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Abstract: Let {Xk; k > 1} be a sequence of real-valued random variables and {θk; k > 1} be

other n random variables which are independent of the form sequence. Suppose that {Xk; k > 1}
are pairwise generalized negatively orthant dependent with heavy tails under the condition that

{θk; k > 1} are independent or associated, some asymptotic formulas are established.
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§1. Introduction

Let {Xk; k > 1} be n real-valued random variables (rv’s) with distribution functions

Fk = 1−F k, and {θk; k > 1} be other n rv’s. In this paper, we study the tail probabilities

of the randomly weighted sums Sθn and their maximum M θ
n, defined, respectively, by

Sθn =
n∑
k=1

θkXk, (1)

and

M θ
n = max

16l6n
Sθl . (2)

The randomly weighted sums (1) can be found in many stochastic models. Consider a

discrete time risk model in which the surplus of an insurance company is invested into

a risky asset. Xk can be thought of as the net loss (the total claim amount minus total

incoming premium) within the time period k and θk as the discount factor from time k
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to time 0 (the present). Then Sθn in (1) denotes the total net loss of the company at time

n. The mainstream study of the tail behavior of Sθn has been restricted to the case that

X1, X2, . . . , Xn are independent and identically distributed rv’s with heavy tails. See [1]

and [2], among many others.

A distribution function F on (−∞,+∞) is long tailed (notation F ∈ L ) if the relation

lim
x→∞

F (x+ y)

F (x)
= 1

holds for some (or, equivalently, for all) y > 0. A famous subclass of long tailed distribu-

tion is subexponential. By definition, a distribution function F on [0,+∞) is said to be

subexponential (notation F ∈ S ) if the relation

lim
x→∞

F ∗n(x)

F (x)
= n

holds for some (or, equivalently, for all) n > 2. More generally, a distribution function

F on (−∞,+∞) is said to be subexponential if the distribution F (x)I{0 6 x < +∞} is

subexponential, where I{A} is the indictor function of the set A. Closely related is the

class D of distributions with dominatedly-varying tails, if the relation

lim sup
x→∞

F (xy)

F (x)
<∞

holds for any y ∈ (0, 1) (or, equivalently, for y = 1/2). Another important subclass of

heavy-tailed distributions is the consistently varying class (denoted by C ). A distribution

function F is in C if

lim
y↘1

lim inf
x→∞

F (xy)

F (x)
= 1, or, equivalently, lim

y↗1
lim sup
x→∞

F (xy)

F (x)
= 1.

A slight small class is the ERV (extended regularly varying) class if the relation

y−β 6 lim inf
x→∞

F (xy)

F (x)
6 lim sup

x→∞

F (xy)

F (x)
6 y−α

holds for some α, β with 0 < α 6 β < ∞ and any y > 1. Some related discussions on

heavy-tailed distributions can be found in [3] and [4]. It is well known that these classes

satisfy the following inclusions:

ERV(−α,−β) ⊂ C ⊂ D ∩L ⊂ S ⊂ L .

Set

F ∗(y) = lim inf
x→∞

F (xy)

F (x)
and JF = inf

{
− lnF ∗(y)

ln y
: y > 1

}
,
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where JF is called the upper Matuszewska index of the distribution function F . One can

easily see that for p > JF , it holds that

x−p = o(F (x)), x→∞. (3)

For more details of Matuszewska index see [3].

It should remark that the independence among the underlying rv’s limits the useful-

ness of obtained results. Zhang et al. [5] obtained the asymptotic of the tail probabilities

of Sθn in (1) under the condition that {Xk; k > 1} are bivariate upper independence with

ERV tails. Later, Gao and Wang [6] extended the results in [5] to C class. Zhang [7] studied

the tail probability for weighted sums of
n∑
k=1

ckXk with the assumptions that the Xk’s are

either independent or pairwise-asymptotical independent with heavy tails. Some more

works on this topic can be found in [8], [9] and [10], among many others.

This article extends the study to the case where the underlying random variables

are pairwise generalized negatively orthant dependent (GNOD). A sequence of random

variables X1, X2, . . . , Xn with distributions Fi, 1 6 i 6 n are pairwise GNOD if both

P(Xi > xi, Xj > xj) 6 gU (xi, xj)F i(xi)F j(xj) (4)

and

P(Xi 6 xi, Xj 6 xj) 6 gL(xi, xj)Fi(xi)Fj(xj) (5)

hold for all positive integers i 6= j, 0 < gL(xi, xj), gU (xi, xj) < ∞ for max{xi, xj} < ∞.

