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Abstract: In this paper, we estimate parameters of gamma life distribution and normal life
distribution by EM algorithm based on Type-II hybrid censored data. The covariance matrices are
derived as well. Some numerical examples are also presented for illustration.
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8§1. Introduction

For a life testing experiment, it is very time consuming that if we wait until the last
component fails. Thus, several censoring schemes have been proposed in the literature.
For example, Type-I, Type-II censoring, and hybrid censoring. Interested readers may
refer to [1-3] and others. Recently, Childs et al. 4 propose a new hybrid censoring scheme
known as Type-II hybrid censoring scheme: Suppose n components X1, Xo, ..., X,, are on
test, where X; are i.i.d. nonnegative random variables. The experiment are terminated at
a random time 7™ = max{X,.,, T}, where 1 < r < n, T > 0 are fixed in advance and X,.,
is the rth order statistics from X;, ¢ =1,2,...,n. If we do not fix time 7T, this will reduce
to Type-II censoring, and if without fixed r, this will be Type-I censoring. This scheme

has the advantage of guaranteeing that at least r failures are observed. As described in
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[4], this censoring scheme may arise when the experimenter prepares T units of time for
testing and at least r failures must be observed. Hence, we may have the following types

of observations:
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Due to censoring, it is complicated to determine the maximum likelihood estimations
(MLE) of the parameters. Some numerical procedures are developed for the estimators,
for example, Newton-Raphson method. If we consider the censored observations as the
missing data, the EM algorithm could also be used, which is very powerful to deal with the
incomplete data problem (see also [5]). Compared to New-Raphson method, EM algorithm
is slow, however it is more reliable. For related topics, readers may refer to [6] and [7] for
EM algorithm in progressively censored data. Recently, Banerjee and Kundu!® derived
the MLE estimators of Weibull parameters based on the Type-II hybrid censored data by
the iterative procedure. In this paper, we will estimate parameters of two popular lifetime
models, gamma and normal distributions by EM algorithm.

The rest of this paper is organized as follows. In Section 2, we give the details how
to use the EM algorithm to estimate gamma parameters and we also give the covariance
matrix of our estimation. In Section 3, we estimate the normal parameters and the co-
variance matrix is given. We give some numerical examples in Section 4 for illustration

purpose.

§2. Gamma Lifetime Model

2.1 EM Algorithm

Let X;,7=1,2,...,n be gamma random variables G (v, \), with distribution function
F, density function f and survival function S = 1— F. Denote ® = (v, \), the parameters

of the gamma distribution. The joint likelihood function for complete data is

L(®)=n!]] L()\:L’i;n)7_1 exp{—AZin }, A>0,7>0.
i=1 I'(7)

Denote the observed data set X = (X1.n, Xomn, ..., Xmm) and the missing data set Y =
(Y1, Yigo, ..., Yn). Now, (X,Y) forms the complete data set. The joint density func-
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tion of (X,Y) is, for y; > max{T, xymmn}, i=m+1,m+2,...,n,

n! m A -1 expl — s n L 1 . |
(n _ m)l 11;11 F(,Y) (sz:n) p{ A z:n} i:lr_n[—’—l F(fy) (Ayz)’Y p{ Ayz}

The joint density function of X is

fly,z|O©) =

n! LU
i 11

IN® ()\xi;n)wfl exp{ —Az;n } ST (max{T, Tpm:n}).

fx]|©) =

(n—m)
Hence,

o b\ ()\yi)ﬁf*l exp{—AZ/z‘}
f(y ’ Z, 6) - i:g—i-l F('y) S(maX{T, -%'m:n}) ’

The E-step of the the algorithm calculates the expected log-likelihood,

yi > max{T, Ty}

EmL(®|z,Y)| 0" x.
The M-step finds the maximum,
O+ = the value that maximaizes E[ln L(® |z,Y) |©") x].
Now, we compute the log-likelihood function,

mL(O|z,y)=hA\Y)+ (-1 Inxim —A>. zim+(y—1) > Inyi—X > v,
=1 =1 =m-+1 i=m-+1

where h(\,v) = In(n!/(n —m)!) +nIn(\Y/T'(y)), for A\, > 0. Hence, we have to compute

the following moment of the truncated distribution:

E[}/Z ’ G)vw] = E[}fz ’Y; > maX{T7 xm:n}]

= ! - L Y1 oxpd —

= S(max{T, Zmm}) /m ax{mm}yn,y) (\y) p{—Ay}dy
_ I 1 _TO+19

- T(%,€) AF(V)F(WF L) A(v,6)

where £ = Amax{T, Ty}, and

I'(a,x) :/ t7 L exp{—t}dt
is the upper incomplete gamma function. Also,
ElnY;|©,2] = E[InY; | Y; > max{T, z.n }]

