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Abstract: A Bayesian semiparametric procedure for confirmatory factor analysis model is

proposed to address the heterogeneity of the multivariate responses. The approach relies on the use

of a prior over the space of mixing distributions with finite components. Blocked Gibbs sampler

is implemented to cope with the posterior analysis. For model comparison, the Lν measure and

Bayes factor are developed. A generalized weighted Chinese restaurant algorithm is suggested to

compute the likelihood of data. Empirical results are presented to illustrate the effectiveness of the

methodologies.
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§1. Introduction

Confirmatory factor analysis model (CFA), a widely appreciated multivariate statis-

tical method to explore latent variables (factors) that are related to the manifest variables

and explain correlations among the observed data, has been received substantial concern-

s in behavioral, educational, medical and social-psychological sciences. Commonly used

softwares such as LISREL VIII [1], EQS 6 [2], and LISCOMP [3] have been developed to

popularize CFA.

Often statistical results based on a single CFA are seriously distorted when data take

on heterogeneity [4]. Heterogenous data arise when the underlying population consists of

a number of distinct components. In such setting, one popular choice is to resort to finite

mixture model [5–7] to identify the underlying structure of multivariate data and estab-

lish multivariate mixture model. There is rich literature on this important issue. Within

the frequency statistical framework, Bl̊afield [8] developed a quasi-Newton routine to ana-

lyze unconditional multivariate normal mixture model incorporating first and second CFA

excluded means; Yung [9] presented a multivariate normal mixture model incorporating
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the CFA with structured means and developed complex sampling schemes to solve the

estimation problem; Arminger and Stein [10] adopted two-stage procedure to analyze the

mixture model that includes CFAs and structured regression models. Relying on the EM

algorithm [11], Jedidi et al. [12] discussed the maximum likelihood analysis for an uncon-

ditional normal mixture model that includes CFAs and a full structure equation model

(the full LISREL model); McLachlan et al. [13] applied AECM algorithm [14] to analyze the

mixture of orthogonal factor analysis model and establish density estimation procedure.

In the framework of Bayesian analysis, Hoshino [15] considered the multivariate normal

mixtures of which means and covariance matrices are structured as CFA; Zhu and Lee [16]

proposed a Bayesian analysis of finite mixture in the linear structure equation model using

the idea of augmenting the observed data with latent variables and allocation variables.

The aforementioned approaches are along with the lines of a parametric method,

which need to handle the very large number of parameters. More flexible and feasible

approach is to work with Dirichlet process mixture modeling [17, 18] which is referred to

as Bayesian semiparametric modeling (see [19–22] and references therein). An attractive

summary and review of this literature was given by Walker et al. [23] and recently synthe-

sized by Müller and Quintana [24]. An undesirable side effect in Dirichlet process mixture

modeling is to touch on the infinite dimensional distribution. This leads to the direct

posterior inferences of functionals of the population distribution intractable. Recently,

Ishwaran and Zarepour [25] proposed a finite dimensional Dirichlet prior to approximate

Dirichlet process and developed a semiparametric Bayesian procedure for analyzing finite

mixture model. The key point in their development is to break the mixture model into

the hierarchical model and place the finite dimensional Dirichlet prior over the space of

mixing distribution with at most N components. This method facilitates the direct sam-

pling scheme to explore the nonparametric posterior analysis, consequently, resulting in

the computational and inferential advantages in the finite mixture analysis.

More recently, Bayesian semiparametric analysis for the latent variable models has

been becoming increasingly popular (see for example, [26–29] and among others). The

key to these methods is to relax the parametric model of the factor by the nonparametric

alternative and develop robust procedures to defend against the distribution deviations.

Although working successfully in these contexts, the developed approach may not be more

effective in solving the heterogeneity of data. It does not allow for the factor loadings and

variances of the unique errors to vary across the subjects.

In this paper, we focus on the Bayesian semiparametric analysis for CFA. Comparing

to the methods mentioned above, the methodology developed here lies in two different

directions. First, our modeling is to introduce the finite dimensional Dirichlet prior as a

prior of the distributions of the mean and variance-covariance parameters. Utilizing the
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discreteness of realizations of the finite dimensional DP prior, we select the underlying

distributions of mean and variance-covariance parameters from the space of distributions

with at most finite atoms. This approach is therefore in line with the nonparametric Bayes

analysis. Second, although the resulting model for the observed data is the multivariate

normal mixture model, our estimation procedure is different from these existing methods

for analyzing the mixture CFA model. By introducing latent variables, the proposed

method avoids estimating unknown parameters involved in the mixture components, hence

allowing for significant simplification of computational complexity.

Another contribution in this paper is to develop a procedure for model selection. For

the semiparametric CFA analysis, it is well known that the computation of Bayes factor [30]

is rather difficult since it involves the integration of unknown random distributions over the

space of mixing distributions. Basu and Chib [31] devised an effective method in computing

the marginal likelihood of the semiparametric model based on the framework of [32].

Though, this method can be effective in computing marginal likelihood of the Dirichlet

process mixture model, it is not clear how to work under the finite dimensional Dirichlet

prior measure, that is, when no pólya urn scheme is available. Our approach here concerns,

in essence, an important extension from those in [33] for normal mean mixture model in one

dimension to the CFA in multiple dimensions. Based on the Chinese restaurant algorithm,

the observed likelihood is computed. Consequently, the computation of marginal likelihood

of the observed data is addressed via Chib’s method. To compare with this, we introduced

the multivariate version of Lν measure [34–36] as a reference for model selection. To explore

the posterior inferences, we adopt the blocked Gibbs sampler to implement the Markov

chains Monte Carlo (MCMC) sampling. Posterior predictive distributions of observations

are obtained via simulated observations from the posterior distribution.