Recall that if gU (·) = 1 and gL(·) = 1 in (4) and (5), {Xk; k > 1} are called pairwise

negatively orthant dependent (NOD), see [11] and [12]; if gU (·) = gL(·) = M > 0 and

(4), (5) are allowed not only for two distinct random variables but more, {Xk; k > 1}
are extended negatively dependent (END), see [13] and [14]. Obviously, the pairwise

GNOD structure allows a wide range of negative dependence structures among random

variables, such as NOD, END, even some positive dependence. It should be remarked

that the pairwise GNOD structure is different from the widely orthant dependent (WOD)

structure mentioned in [15]. As pointed out in [15], the dominating coefficients gU (n) and

gL(n) are functions of n, if n = 2 the dominating coefficients gU (2) and gL(2) are constants

while gL(xi, xj) and gU (xi, xj) can go infinity as max{xi, xj} → ∞. Furthermore, an

example in which the underlying random variables are pairwise GUNOD but not pairwise-

asymptotical independent can be constructed in terms of the bivariate Pareto distribution

(see in [16]). Let Xk, k > 1 be nonnegative random variables whose joint survival function

is Hθ(xi, xj) = (1 + xi + xj)
−θ, where xi > 0, xj > 0, i 6= j, θ > 0. Then the marginal
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survival functions F i and F j are F i(xi) = (1 + xi)
−θ and F j(xj) = (1 + xj)

−θ for all

xi > 0, xj > 0. If

lim
min{xi,xj}→∞

xi
xj

<∞,

then

lim
min{xi,xj}→∞

Hθ(xi, xj)

F j(xj)
6= 0,

obviously, Xk, k > 1 are not pairwise-asymptotical independent while we can take

gU (xi, xj) =
(1 + xi)

θ(1 + xj)
θ

(xi + xj)θ

such that (4) holds.

Hereafter, we will use the assumptions that for ν > 0, c > 0 and some real function

h(x)↗∞ as x→∞,

lim
x→∞

gU (x, xh(x))F k(h(x)x) = 0. (6)

lim
x→∞

|gU (x, ν)| 6 c. (7)

Throughout this paper, all limit relationships are for x→∞ unless otherwise stated. Write

x+ = max{x, 0} for a real number x. The relation a(x) ∼ b(x) stands for lim a(x)/b(x) = 1

while the relations a(x) & b(x) and b(x) . a(x) stand for lim inf a(x)/b(x) > 1.

The remaining part of this paper is organized as follows. Section 2 presents our main

results. Section 3 proves the main results, after showing some necessary lemmas.

§2. Main Results

Our first main result is the following:

Theorem 1 Relations

P(Sθn > x) ∼ P(M θ
n > x) ∼ P

(
max
16k6n

θkXk > x
)
∼

n∑
k=1

P(θkXk > x)

hold under the following three assumptions:

(A1) {Xk; k > 1} are pairwise GNOD with distribution functions Fk ∈ D∩L and F k(x) > 0

for all x and k = 1, 2, . . ., and the conditions (6) and (7) hold for some real function

h(x) and positive constants ν and c;

(A2) {θk; k > 1} are independent and satisfy P(a 6 θk 6 b) = 1 for some 0 < a 6 b <∞;

(A3) The sequences {Xk; k > 1} and {θk; k > 1} are mutually independent.
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Next we are going to weaken the two-side boundedness condition of {θk; k > 1}. To

obtain the expected results, a dependence structure on {θk; k > 1} is required. Recall that

rv’s {θk; k > 1} are said to be (positively) associated if the inequality

Ef1(θ1, θ2, . . . , θn)f2(θ1, θ2, . . . , θn) > Ef1(θ1, θ2, . . . , θn)Ef2(θ1, θ2, . . . , θn) (8)

holds for all coordinatewise (not necessarily strictly) increasing functions f1 and f2 for

which the moments involved exist. Trivially, if f1 is coordinatewise increasing but f2 is

coordinatewise decreasing, then inequality (8) is changed to

Ef1(θ1, θ2, . . . , θn)f2(θ1, θ2, . . . , θn) 6 Ef1(θ1, θ2, . . . , θn)Ef2(θ1, θ2, . . . , θn). (9)

Related discussions can be found in [17].

