+ 1)‖A(n+ 1)‖‖T (n)fj(n)‖

= µi(n+ 1)µj(n)‖A(n+ 1)‖.
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Hence we have

|(fi(n+ 1), fj(n))| ≤ µj(n)

µi(n+ 1)
‖A(n+ 1)‖.

Similarly if we start from (T (n)fi(n+ 1), T (n)fj(n)), we have an estimate

|(fi(n+ 1), fj(n))| ≤ µi(n+ 1)

µj(n)
‖A(n+ 1)−1‖.

From the conditions (84) and (85), it follows that there exist δ±(n) satisfying δ±(n) → 0

as n→∞ and 
µj(n)

µi(n+ 1)
‖A(n+ 1)‖ = e(γj−γi+δ+(n))n,

µi(n+ 1)

µj(n)
‖A(n+ 1)−1‖ = e(γi−γj+δ−(n))n.

Therefore if i /∈ Γj , then with δ(n)→ 0

|(fi(n+ 1), fj(n))| ≤ e−(|γi−γj |+δ(n))n (86)

holds. Setting

Pn(k) = P ∑
k≤i≤r

Li(n), Qn(k) = P ∑
1≤i≤k

Li(n),

we see from (86)

‖Pn+1(k′)Qn(k)‖+ ‖Pn(k′)Qn+1(k)‖ ≤ e−(γk′−γk+δ(n))n

if k′ > k. Observe

‖Pn+h(k + 1)Qn(k)‖

= ‖Pn+h(k + 1)Pn+h−1(k + 1)Qn(k) + Pn+h(k + 1)Qn+h−1(k)Qn(k)‖

≤ ‖Pn+h−1(k + 1)Qn(k)‖+ ‖Pn+h(k + 1)Qn+h−1(k)Qn(k)‖

≤ ‖Pn+h−1(k + 1)Qn(k)‖+ e−(γk+1−γk+δ(n))(n+h−1).

Repeating this argument until n, we have

‖Pn+h(k + 1)Qn(k)‖ ≤
h−1∑
j=0

e−(γk+1−γk+δ(n))(n+j) ≤ e−(γk+1−γk+δ(n))n

with a different δ(n). Similarly we see

‖Pn+h(k + 2)Qn(k)‖

≤
h−1∑
j=0

e−(γk+2−γk+δ(n))(n+j) +
h−1∑
j=0

e−(γk+2−γk+1+δ(n))(n+j)e−(γk+1−γk+δ(n))n

≤ e−(γk+2−γk+δ(n))n.
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In general it holds if k′ > k

‖Pn+h(k′)Qn(k)‖+ ‖Qn+h(k′ − 1)Pn(k + 1)‖ ≤ e−(γk′−γk+δ(n))n (87)

for any h > 0. Now we see

‖Pn+h(k)− Pn(k)‖ ≤ ‖(Pn+h(k)− Pn(k))Pn(k)‖+ ‖(Pn+h(k)− Pn(k))Qn(k − 1)‖

= ‖Qn+h(k − 1)Pn(k)‖+ ‖Pn+h(k)Qn(k − 1)‖

≤ 2e−(γk+1−γk+δ(n))n,

which implies Pn(k) converges as n→∞ for any k. Therefore, each PLi(n) converges and

we denote the limit by Pi = PLi . Letting h→∞ in (87) we have∥∥∥( ∑
i≥k′

PLi

)( ∑
i≤k

PLi(n)

)∥∥∥+
∥∥∥( ∑

i≥k′
PLi(n)

)( ∑
i≤k

PLi

)∥∥∥ ≤ e−(γk′−γk+δ(n))n.

Then∥∥∥( ∑
i≥k′

PLi

)
PLk(n)

∥∥∥ =
∥∥∥( ∑

i≥k′
PLi

)( ∑
i≤k

PLi(n) −
∑

i≤k−1

PLi(n)

)∥∥∥
≤
∥∥∥( ∑

i≥k′
PLi

)( ∑
i≤k

PLi(n)

)∥∥∥+
∥∥∥( ∑

i≥k′
PLi

)( ∑
i≤k−1

PLi(n)

)∥∥∥
≤ e−(γk′−γk+δ(n))n + e−(γk′−γk−1+δ(n))n ≤ 2e−(γk′−γk+δ(n))n.