§2. Model and Method

2.1 Review

In this section, we briefly review the finite dimensional Dirichlet prior. Let Rd be a

d-dimesional Euclidian space equipped with a Borel field Bd, and let V1,V2, . . . ,VN be

the independent and identically distributed random vectors with the common distribution

G0 on (Rd,Bd). A random probability measure P on (Rd,Bd) is said to have a finite

dimensional Dirichlet prior with level N and parameters c and G0 (denoted by DN (cG0)),

if each realization of P is

P(·) =
N∑
k=1

πkδVk(·), (1)
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where δVk(·) is a point mass measure concentrated at Vk, and πk is the random weight

satisfying πk > 0 and
N∑
k=1

πk = 1, a.s. Moreover, π = (π1, π2, . . . , πN ) is independent of

{V1,V2, . . . ,VN} and has the symmetrical Dirichlet distribution Dirichlet(c/N, . . . , c/N)

for some c > 0. If a probability distribution measure P is distributed with DN (cG0), we

will denote P ∼ DN (cG0) or P ∼
N∑
k=1

πkδVk(·) in the different contexts.

Finite dimensional Dirichlet prior was formally proposed by Ishwaran and Zarepour [25]

to approximate the well-known Dirichlet process (i.e. N = ∞) in the nonparametric

Bayesian analysis. As a prior for the probability distribution measure, Ishwaran and

James [37] exploited some theoretical properties of the posterior and applications of P in

the univariate normal mixture models. The following theorem reveals the properties of

functionals related to the distribution measure P, which can be obtained by the similar

routine in [17].

Theorem 1 Let P ∼ DN (cG0); ψ(x), ψ1(x) and ψ2(x) are measurable real valued

functions defined on (Rd,Bd).

(i) If
∫
Rd |ψ(x)|dG0(x) <∞, then

∫
Rd ψ(x)P(dx) <∞, a.s., and∫ ∫

Rd
ψ(x)P(dx)DN (dP|cG0) = EG0ψ(X),

where X is a d× 1 dimensional random vector with distribution G0.

(ii) If
∫
Rd |ψi(x)|dG0(x) <∞, and

∫
Rd |ψ1(x)ψ2(x)|dG0(x) <∞ then

Cov
(∫

Rd
ψ1(x)P(dx),

∫
Rd
ψ2(x)P(dx)

)
=

σ12

c+ 1

(
1 +

c

N

)
,

where σ12 = CovG0(ψ1(X), ψ2(X)).

The first two moments of P can be obtained by setting ψi(x) = ψ(x) = IA(x) in

Theorem 1. In particular, for any A ∈ Bd, E(P(A)) = G0(A) and

Var (P(A)) =
G0(A)(1−G0(A))

c+ 1

(
1 +

c

N

)
, (2)

which shows that P is centered at the prior guess G0, and c and N determine the concen-

tration of the prior around G0. Clearly, when N tends to infinity, (2) is consistent with

that in Dirichlet process (see [17]).

Let X1, X2, . . . , Xn be a random sample from P. Since DN (cG0) put probability one

on the discrete probability measure, the probability distribution selected by it is natu-

rally discrete with at most N atoms. Therefore, the joint distribution of X1, X2, . . . , Xn
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is degenerate with respect to the L-measure on (Rnd,Bnd). This problem can be ad-

dressed by decomposing sample space into some exclusive nonempty subspaces. Restrict-

ed on the hyperplane of sample space, the joint density of X1, X2, . . . , Xn can be ob-

tained easily by multiplying the density of distinct random variables. To be specific, let

P = {C1, C2, . . . , Cn(P )} be a partition of {1, 2, . . . , n}, where n(P ) is the number of cells

in the partition and Ci is the i-th cell of the partition P with size ei = #Ci. Define

SC1,C2,...,Cn(P )
= {(x1, x2, . . . , xn) : xi = xj , if i, j ∈ Cm for some m = 1, 2, . . . , n(P )}.

Obviously, Rnd can be expressed as the union of SC1,C2,...,Cn(P )
for all possible partitions

P . The joint density function of X1, X2, . . . , Xn is given by the following theorem which

can be considered as an extension of Theorem 1 in [19].

Theorem 2 Let P ∼ DN (cG0); (X1, X2, . . . , Xn) is a sample of size n from P. If G0

is nonatomic with density function g0(x), then, the joint density function of X1, X2, . . . , Xn

restricted on SC1,C2,...,Cn(P )
is

p(x1, x2, . . . , xn) =
cn(P )

c[n]

N !

Nn(P )(N − n(P ))!

n(P )∏
j=1

(
1 +

c

N

)[ej−1] n(P )∏
j=1

g0(x∗j ), (3)

where the x∗j ’s are the distinct values of xi’s, and c[k] = c(c+ 1) · · · (c+ k− 1) for any k > 0

and 1 for k = 0.

Theorem 2 provides a critical result in computing likelihood of the observed data. See

Section 4.1 for more details.

2.2 Bayesian Semiparametric Framework

We now turn to the semiparametric CFA model. Recall that a finite mixture model

with N components for a p× 1 random observed vector y is typically defined as

f(y|ζ) =
N∑
m=1

πmpm(y|µm,ηm), (4)

where πm is the mixing proportion such that πm > 0 and
N∑
m=1

πm = 1.0; pm(·|µm,ηm) is the

multivariate normal density function with an unknown mean vector µm and a covariance

structure Σm = Σm(ηm) that depends on an unknown parameter vector ηm; ζ is the

parameter vector that contains all unknown parameters in πm, µm and ηm. A finite CFA

mixture model is defined by specifying the m-th mixture component in (4) through the

well-known CFA:

y = µm + Λmωm + εm, (5)
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where µm is a p × 1 intercept vector, Λm is a p × q factor loading matrix, ωm is a q × 1

random vector of latent variables and εm is the vector of measurement errors. Following the

standard convention for CFA, we assume that ωm is distributed according to Nq(0,Φm)

with positive finite matrix Φm, and εm, independent of ωm, is distributed according to

Np(0,Ψm) with a diagonal matrix Ψm. Based on these settings, the covariance structure of

the m-th component is Σm(ηm) = ΛmΦmΛT
m + Ψm, where ηm is the unknown parameter

vector formed by the free unknown parameters in Λm, Ψm and Φm.