= - n L Y1 axpl —
- T(1,6) /maX{T,xm}l (W) 5y Qo) exp{=Ay}dy
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A /Oo -1
= In(y)(Ay)? ™" exp{—Ay}dy.
F(V?f) max{T,Tm:n } ( )< ) { }
Note that,
/ In(y)(\)" ! exp{-y}dy
max{T,Tm:n}
-/ In(xg) ()" exp{ g}y ~ InX [ ()~ exp{—Ay}dy
max{T,Tm:n } max{T,Zm:n}
o In A
::]'j/ () exp{—t}dt — 22 [T 1 exp—t}dt
A e A Je
In A
A*F’(v & - T0(9.
Hence,
I, (7, €)
ElnY;|©,z] = - —In A\
Y2l =10 g

Note that the first term is actually the first derivative of the logarithm of the incomplete
gamma function with respect to 7.
Now, the MLE for the complete data is,

m n
= _in:n_ Z inO,

i=m—+1

<~ nl'(y)
nln A— + > Inxp, + Iny; = 0.
') Z i= §+1

Taking the expectations, we derive the MLE for the censored data as follows:

nrl( (r—i—l))

nInACHD = (A&+1)-§jmx“,—( — m)E[lnY, |77, A"z,
A+ m A+ ~
ﬂ””:é]f’ i + (n —m)E[Y, |37, A1), a].
=1

2.2 Asymptotic Covariance Matrix

In order to get the asymptotic covariance matrix, we first derive the observed infor-

mation matrix. Note that the observed information matrix is

821nf(a:|®) E821nf(w\(~))

92~ B OyON
_E82lnf(w|®) _E821nf(w\(~))
OOy 152D

However, when EM algorithm is used, Louis 1 proposed a procedure for finding the ob-

served information matrix. That is (see also [10] and [6]),

Ix(®) = Iix y)(©) — Liy|x)(9©),
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where Ix, I(xy), {(y|x) denotes the observed information, complete information, and

missing information, respectively. It is easy to get the information matrix based on gamma

distribution
"()P(y) =T2(y) 1
12 A
Iixy)(©®)=n (17)
_Z e
A A2
Note that,
n A
x,0) = — () Lexp{—yi}.
flylz,©) izl;lﬂr(%g)( Yi) {—=Ayi}
Hence,
In(f(ylz,©))= > lhlnA —InT(y,€) + (v — 1) Iny; — Ayil.
1=m-+
Now,

02 In(f(y|z,©)) C(n—m) IV (7, T (7, €) = T2(,€)

%y I'2(v,§) ’
Pn(f(y|z,©) n-m AL OT (7€) = T (v, T (7, €)
30N = - (n—m) b oY 5)7 max{7T, Ty},
FW(fyl®,®) —(n—m)y T{OL(H,E) —TR(7,8)
92\ - 22 - I2(v,¢) : (maoc{T 2min )™

These values form the observed information matrix Iy |x)(®), hence Ix(©). Inverting

Ix(©®), we get the covariance matrix the MLE estimator ©.

83. Normal Lifetime Model

3.1 EM Algorithm

Let X;,i=1,2,...,n benormal random variables N(u, 02), with distribution function
F, density function f and survival function S = 1— F'. Denote ® = (u, o), the parameters

of normal distribution. The joint likelihood function for complete data is

n 2

1(©) =n! [T fleew) = 1 \/1* exp { = 0,

i=1 2mo 202

Denote the observed data set X = (X1, Xoun, - -+, Ximn) and the missing data set Y =
(Yi+1, Y2, ..., Yn). Note that the joint density function of (Y, X) is

fowle= (n n!m)! ilf[l \/217770 eXP{ - W}izﬁﬂ 21770 exp{ B W}
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The joint density function of X is

n 1 (xln - M)z n—m
f(z|©) = (n _ ) = exp{ - T}S (max{T, Ty })-
Hence,
" exp{—(y; — p)?/(202

i=m+1 V27O S(maX{T7 $m:n}) ’

Similarly, let us compute the log-likelihood function,
lnL((-)]w,y):C—nlna——Z( —u)? —
where C' is the constant. Note that

E[ S (i-w?lee]= > ENI@a] -2 > ENi|@a]+ (n-m)d

i=m+1 il )
From Equation (1),
0 1 oy — )2/ (202
E[Y2|©, z| :/ 2 exp{—(y — p)*/(20 )}dy
max{T,Tm:n} 2mo S(HlaX{T'7 ijn})

= E[Yi2 |'Y: > max{T, m:n}]

=0’ (14£Q) + 20uQ + 117,

where the last equality follows from [2] (see also [6]),

max{7T, Tmm} — and 0= P(§)

&= o 1- o)

is the hazard rate function of standard normal distribution.
Similarly,
E[Y;|©,x] = E[Y;|Y; > max{T, xm:n}] = 0Q + p.