Similarly we have ∥∥∥PLk′ (n)

( ∑
i≤k

PLi

)∥∥∥ ≤ 2e−(γk′−γk+δ(n))n. (88)

Then from (88) it follows∥∥∥T (n)
( ∑
j≤i

PLj

)∥∥∥ ≤ ∥∥∥T (n)
( ∑
j≥i+1

PLj(n)

)( ∑
j≤i

PLj

)∥∥∥+
∥∥∥T (n)

( ∑
j≤i

PLj(n)

)( ∑
j≤i

PLj

)∥∥∥
≤

∑
j≥i+1

µj(n)
∥∥∥PLj(n)

( ∑
j≤i

PLj

)∥∥∥+
∑
j≤i

µj(n)
∥∥∥PLj(n)

( ∑
j≤i

PLj

)∥∥∥
≤ 2

∑
j≥i+1

e(γj+δ(n))ne−(γj−γi+δ(n))n +
∑
j≤i

e(γj+δ(n))n,

hence

lim sup
n→∞

1

n
log
∥∥∥T (n)

( ∑
j≤i

PLj

)∥∥∥ ≤ γi.
On the other hand we see if f ∈ Vi\Vi−1

‖T (n)f‖2 =
∑

j≥i+1
µj(n)2

∥∥∥PLj(n)

( ∑
j≤i

PLj

)
f
∥∥∥2

+
∑
j≤i

µj(n)2
∥∥∥PLj(n)

( ∑
j≤i

PLj

)
f
∥∥∥2

≥ µi(n)2
∥∥∥PLi(n)

( ∑
j≤i

PLj

)
f
∥∥∥2
,
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hence

lim inf
n→∞

1

n
log ‖T (n)f‖ ≥ γi + lim inf

n→∞

1

n
log
∥∥∥PLi(n)

∑
j≤i

PLjf
∥∥∥

= γi + lim inf
n→∞

1

n
log
∥∥∥PLi ∑

j≤i
PLjf

∥∥∥ = γi,

since PLi
∑
j≤i

PLjf = PLif 6= 0, which concludes the proof. �

E L2-Convergence of Lyapounov Exponent

In this section we prove the L2-convergence of Lyapounov exponents for uniquely

ergodic potentials from the locally uniform convergence of IDS. The key idea, which goes

back to Johnson-Moser [15], is to observe that Lyapounov exponent and IDS are the real

part and the imaginary part of a certain analytic function on C+.

For z ∈ C let ψ(x, z) be a unique solution to

−u′′(x) + V (x)u(x) = zu(x), u(0) = 0, u′(0) = 1,

and set

fx(κ) = ψ′(x, κ2)− iκψ(x, κ2).

Then, fx is an entire function of κ for each fixed x satisfying

fx(κ) = fx(−κ). (89)

fx is an analog of e−ixκ in the case V ≡ 0, φ = 0.

Lemma 48 If V (x) ≥ 0, then fx(κ) 6= 0 on C+ ∪ R.

Proof If κ ∈ R\{0}, then

fx(κ) = 0 =⇒ ψ′(x, κ2) = ψ(x, κ2) = 0,

which is impossible. For z ∈ C the identity

d

dx
Im
(
ψ(x, z)ψ′(x, z)

)
= −(Im z)|ψ(x, z)|2, Im

(
ψ(0, z)ψ′(0, z)

)
= 0

shows that for any x > 0Im
(
ψ(x, z)ψ′(x, z)

)
< 0 if z ∈ C+;

Im
(
ψ(x, z)ψ′(x, z)

)
> 0 if z ∈ C−.
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Therefore, for κ ∈ C+ such that Reκ > 0, we have Im(ψ′(x, κ2)/ψ(x, κ2)) < 0. Since

fx(κ) = 0 =⇒ ψ′(x, κ2)

ψ(x, κ2)
= iκ,

which is impossible. hence fx(κ) 6= 0. For κ ∈ C+ such that Reκ < 0, the property

fx(κ) 6= 0 follows from (89). If κ ∈ C+ ∪ R satisfies Reκ = 0. Then κ = iα with α ≥ 0

and

fx(κ) = 0⇐⇒ ψ′(x,−α2) + αψ(x,−α2) = 0.

However, ψ(x,−α2) is determined by an integral equation:

ψ(x,−α2) = x+

∫ x

0
(x− y)ψ(y,−α2)(V (y) + α2)dy.

Hence, ψ(x,−α2) ≥ 0 and ψ′(x,−α2) ≥ 1 hold, since V ≥ 0, which shows fx(κ) 6= 0.

�

Then one can define

log fx(κ) =

∫ x

0

∂yfy(κ)

fy(κ)
dy.

Lemma 49 log fx(κ) satisfies

sup
κ∈C+∪R
x∈[0,L]

| log fx(κ) + iκx| <∞

for each L > 0.

Proof First note there exists a C1 function K(x, y) such that

ψ(x, κ2) =
sinκx

κ
+

∫ x

0
K(x, y)

sinκy

κ
dy.

For the proof see Marchenko [29]. Then, an integration by part implies
ψ(x, κ2) =

sinκx

κ
+O

(
κ−2e−iκx

)
,

ψ′(x, κ2) = cosκx+O
(
κ−1e−iκx

)
.

Therefore

δx(κ) ≡ eiκxfx(κ) = 1 +O(κ−1).