Let θm = {µm,Λm,Ψm,Φm} be the vector formed by the location and variance-

covariance parameters in p(·|µm,ηm). To motivate our modeling, we rewrite the mixture

model (4) as

f(y|ζ) =

∫
p(y|θ)QN (dθ),

where QN (dθ) =
N∑
m=1

πmδθm(dθ) is the finite mixing distribution. The approach commonly

used in finite mixture analysis is to treat N as fixed and known. Bayesian analysis is taken

within the following parameter space

ΞN ×
{

(π1, π2, . . . , πN ) : πm > 0,
N∑
m=1

πm = 1.0
}

(6)

corresponding to the atoms θm’s and weights πm for the mixing distribution. Obviously,

when N is larger one need to handle a large number of parameters. Rather than treating

N to be known, we assume the underlying mixing distribution is random and assign a

finite dimensional Dirichlet prior (1) on it. Specifically, we assume that
p(y|P) =

∫
p(y|θ)P(dθ),

P ∼ DN (cG0)

(7)

for some baseline distribution G0. As a result, the distribution of y is the normal mixture

model with the mixing distribution P selected from the parameter space given by

QN =
N⋃
k=1

Q(k),

where Q(k) is the space of finite mixtures over Ξk with exactly k atoms. As pointed out

by Ishwaran and Zarepour [25], there are both conceptual and computational advantages to

work with QN as parameter space. It puts us more on par with non-Bayesian methods from

the theoretical perspective and provides computational convenience for drawing values

directly from the posterior of the mixing distribution.
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Let y1,y2, . . . ,yn be the random observations of size n from model (7) associated

with p(y|θ) given by (5). By introducing latent variables θi = {µi,Λi,Ψi,Φi}, we can

rewrite (7) and (5) as the following hierarchical model

yi|ωi,θi
ind∼ Np(µi + Λiωi,Ψi),

ωi|Φi
ind∼ Nq(0,Φi),

θi|P
i.i.d.∼ P,

P ∼
N∑
m=1

πmδVm ,

(8)

where ωi is the factor vector and Vm = {V µ
m,V λ

m,V
ψ
m ,V

φ
m} is the atom, in which V µ

m is

the p× 1 random vector, V λ
m is the p× q matrix, V ψ

m is the p× p diagonal matrix with the

j-th diagonal element V ψ
mj , and V φ

m is the q × q positive finite matrix.

For the baseline distribution G0, we follow the common choice for the CFA model

([27]) and assume

dG0(vµm,v
λ
m,v

ψ
m,v

φ
m|µ,Σ,Φ) = p(vµm|µ,Σ) p(vλm,v

ψ
m) p(vφm|Φ)dvµmdvλmdvψmdvφm,

in which

p(vµm|µ,Σ)
d
= Np(µ,Σ), p(vφm|Φ)

d
= Wishart−1

q (ρ0φ,Φ
−1),

p(vλm,v
ψ
m) = p(vψm) p(vλm|vψm)

d
=

p∏
j=1

Gamma−1(αj0, βj0) ·Nq(Λj0, v
ψ
mjHj0). (9)

Here, Gamma−1(αj0, βj0) is the inverse gamma distribution with shape αj0 > 0 and

scale βj0 > 0, Λj0 is a q × 1 row vector and Hj0 is the q × q positive definite matrix;

Wishart−1
q (ρ,Φ−1) is the q× q inverse wishart distribution with ρ degrees of freedom and

scale matrix Φ−1.

The following conjugate type prior distributions are used for hyper-parameters {µ,

Σ,Φ}:

µ ∼ Np(µ0,Σ0), Σ ∼Wishart−1
p (ρ0Σ,R

−1
0Σ), Φ ∼Wishart−1

q (s,R−1
0φ ). (10)

The hyperparameters α0j , β0j , ρφ0, ρ0Σ, s, the vector µ0 and Λ0j , and the matrices Σ0,

H0k, R0Σ and R0φ involved in (9) and (10) are assumed to be known. As pointed out

by Zhu and Lee [16] that the conjugate type prior distributions are sufficiently flexible in

most applications, and for situations with a reasonable amounts of data available, the

hyper-parameters scarcely affect the analysis.
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§3. Posterior Analysis

3.1 Sampling Scheme and Full Conditional Distributions

Let Y = {y1,y2, . . . ,yn} be the collection of the observed variables, Ω = {ω1,ω2, . . .,

ωn} be the collection of latent factor variables, and V = {V1,V2, . . . ,VN} be the collec-

tion of atoms; ϑ = {µ,Σ,R}. In a standard Bayesian analysis, we require evaluating the

complicated posterior distribution. The trick for achieving efficient Markov chain Monte

Carlo sampling of the semiparametric hierarchical model (8) is to introduce the classifi-

cation variable Li which takes values in {1, 2, . . . , N} and recast the model completely as

follows: 

yi|ωi,V ,L
ind∼ Np(µi + Λiωi,Ψi),

ωi|V ,L
ind∼ Nq(0,Φi),

Li = ·|π ∼
N∑
k=1

πkδk(·),

π ∼ D(c/N, . . . , c/N),

(11)

in which L = {L1, L2, . . . , Ln}, µi = V µ
Li

, Ψi = V ψ
Li

, Λi = V λ
Li

and Φi = V φ
Li

. By re-

writing the model as (11), we can devise a blocked Gibbs sampler for exploring the

posterior p(Ω,π,V ,L, ϑ|Y ). The blocked Gibbs sampler is implemented iteratively by

drawing (i) Ω from p(Ω|π,V ,L, ϑ,Y ), (ii) ϑ from p(ϑ|Ω,π,V ,L,Y ), (iii) (π,V ) from

p(π,V |Ω,L,ϑ,Y ), and (iv) L from p(L|Ω,π,V ,ϑ,Y ).

Firstly, noting that

p(Ω|π,V ,L,ϑ,Y ) ∝
n∏
i=1

p(yi|ωi,θi) p(ωi|Φi),

it can be shown that

p(Ω|π,V ,L,ϑ,Y ) =
n∏
i=1

p(ωi|θi,yi)
D
=

n∏
i=1

Nq(µωi,Ξi)

with µωi = ΞiΛ
T
iΨ
−1
i (yi − µi), and Ξi = (ΛT

iΨ
−1
i Λi + Φ−1

i )−1.