It is well-known that the explicit formulas for MLE of ©,

N . qlm L, 12 1172
=2 [Zewt T ol =L@ty X -]
i=m+1 =1 N j=m+1

Taking the expectation, it follows that,

ﬁ(”l) = 1 [ > Xim+(n—m)E[Y41 | e, ac]] = 1 [ > x’i;n-l-(n—m)(U(T)Q(T)+M(r))}a
nli= nti=1

~(r 1 & n—m r r ~(r 1/2
J( = {ﬁ Z xzz:n + n E[Y’le-‘r]. ‘Ym—i-l > maX{T7 meTZ}vu( )70( )] - (M( +1))2} :
=1
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3.2 Asymptotic Covariance Matrix

Similarly, we compute I(xy) and I(y|x), the complete information, and the missing

information, respectively. It is well-known that the information matrix based on normal

n 1 0
I(X,Y)(@):p < 0 9 >

2

Inf(ylz,®)=C~-(n-—m)lnoc — i (yiz_aéu) — (n—m)InS(max{T, Tm:n})-
i=m-+1

distribution is

Note that,

Taking the derivative with respect to u and o,

fmax{T, zy.n})

o i T S(nax{T wmn))
_E (i Q
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From [6], it is known that,
FPmf(Y|x,0) n-m 9
—E o =2 [1+£Q — Q7
2 _
N ]
g g
FPf(Y|x,0) n-m
el S S 0+ Q- Q)L

These values form the observed information matrix /(y|x), hence, Ix(®). Inverting Iy (©),

we get the covariance matrix of ©.

84. Numerical Examples

4.1 Simulations

To illustrate our method, we generate standard Normal samples with size n = 10.
The program is written in R to execute the EM algorithm (R code is available based on

request). The generated samples are in the following table.

Mo T2 €3 Ty Ts5 Te Z7 xsg T9 T10
-1.2212 | -1.1296 | -0.7851 | -0.2846 | 0.1464 | 0.1888 | 0.4441 | 0.6696 | 1.7121 | 2.1553
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Assuming r = 7 and T = 1, due to the censoring, max{T,x7.10} = 1, we only have
8 observations. We choose the observed sample mean and sample standard deviation as
the initial values pu(® = —0.2464 and ¢(© = 0.7252. Using the EM algorithm, we get
our estimated values ;1 = 0.1044, and ¢ = 0.9474. From our estimation, we calculate the

observed information matrix

~ 11.1416 0 ~ 0.4582 1.6279
Iixy)(©) = . dyix)(©) = .
0 22.2833 1.6279 5.9955

Hence, the observed information matrix is

~ 10.6348 —1.6279
Iix)(®) = ( ) .

—1.6279 16.2878

Invert this matrix, we get the variance-covariance matrix

v (C:)) 0.0951 0.0095
ar = .
0.0095 0.0623

4.2 Real Data Analysis

In this section, we analyze one real data for illustration in [11] (see also [12]). This
data set is the strength measured in GPA for single carbon fibers of 10mm gauge length

with sample size n = 63. For convenience, the data is presented as follows.

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454,
2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659,
2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030,
3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.204, 3.332,
3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852,
3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

It is worth remarking that Kundu and Gupta!'?! fitted the modified data to the Weibull
distribution. It fits pretty good. However, if we make the log-transformation on the data
set (w = In(x)), it fits the norm distribution very well. We present the QQ-plot for the
transformed data. It looks good. The Shapiro-Wilk normality test statistics is 0.9888
with associated p-value 0.8378. Fit the transformed data to normal distribution gives
1t = 1.0985 and o = 0.1975. We also present the empirical distribution and fitted normal
distribution in the same graph. It could be seen that they fit very good.
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Now, let us first consider the following scheme 1: »=40, T'=1.2. Then, max{x,.n, T}
= 1.2. Using the EM-algorithm, it follows that 7 = 1.0004 and ¢ = 0.1996. From our
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estimation, we calculate the observed information matrix

~ 1580.719 0 ~ 244.3802 384.2217
Iixy)(©) = ; Iy1x)(®) = ~
' 0 3161.438 384.2217 810.3629

Hence, the observed information matrix is

1336.34 —384.222 )

I(x)(©) =
) (®) (—384.222 2351.08

Invert this matrix, we get the variance-covariance matrix

Vv ((:)) 0.0008 0.0001
ar = .
0.0001 0.0004

Let us consider the scheme 2: r=40, T'=1. Then, max{x;;.n, T} =1.1764988. Using
the EM-algorithm, it follows that 1 = 1.1014 and ¢ = 0.2007. From our estimation, we

calculate the observed information matrix

fao (@) — (163780 Iy (@) — [ 2753359 4369655
(X¥) 0 3127570 ) ¥x) 436.9655 921.1398 |

Hence, the observed information matrix is

L (@) [ 1254 —436.966
0 _436.966 2206.43 |

Invert this matrix, we get the variance-covariance matrix

~ 0.0008 0.0002
Var (®) = ( ) .

0.0002 0.0005
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