Our second main result is:

Theorem 2 Relations

P(Sθn > x) ∼ P(M θ
n > x) ∼

n∑
k=1

P(θkXk > x)

hold under the following three assumptions:

(B1) {Xk; k > 1} are pairwise GNOD with distribution functions Fk ∈ D∩L and F k(x) > 0

for all x and k = 1, 2, . . ., and the conditions (6) and (7) hold for some real function

h(x) and positive constants ν and c;

(B2) {θk; k > 1} are associated and satisfy P(0 6 θk 6 b) = 1, but, P(θk = 0) < 1 for some

0 < b <∞;

(B3) The sequences {Xk; k > 1} and {θk; k > 1} are mutually independent.

§3. Proofs of Main Results

3.1 Several Lemmas

We start with a lemma below as a direct consequence of [1].

Lemma 3 If F ∈ D , then for each p > JF , there exist positive constants x0 and B

such that, for all θ ∈ (0, 1] and x > θ−1x0,

F (θx)

F (x)
6 Bθ−p.
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Lemma 4 Under the conditions in Theorem 1, for all n > 1, it holds that

P
(

max
16k6n

θkXk > x
)
∼

n∑
k=1

P(θkXk > x).

Proof It is obviously that

P
(

max
16k6n

θkXk > x
)
6

n∑
k=1

P(θkXk > x).

On the other hand, for any 0 < ε < 1, there exists some r > 0 such that r(1− ε) > p, by

(3), it holds that

P
(

max
16k6n

θkXk > x
)

>
n∑
k=1

P(θkXk > x)−
∑

16k<l6n
P(θkXk > x, θlXl > x)

>
n∑
k=1

P
(
θkXk > x)−

∑
16k<l6n

(P(θk > x1−ε) + P(θkXk > x, θlXl > x, θk 6 x
1−ε)

)
>

n∑
k=1

P(θkXk > x)−
∑

16k<l6n

(
x−r(1−ε)Eθrk + P(Xk > xε, θlXl > x)

)
>

n∑
k=1

P(θkXk > x)−
∑

16k<l6n

(
x−r(1−ε)Eθrk + gU (x, xε)P(bXl > x)F k(x

ε)
)

∼
n∑
k=1

P(θkXk > x),

where the last step holds by (5) and the arbitrariness of ε. The proof is accomplished.

�

At last, we establish a result not only at the core of the proof of our main results but

also of independent interest in its own right:

Lemma 5 In addition to condition (7), let {Xk; k > 1} be pairwise GNOD and

nonnegative rv’s with distribution functions Fk ∈ D ∩L . {θk; k > 1} is another sequence

of random variables which is independent of {Xk; k > 1} satisfying P(a 6 θk 6 b) = 1 for

some 0 < a 6 b <∞. Then

P
( n∑
k=1

θkXk > x
)
∼

n∑
k=1

P(θkXk > x).

Proof Since
n∑
k=1

θkXk > max θkXk, by Lemma 4, it suffices to show that

P
( n∑
k=1

θkXk > x
)
.

n∑
k=1

P(θkXk > x). (10)
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For an arbitrarily fixed number l > 0, we have

P
( n∑
k=1

θkXk > x
)

6 P
(

max
16k6n

θkXk > x− l
)

+ P
( n∑
k=1

θkXk > x, max
16k6n

θkXk 6 x− l
)

= J1 + J2. (11)

For J1. Recall that Fk ∈ D ∩L , thus

J1 ∼
n∑
k=1

P(θkXk > x). (12)

Now, turn to J2. With the pairwise GNOD assumption, we have

J2 = P
( n∑
k=1

θkXk > x,
n⋃
k=1

{
θkXk >

x

n

}
, max
16k6n

θkXk 6 x− l
)