Secondly, it is obvious that given V , the conditional distribution p(ϑ|π,V ,L,Ω,Y )

is independent of π, L, Ω and Y . Under the informative prior (10), it can be shown that

the posterior distribution of ϑ is given as follows
µ|Σ,V ∼ Np(mµ,Aµ),

Σ|µ,V ∼Wishart−1
p (N + ρ0Σ,R

−1
Σ ),

Φ|V ∼Wishart−1
q (Nρ0φ + s,R−1

φ ),
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in which

mµ = Aµ

(
Σ−1

0 µ0 + Σ−1
N∑
k=1

V µ
k

)
, Aµ = (Σ−1

0 +NΣ−1)−1,

RΣ =
( N∑
k=1

(V µ
k − µ)(V µ

k − µ)T +R−1
0Σ

)−1
, Rφ =

( N∑
k=1

V φ−1
k +R−1

0φ

)−1
.

Thirdly, since p(π,V |ϑ,L,Ω,Y ) = p(π|ϑ,L,Ω,Y ) p(V |ϑ,π,L,Ω,Y ), drawing (π,

V ) is accomplished by first drawing π from p(π|ϑ,L,Ω,Y ) and then drawing V from

p(V |ϑ,π,L,Ω,Y ). Let nk denote the total number of i such that Li = k (k = 1, 2, . . . , N),

then, the full conditional distribution of π is given by

p(π|ϑ,L,Ω,Y ) ∼ Dirichlet(c/N + n1, c/N + n2, . . . , c/N + nN ),

which only depends on L. Drawing π from p(π|L) can be accomplished by drawing N

independent gamma(c/N + nk, 1) random variables divided by their sum, see [17].

Let {L∗1, L∗2, . . . , L∗m} be the unique set of Li values, VL = {VL∗
1
,VL∗

2
, . . . ,VL∗

m
} and

V(−L) corresponds those values in V = {V1,V2, . . . ,VN} with VL removed. Then,

p(V |ϑ,L,Y ) = p(V(−L)|ϑ) p(VL|L,ϑ,Y ).

The components of (V(−L)|ϑ) are i.i.d. with distribution given in (9) and easy to sample.

Clearly,

p(VL|L,ϑ,Y ) =
m∏
j=1

p(VL∗
j
|L,ϑ,Y ).

The emphasis is placed on the full conditional distribution p(V µ
L ,V

λ
L ,V

ψ
L ,V

φ
L |L,ϑ,Y ). It

can be shown that

[V µ
L∗
j
|V λ
L∗
j
,V ψ

L∗
j
,L,ϑ,Y ]

ind∼ Np(m
∗
j ,A

∗
j ),

[V ψ
L∗
jk
|V µ
L∗
j
,L,ϑ,Y ]

ind∼ Gamma−1(n∗j/2 + α0k, β
∗
jk),

[V λ
L∗
jk
|V ψ
L∗
jk
,V µ

L∗
j
,L,ϑ,Y ]

ind∼ N(Λ∗jk, V
ψ
L∗
jk
H∗jk),

[V φ
L∗
j
|L,ϑ,Y ]

ind∼ Wishart−1
q

(
n∗j + ρφ0,

∑
{i:Li=L∗

j}
ωiω

T
i + Φ−1

)
,

where n∗j is the number of Li equal to L∗j , and

m∗j = A∗j

{
Σ−1µ+ V ψ−1

L∗
j

∑
{i:Li=L∗

j}
(yi − V λ

L∗
j
ωi)
}
, A∗j = (Σ−1 +m∗jV

ψ−1
L∗
j

)−1,

β∗jk = β0k +
1

2

{
Λ0kH

−1
0k ΛT

0k −Λ∗jkH
∗
0kΛ

∗T
jk +

∑
{i:Li=L∗

j}
(yik − V µ

L∗
jk

)2
}
,

《
应

用
概

率
统

计
》

版
权

所
有



166 Chinese Journal of Applied Probability and Statistics Vol. 32

Λ∗jk = H∗k

{
H0kΛ0k +

∑
{i:Li=L∗

j}
(yik − V µ

L∗
j ,k

)ωi

}
, H∗jk =

(
H−1

0k +
∑

{i:Li=L∗
j}
ωiω

T
i

)−1
.

Lastly, the full conditional distribution of L is given by

Li|V ,π,Y
ind∼

N∑
k=1

π∗ikδk(·),

in which πik is the random weights proportional to πkp(yi|ϑ,Vk) p(ωi|V φ
k ) such that

N∑
k=1

πik = 1.0 (i = 1, 2, . . . , n).

3.2 Posterior Predictive Density Estimation

Many authors including Lo [19], Escobar and West [21], Müller et al. [38], Roeder and

Wasserman [39], and among others, used normal mixture models to take Bayesian den-

sity estimate. In the context of univariate normal mean mixture model, Ishwaran and

Zarepour [25] approximate the unknown predictive density of the observations based on

the truncated Dirichlet process. The work developed by Ishwaran and Zarepour can be

extend to the semiparametric CFA. More specifically, let p(yn+1|Y ) represent the pre-

dictive density for yn+1 conditional on the data Y , and let θn+1 be the corresponding

unobserved θ value; Θn = (θ1,θ2, . . . ,θn), then

p(yn+1|Y ) = E[E[p(yn+1|θn+1)|Θn]|Y ] =
N∑
k=1

E[πkp(yn+1|Vk)|Y ]. (12)

Consequently, p(yn+1|Y ) can be approximated by averaging the mixture of normal den-

sity over the simulated observations. A predictive density estimate can be derived by

evaluating the averaged density over a refined partition. More specifically, suppose that

{(π(m),V (m)) : m = 1, 2, . . . ,M} are the simulated observations obtained from the blocked

Gibbs sampler, then, a consistent estimate for p(yn+1|Y ) is given by

p̂(yn+1|Y ) =
1

M

M∑
m=1

N∑
g=1

π(m)
g

1

(
√

2π )p|Σ(m)
g |1/2

× exp
{
− 1

2
(yn+1 − V µ(m)

g )TΣ(m)−1
g (yn+1 − V µ(m)

g )
}

with Σ
(m)
g = V

λ(m)
g V

φ(m)
g V

λ(m)T
g + V

ψ(m)
g .