Define log on the unit disc D = {|z − 1| < 1} with log 1 = 0. Then, for sufficiently large

κ, we have

log fx(κ) = −iκx+ 2πin(x) + log δx(κ)
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for some Z-valued function n(x). Since n(x) should be continuous and n(0) = 0, we see

n(x) = 0 identically. Clearly

log δx(κ) = O(κ−1)

holds, which completes the proof. �

Remark 50 Without the condition V (x) ≥ 0, fx(κ) may have zeroes on iR+, but

at most finitely many.

Lemma 49 implies log fx(κ)+ iκx is an element of the Hardy space H2(R). Therefore,

its real part and imaginary part are unitarily related by Hilbert transform. To investigate

the real part we estimate Im fx(κ) for κ ∈ R. Set

ψ′(x, κ2)− iκψ(x, κ2) = re−iθ,

namely θ = −Im fx(κ). Then, θ satisfies

θ′ = κ− 1

κ
V (x) sin2 θ, θ(0) = 0. (90)

Now let {Tx}x∈R be a continuous flow on a compact metric space Ω. Assume the flow

is uniquely ergodic, namely the flow has a unique invariant probability measure µ. Then

our probability space is (Ω,B(Ω), µ). One can show the following

Lemma 51 Let V (ω) be a nonnegative continuous function on Ω, and θκ(x, ω) be

the solution to (90) with V (x) = V (Txω) for each fixed ω ∈ Ω.

(i) There exists a constant C depending only on M = max |V (ω)| such that∣∣∣− 1

x
θκ(x, ω) + κ

∣∣∣ ≤ C

1 + |κ|
.

(ii) Uniformly on (κ, ω) ∈ I × Ω (I is any compact interval)

lim
x→∞

1

x
θκ(x, ω) = πN(κ2).

Proof From (90) ∣∣∣− 1

x
θκ(x, ω) + κ

∣∣∣ ≤ M

|κ|
follows. On the other hand, since zeroes of sin2 θ are {nπ}, θκ(x, ω) never return to an

interval [nπ, (n+ 1)π] once it leaves the interval, we have a bound

|θκ(a, ω)| ≤ π ×#{y ∈ [0, a]; θκ(y, ω) = 0}.

Moreover, Sturm’s comparison theorem implies that this right hand side number differs

from the number of eigenvalues of

−u′′ + V (Txω)u = κ2u, u(0) = u(a) = 0
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by ±1. Then, comparison of the eigenvalues with those of the same eigenvalues with

constant potential yields a bound

|θκ(a, ω)| ≤ aC, if |κ| ≤ 1.

Thus one can prove the statement (i).

(ii) is essentially Theorem 4.5 of Johnson-Moser [15], although they proved it when

the potential V is almost periodic and their definition of θ is

θ = Im log(ψ′(x, κ2) + iψ(x, κ2)).

We omit the proof. �

Our theorem is as follows:

Theorem 52 Let V (ω) be a continuous function on Ω with minimum c. Then, for

any fixed ω ∈ Ω

1

x
log(ψ′(x, κ2 + c)− iκψ(x, κ2 + c)) + iκ →

x→∞
iκ− w(κ2 + c)

in H2(R) holds. Especially we have

lim
x→∞

∫ ∞
c

∣∣∣1
x

log
√
ψ′(x, λ)2 + (λ− c)ψ(x, λ)2 − γ(λ)

∣∣∣2 dλ√
λ− c

= 0.

Proof We can assume V (ω) ≥ 0 by replacing V with V − c. For any fixed x > 0,

Lemma 49 shows
1

x
log(ψ′(x, κ2)− iκψ(x, κ2)) + iκ ∈ H2(R).

Since Lemma 51 implies

lim
x→∞

Im
{1

x
log(ψ′(x, κ2)− iκψ(x, κ2)) + iκ

}
= lim

x→∞

(
κ− 1

x
θκ(x, ω)

)
= κ− πN(κ2)

in L2(R), from the unitarity of Hilbert transform it follows that

1

x
log
√
ψ′(x, κ2)2 + κ2ψ(x, κ2)2 = Re

{1

x
log(ψ′(x, κ2)− iκψ(x, κ2)) + iκ

}
→ γ(κ2)

in L2(R), which concludes the proof. �

These three lemmas are valid also for another solution ϕz(x, z) to

−ϕ′′(x) + V (x)ϕ(x) = zϕ(x), ϕ(0) = 1, ϕ′(0) = 0.

Moreover, for λ < c the identity

ψ(x, λ) =

exp
(∫ x

0
m+(λ, Tyω)

)
dy + exp

(
−
∫ x

0
m−(λ, Tyω)

)
dy

m+(λ, ω) +m−(λ, ω)
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has a meaning, and the unique ergodicity implies immediately

lim
x→∞

1

x
logψ(x, λ) = γ(λ)

for each ω.
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