6
n∑
k=1

P
( ∑
j 6=k

θjXj > l, θkXk >
x

n

)
6

n∑
k=1

∑
j 6=k

P
(
θjXj >

l

n− 1
, θkXk >

x

n

)
6

n∑
k=1

∑
j 6=k

gU

( l

b(n− 1)
,
x

bn

)
P
(
θjXj >

l

n− 1

)
P
(
θkXk >

x

n

)
6

n∑
k=1

∑
j 6=k

C(n, x)P(θkXk > x) = o
( n∑
k=1

P(θkXk > x)
)
,

where the last but one step holds by Lemma 3 and the fact of

sup
x→∞

|C(n, x)| =
∣∣∣gU( l

b(n− 1)
,
x

bn

)
BnpP

(
θjXj >

l

n− 1

)∣∣∣ <∞.
This ends the proof of Lemma 5. �

3.2 Proof Theorem 1

Proof Notice that

max θkXk 6 Sn 6Mn 6
n∑
k=1

θkX
+
k . (13)

Since

P(θkXk > x) = P(θkX
+
k > x) for x > 0. (14)

By Lemma 4 and Lemma 5, we only need to verify

P
( n∑
k=1

θkX
+
k > x

)
∼

n∑
k=1

P(θkX
+
k > x). (15)
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It follows from the dominated convergence theorem that

P
( n∑
k=1

θkX
+
k > x

)
= E

[
P
( n∑
k=1

θkX
+
k > x | θ1, θ2, . . . , θn

)]
∼ E

[ n∑
k=1

P(θkX
+
k > x | θ1, θ2, . . . , θn)

]
= P

( n∑
k=1

θkX
+
k > x

)
. (16)

In view of (13) – (16), the proof of Theorem 1 is accomplished. �

3.3 Proof Theorem 2

Proof In this step, the proof is motivated by the idea of [18] in proving Theorem

2. Recall that

Sn 6Mn 6
n∑
k=1

θkX
+
k .

To obtain the desired result, we formulate the proofs into two steps.

Step 1: Firstly, we deal with the case when θk is strictly positive, for small constant

ε > 0, we have

P
( n∑
k=1

θkX
+
k > x

)
= P

( n∑
k=1

θkX
+
k > x,

n⋃
k=1

(θk < ε)
)

+ P
( n∑
k=1

θkX
+
k > x,

n⋂
k=1

(ε 6 θk 6 b)
)

= EI
{ n∑
k=1

θkX
+
k > x

}
I
{ n⋃
k=1

(θk < ε)
}

+ P
( n∑
k=1

θkX
+
k > x,

n⋂
k=1

(ε 6 θk 6 b)
)

6 EI
{ n∑
k=1

θkX
+
k > x

}
EI
{ n⋃
k=1

(θk < ε)
}

+ P
( n∑
k=1

θkX
+
k > x,

n⋂
k=1

(ε 6 θk 6 b)
)

= P
( n∑
k=1

θkX
+
k > x

)
P
( n⋃
k=1

(θk < ε)
)

+ J3, (17)

where

J3 = P
( n∑
k=1

θkX
+
k > x,

n⋂
j=1

(ε 6 θk 6 b)
)
.

With the arbitrariness of ε and the condition that θk is strictly positive here, it follows

from Lemma 5 that

J3 >
(

1− P
( n⋃
k=1

(θk < ε)
))

P
( n∑
k=1

θkX
+
k > x

)
∼

n∑
k=1

P(θkX
+
k > x). (18)

Combining with Theorem 1,

P(Sθn > x) > P
(
Sθn > x,

n⋂
k=1

(ε 6 θk 6 b)
)
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∼ P
( n∑
k=1

θkX
+
k > x,

n⋂
k=1

(ε 6 θk 6 b)
)

∼
n∑
k=1

P(θkX
+
k > x). (19)

Step 2: Now consider the case where θk possibly assign a mass at value zero. We

partition the whole space Ω as the union of AK with AK = {θk > 0 for all k ∈ K and θl =

0, for l /∈ K} for ∅ 6= K ⊂ {1, 2, . . . , n}. Then,

P(Sθn > x) = P
(
Sθn > x,

⋃
K

AK

)
=
∑
K

P(Sθn > x,AK) =
∑
K

P
( n∑
k=1

θkX
+
k > x,AK

)
>

n∑
k=1

P
(
θkX

+
k > x,

⋃
K

AK

)
∼

n∑
k=1

P(θkX
+
k > x). (20)

In view of (17) – (20), the proof of Theorem 2 is accomplished. �
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