§4. Model Comparison

4.1 Marginal Likelihood and Bayes Factor

Based on the well-known identity ([32]), the marginal log-likelihood of Y is given by

lnmN (Y ) = ln pN (Y |ϑ∗) + ln p(ϑ∗)− ln pN (ϑ∗|Y ),
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where ϑ∗ is some point in the parameter space, p(ϑ∗) and pN (Y |ϑ∗) are respectively

the prior density and the posterior density of parameters evaluated at that same point.

pN (Y |ϑ∗) is the likelihood of observed data Y . Hence, if we find estimates p̂N (Y |ϑ∗) and

p̂N (ϑ∗|Y ) of the likelihood and posterior ordinates, it follows that we can conveniently

estimate the marginal likelihood as

ln m̂N (Y ) = ln p̂N (Y |ϑ∗) + ln p(ϑ∗)− ln p̂N (ϑ∗|Y ). (13)

It is obvious that p(ϑ∗|Y ) can be expressed as

p(ϑ∗|Y ) = p(Φ∗|Y ) p(Σ∗|Φ∗,Y ) p(µ∗|Φ∗,Σ∗,Y ),

in which

p(Φ∗Y ) =

∫
p(Φ∗|V ,Y ) p(V |Y )dV =

∫
p(Φ∗|V ) p(V |Y )dV ,

p(Σ∗|Φ∗,Y ) =

∫
p(Σ∗|Φ∗,µ,V ,Y ) p(µ,V |Φ∗,Y )dµdV

=

∫
p(Σ∗|µ,V ) p(µ,V |Φ∗,Y )dµdV ,

p(µ∗|Σ∗,Φ∗,Y ) =

∫
p(µ∗|Φ∗,Σ∗,V ,Y ) p(V |Σ∗,Φ∗,Y )dV

=

∫
p(µ∗|Σ∗,V ) p(V |Σ∗,Φ∗,Y )dV

are the reduced conditional density ordinates. The first ordinate, p(Φ∗|Y ) can be estimat-

ed in an obvious way, by taking the ergodic average of the full conditional density with

the posterior draws of V leading to estimate

p̂(Φ∗|Y ) = M−1
M∑
m=1

p(Φ∗|V (m)).

The second ordinate p(Σ∗|Φ∗,Y ) is more intractable since the integral is taken with

respect to p(µ,V |Φ∗,Y ) which can not take advantage of the output directly from the

Gibbs outputs. A simple solution is to run an additional M iterations with the complete

conditional densities

p(V |µ,Σ,π,L,Ω,Φ∗,Y ), p(µ|V ,Σ,π,L,Ω,Φ∗,Y ) and p(Σ,π,L,Ω|µ,V ,Φ∗,Y ).

From MCMC theory, with {µ(m),V (m)} simulated from this run, a consistent estimate of

p(Σ∗|Φ∗,Y ) is obtained by

p̂(Σ∗|Φ∗,Y ) = M−1
M∑
m=1

p(Σ∗|µ(m),V (m)).
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A similar technique, with an important twist, can be invoked to obtain the reduced con-

ditional ordinate p(µ∗|Φ∗,Σ∗,Y ). Note that the full conditional distributions p(Φ∗|V ),

p(Σ∗|µ,V ) and p(Σ∗|µ∗,V ) are standard, hence, the computation is straightforward.

The key quantity in (13) is to compute the observed likelihood p̂N (Y |ϑ∗). Basu

and Chib [31] adopted the sequential importance sampling (SIS) algorithm to compute the

likelihood ordinates for the Dirichlet process mixture models. Since no predictive rule of

sampling can be available for the finite dimensional Dirichlet prior mixture model, here

we extend the generalized weighted Chinese restaurant algorithm [33] to compute observed

likelihood (see Appendix).

4.2 Lν-Measure

Another attractive measure for model comparisons is the Lν-measure which is based

on the posterior predictive density p(yrep
i |Y ), where yrep

i denotes the future values of a

replicate experiment. Let Y rep =
(
yrep T

1 ,yrep T

2 , . . . ,yrep T
n

)T
be a collection set of future

responses of yi in a replicate experiment. For some 0 6 ν < 1, we consider the following

multivariate version of Lν-measure:

Lν(Y ) =
n∑
i=1

tr
[
Cov (yrep

i |Y )
]

+ ν
n∑
i=1

tr
[{
E(yrep

i |Y )− yi
}{

E(yrep
i |Y )− yi

}T]
, (14)

where the expectation is taken with respect to the posterior predictive distribution of

p(yrep
i |Y ) given by

p(yrep
i |Y ) =

∫
p(yrep

i |V ,π) p(V ,π|Y )dV dπ. (15)

Clearly, small values of the Lν-measure indicate that the model gives predictions closed

to the observed values, and the variability in the predictions is low as well. Hence, the

model with the smallest Lν-measure is selected from a collection of competing models. It

has been shown that Lν-measure with ν = 0.5 has nice theoretical properties [35]. Thus,

this value of ν will be used in our empirical illustrations.

Two quantities E(yrep
i |Y ) and E(yrep

i yrep T

i |Y ) are involved in calculating Lν(Y ):

E(yrep
i |Y ) = E(E(yrep

i |V ,π)|Y ) =
N∑
k=1

E(πkV
µ
k |Y )

and

E(yrep
i yrep T

i |Y ) = E[E(yrep
i yrep T

i |V ,π]|Y ] =
N∑
k=1

E[πk(V
λ
k V

φ
k V

λT
k + V ψ

k + V µ
k V

µT
k )|Y ].

Based on MCMC sample {(V (t),π(t),L(t),ϑ(t)) : t = 1, 2, . . . , T} already available in

the estimation, the consistent estimate for Lν statistic can be approximated via ergodic

average.
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§5. Empirical Illustrations

5.1 Simulation Study

A simulation study is presented to give some ideas on the performance of the proposed

approach. The data set is generated from a mixture of factor analysis models with two

components, of which each component involves six manifest variables which are related to

two latent factors. The population values of elements in Λ1, Λ2, Φ1 and Φ2 are taken as:

ΛT
1 =

[
0.4 0.4 0.4 0.0∗ 1.0∗ 0.0∗

0.0∗ 0.4 0.4 0.4 0.0∗ 1.0∗

]
,

ΛT
2 =

[
0.8 0.8 0.8 0.0∗ 1.0∗ 0.0∗

0.0∗ 0.8 0.8 0.8 0.0∗ 1.0∗

]
,

Φ1 =

[
1.0 0.3

0.3 1.0

]
, Φ2 =

[
1.0 −0.3

−0.3 1.0

]
, (16)

in which the parameters with asterisks are treated as known for model identification.

The true population values of other unknown parameters are given by: µ1 = −1.5 × 16,

µ2 = 2.5×16, where 16 is a 6×1 vector with all elements equal to 1; ψ1j = 0.36, ψ2j = 0.64

for all j = 1, 2, . . . , 6. The mixing proportions are π1 = 0.3, π2 = 0.7. With these settings,

the data set with sample size 200 are generated from the mixture of two CFA models.

For the Bayesian analysis, the following two inputs of the hyperparameters in the prior

distribution (10) are considered: (I) µ0 = y, Σ0 = Sy where y and Sy are the sample

mean and sample covariance matrix of the simulated sample; ρ0Σ = ρ0φ = s = 10.0,

λ0jk = 0.68 in Λ0, H0j = I2, αj0 = 9.0, βj0 = 8.0 for all j = 1, 2, . . . , 6, R−1
0Σ = I6 and

R−1
0φ = I2; (II) µ0 = 0, Σ0 = 100.0I6, ρ0Σ = ρ0φ = s = 10.0, λ0jk = 0, H0j = 100I2,

αj0 = βj0 = 2.0 for all j = 1, 2, . . . , 6, R−1
0Σ = 100.0I6 and R−1

0φ = 100.0I2. Since we

choose rather dispersed covariance and scale matrices in the priors of µ, Σ and Φ, these

priors are approximatively noninformative. Moreover, we fix the smaller values for both

shape α0j and scale β0j in (9) to encourage larger or smaller values for V ψ
mj . The value

c should be selected with care because it controls the amount of smoothing and directly

affects the number of estimated clusters. A natural choice is to assign a gamma prior for

it. Unfortunately, under this setting, we will need to resort to a Metropolis-Hastings step

which involves the complex psi function. This will drastically cause the computational

burden. We address this problem by tuning value of c and take c = n−1, c = n0, c = n1

and c = n2 to reflect smaller, moderate, and larger departures from the single parametric

CFA.

We first conduct a few test runs as a pilot study to obtain some ideas about the
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number of the Gibbs sampler iterations in getting convergence. We found that in all these

runs, the Gibbs sampler converges in about 2 000 iterations. To be conservative, we collect

1 000 observations after 2 000 burn-ins for posterior analysis.
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Figure 1 Histograms of the number of the distinct values of θi under prior (I)

and (II) in the simulated data with size n = 200 and level N = 50. (a)

and (e): c = n−1; (b) and (d): c = n0; (c) and (g): c = n1; (d) and (h):

c = n2; Panels (a)-(d) under prior (I) and panels (e)-(h) for prior (II).

Figure 1 illustrates the number of the distinct values of θis for different values of c

under priors (I) and (II) with N = 50. As is expected, there is only one cluster among the

θi’s when c approaches to zero and the finite dimensional mixture model is equivalent to the

single CFA. As c increases, the number of clusters also increases and amounts to N when

c = n2. This is similar to those given by Escobar who deals with the univariate normal

mean mixture model using the infinite dimensional Dirichlet process. An interesting result

is that prior (I) tends to give more numbers of estimating clusters than prior (II). We

compute the logarithms of the marginal likelihood and L0.5 measures of the data under

prior (I) for different values of c and N through the proposed approach. For the generalized

Chinese restaurant algorithm, we collect 3 000 observations after convergence to compute

ln p(ϑ∗|Y ) and take 100 replications in the sequential sampling. For each replication,

We sample 2 000 independent observations in approximating integrals involved in the

GWCR algorithm. Table 1 gives the summary of the logarithms of marginal likelihoods

and values of L0.5-measure. Based on Table 1, the log-likelihoods of the observed data
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and L0.5-measure both seem to support moderate value of c.

Table 1 Logarithm of likelihood and L0.5-measure for different values and

truncated levels in the simulated data: prior (I)

lnm(Y ) L0.5(Y )

c N = 50 N = 100 N = 50 N = 100

c = n−1:

Mean -2 149.12 -2 178.03 7 068.78 6 998.02

Med. -2 108.61 -2 136.26 7 176.44 7 006.78

Sd. 122.86 179.08 594.10 596.52

c = 1.0:

Mean -2 118.69 -2 079.87 7 115.19 7 061.47

Med. -2 071.69 -2 054.38 7 256.65 7 136.67

Sd. 158.87 90.40 597.49 573.29

c = n:

Mean -1 923.47 -1 900.39 6 902.17 6 732.32

Med. -1 922.09 -1 896.83 6 999.53 6 806.66

Sd. 26.84 30.01 591.42 553.17

c = n2:

Mean -1 966.70 -1 992.86 7 185.39 7 218.48

Med. -1 942.83 -1 989.78 7 267.93 7 285.67

Sd. 55.33 79.65 599.74 581.62

Synthetic data set generated from the proposal model (11) is analyzed to show the

effectiveness of the Lv measure and BF. For n = 500, we first generate Li from discrete

distribution
5∑

m=1
πmδm(·) with π drawn from Dirichlet(0.1, . . . , 0.1), then draw ωi from

N2(0,ΦLi) and sample yi from N(µLi ,ΛLiωi,ΨLi), in which µg, Λg, Ψg, and Φg are

given by µg = (−2.5 + 0.5 ∗ (g − 1))16, Λg = Λ2, Ψg = Ψ2 and Φg = Φ2. The elements

in Λ2, Ψ2 and Φ2 are given in (16). The L0.5 measures and BFs under different N and

c are calculated. We choose six pairs for (N, c): (5, 5), (50, 5), (100, 5), (5, 10), (50, 10)

and (100, 10). Note that the first corresponds to the true model. We do 100 replications

and find that the correct rates via L0.5 measure and BF are about 0.88 and 0.93, respec-

tively. Since our modeling focuses on exploring the underlying clusters among the data,

selections of particular parametric structures involved in CFA are not presented here and

will constitute the further study.

Figure 2 presents the contours of pair (y1, y2) overlaid on the simulated data for

N = 50 based on the 60× 60 grids. It is clear that there is only one mode in the posterior

predictive density when c = n−1 and more than two modes in the posterior density when

c = 1.0.
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Figure 2 Bivariate posterior predictive density estimates for pair (y1, y2) overlaid

on corresponding plots of simulated data with size n = 200 and N = 50:

(a) c = n−1; (b) c = n0; (c) c = n; (d) c = n2.

To investigate the differences of performance between our proposal methodology (de-

noted by MPH) and Lee, Lu and Song’s modeling [26] (denoted by MFA), we consider the

situation in which the factor model is the mixture model with two components:

ωi ∼ 0.3N2(0,Φ1) + 0.7N2(0,Φ2).

The true values of unknown parameters are taken as: µ = 06, ψεj = 1.0 (j = 1, 2, . . . , 6),

ΛT =

[
1.0∗ 0.8 0.8 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 1.0∗ 0.8 0.8

]
,

Φ1 =

[
1.0 0.3

0.3 1.0

]
, and Φ2 =

[
1.0 −0.3

−0.3 1.0

]
.

Based on the above settings, a data set with sample size 500 is generated. We implement

our proposal and Lee, Lu and Song’s procedure to analyze such data simultaneously. For

comparison, we assign finite dimensional DP to the distributions of Φ and ω, respectively.

Note that the latter corresponds to Lee, Lu and Song’s model. The following inputs for

hyper-parameters involved in the parametric components and semiparametric components

are used: µ0 = y, Σ0 = Sy, λ0jk = 0.8 in Λ0, H0j = I2, αj0 = 9.0, βj0 = 8.0 for

all j = 1, 2, . . . , 6, ρ0 = 10.0 and R−1
0φ = I2. Moreover, we take G = 50 and assume
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α ∼ Gamma(2.0, 2.0) in the finite dimensional DP. Table 2 gives the biases (BIAS), root

mean squares (RMS) and standard deviations (SD) of estimates of unknown parameters

under two models based on 100 replications. It can be seen clearly that under MFA, there

exist serious biases for estimates of factor loadings and variance parameters of unique

errors. The underlying reason is that under our setting, the variance and covariance

parameters of observed variables are flatted, which may not be identified by MFA model.

It also indicates that MFA can not capture the clustering effect among Φs. We also

considered the case when y is from a mixture model with µ1 = −1.516 and µ2 = 0.516

but to keep Λ, Ψε invariant across two components. The results (not presented here) are

similar to those in Table 2, hence omitted for saving space.

Table 2 Summary of estimates of unknown parameters under MFA and MPH:

simulation study

MFA MPH

Par. BIAS RMS SD BIAS RMS SD

µ1 -0.223 0.603 0.354 0.025 0.063 0.063

µ2 -0.018 0.249 0.338 -0.004 0.046 0.057

µ3 -0.225 0.488 0.467 0.022 0.044 0.057

µ4 -0.048 0.244 0.281 0.01 0.072 0.062

µ5 -0.042 0.254 0.363 -0.023 0.051 0.058

µ6 -0.127 0.366 0.384 0.005 0.076 0.057

λ21 -0.241 0.405 1.101 0.073 0.113 0.093

λ31 0.139 0.296 1.238 0.02 0.057 0.089

λ52 0.025 0.183 1.196 0.057 0.133 0.095

λ62 -0.103 0.345 1.194 0.017 0.144 0.091

ψε1 0.966 0.972 0.123 0.052 0.126 0.112

ψε2 0.664 0.668 0.103 -0.07 0.105 0.09

ψε3 0.628 0.633 0.103 -0.026 0.058 0.087

ψε4 0.996 1.004 0.125 -0.04 0.107 0.11

ψε5 0.643 0.648 0.103 0.008 0.057 0.092

ψε6 0.621 0.632 0.102 -0.035 0.094 0.085

5.2 Diabetic Nephropathy Dat

We illustrate the proposed method through analyzing a data set about diabetic

nephropathy (kidney disease) of type 2 diabetes patients. Data are obtained from high

risk diabetes patients who were participated in an applied genomic program conducted

by the Institute of Diabetes, and underwent a comprehensive assessment of complications

based on the European Diabetes protocol. The endogenous (outcome) variable of dia-
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betic nephropathy is assessed as a latent variable reflected by two observed continuous

phenotype variables: logarithm urinary albumin creatinine ratio (lnACR) and logarith-

m plasma creatinine (PCr). Based on some preliminary data analysis, and motivated

by some medical findings [40], we select an exogenous latent variable related to lipid con-

trol via continuous phenotype observed variables: non-high density lipoprotein cholesterol

(non-HDL), lower density lipoprotein cholesterol (LDL), and logarithm plasma triglyceride

(TG) that may have significant effects on diabetic nephropathy. Furthermore, continuous

phenotype observed variables: fasting plasma glucose (FPG) and glycated hemoglobin

(HbA1c) are selected to form a latent variable related to glycemic control. With missing

responses removed, the sample size of the data set is 648.

Let y = (lnACR, PCr, HbA1c, FPG, non-HDL, LDL, TG)T be the vector of the ob-

served variables. Based on the objective of this example and the medical motivation given

in the last paragraph, it is natural to group (i) {lnACR, PCr} to an endogenous latent

variable that can be interpreted as “diabetic nephropathy, η”; (ii) {HbA1c, FPG} and

{non-HDL, LDL, TG} to two exogenous phenotype latent variables that can be respec-

tively interpreted as “glycemic control, ξ1”, and “lipid control ξ2”. Hence, the following

loading matrix Λi in the measurement equation with ωi = (ηi, ξi1, ξi2)T is considered:

ΛT
i =


1∗ λi21 0∗ 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 1∗ λi42 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 0∗ 1∗ λi63 λi73

 .
Although other structures of Λi could be used, here we consider an non-overlapped struc-

ture for clear interpretation of the latent variables.

The proposed approach with N = 50 is applied to take the posterior analysis with

the following prior inputs for the hyper-parameters in the conjugate prior distributions:

µ0 = µ̃0, Σ0 = 1.0, α0k = β0k = 4.0, for k = 1, 2, . . . , 7, λ0jk = λ̃0jk, Hj0 = I3, ρ0Σ = 20,

ρ0φ = s = 10.0, R0φ = (ρ0φ− 4)Φ̃0 where µ̃0, Λ̃0, and Φ̃0 denote the maximum likelihood

estimates obtained from analyzing a ‘control-group’ sample of diabetes patients under

single CFA.

We take c = 0.5, 5.0, 50.0 and 500.0 in our posterior analysis. The log-likelihoods

of observed data and the values of L0.5-measure under c = 0.5, 5.0, 50.0 and 500.0 are

{−6 766.74,−6 227.41,−6 257.57,−6 430.85} and {6 285.84,6 171.21, 6 227.49, 6 347.50},
respectively. It appears that the moderate value of c favors the data fit. Furthermore, we

also compute the L0.5-measure for the single CFA. The resulting summary is ln p(Y ) =

−6 859.56 and L0.5(Y ) = 6 286.87, which shows that the finite dimensional DP mixture

model in analyzing such data is appropriate.

The histograms, Bayes density estimates using the proposed model and the Bayes
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density estimates under parametric CFA for three manifest variables “logAcr”, “Pcr” and

“TG” are given in Figure 3. The histograms illustrate that the distributions of selected

variables are deviated from normality in terms of bimodality and skewness. The superior

predictive performance of the finite dimensional DP mixture over the common CFA is

evident from Figure 3. The proposed model is successful in capturing these features while

the common CFA fails. For the computation of Bayesian nonparametric density, we choose

40 refined grids in interval [−4, 6] and collect 1 000 simulated observations from the blocked

Gibbs sampler at each point after an initial 5 000 iteration burn-ins.
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Figure 3 Diabetic nephropathy data. (a), (c) and (e): histograms for logAcr,

Pcr and TG; (b), (d) and (f): Bayesian posterior density estimates for

logAcr, Pcr and TG: solid lines correspond to finite dimensional DP

with c = 5.0 and N = 50 and dashed lines represent the parametric CFA.

Figure 4 illustrates the bivariate posterior predictive densities for pairs of first four ob-

served variables, which are based on 50×50 grids and 5 000 output posterior samples after

3 000 burn-in iterations. Our model-based predictive inference is more accurate and has

captured well the higher frequency regions. The posterior number of the distinct θi values

is given in Figure 5, although this method generally tends to overestimate the number of

the components. Based on Figure 5, we find that most of the posterior distribution are

concentrated on anywhere from 6 to 10 clusters, thus presenting evidence for the presence

of at least 5 components.
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Figure 4 Bivariate posterior predictive density estimates for pairs (logAcr, Pcr),

(logAcr, HbA1c), (logAcr, FPG), (Pcr, HbA1c), (Pcr, FPG) and (H-

bA1c, FPG) under the finite dimensional DP with c = 5.0 and N = 50.

All plots are overlaid on corresponding plots of Diabetic nephropathy

data.
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Figure 5 Posterior distribution of the number of distinct θi values in the analysis

of the diabetic nephropathy data with c = 5.0 and N = 50.
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§6. Concluding Remarks

Parametric modeling for CFA has long dominated Bayesian inference work, typical-

ly developed within standard exponential family. Such modeling is often confused with

handling the multimodal and unknown heterogeneous problems. In dealing with multi-

modality or increased heterogeneity in data one is naturally to resort to the finite mixture

model which is more flexible and feasible to implement due to advances in simulated-based

model fitting.

Rather than handling the very large number of parameters resulting from the finite

mixture models, in this article, we consider the finite-dimensional Dirichlet process mix-

ture model for CFA with continuous responses. The core of our proposal is to model

the mean vector and variance-covariance parameters of unique errors and latent variables

into the finite-dimensional Dirichlet prior, which allows local dependence structure such

as classification groups and clustering among the data. For posterior analysis, the blocked

Gibbs sampler developed by Ishwaran and Zarepour [25] is extended to cope with the pos-

terior inferences. The existing applications of the proposed methodologies can be applied

to more general latent variable models that include the structure equation modeling, the

multilevel SEMs [41], and longitudinal latent trait models [42] with discrete variables.

Appendix

A.1 Proof of Theorem 1 and 2

Proof of Theorem 1 The first part of conclusion (i) follows from that

E
[ ∫

Rd
|ψ(x)|P(dx)

]
= E

N∑
k=1

pk|ψ(Vk)| = E|ψ(V1)|E
( N∑
k=1

pk

)
= EG0 |ψ(V1)| <∞,

where the last equality holds since
N∑
k=1

pk = 1, a.s. Hence,

∫ ∫
Rd
ψ(x)P(dx)DN (dP|cG0) = E

N∑
k=1

pkψ(Vk) = EG0ψ(V1) = EG0ψ(X).

For (ii),

E
[ ∫

Rd
ψ1(x)P(dx)

∫
Rd
ψ2(x)P(dx)

]
= E

N∑
k=1

N∑
l=1

pkplψ1(Vk)ψ2(Vl)

= E
N∑
k=1

ψ1(Vk)ψ2(Vk)p
2
k + E

N∑
k 6=l

ψ1(Vk)ψ2(Vl)pkpl

= E[ψ1(V1)ψ2(V1)]
N∑
k=1

Ep2
k +

N∑
k 6=l

E[ψ1(Vk)ψ2(Vl)pkpl]
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= (σ12 + µ1µ2)
N∑
k=1

Ep2
k + µ1µ2

N∑
k 6=l

E[pkpl]

= µ1µ2 + σ12

N∑
k=1

Ep2
k = µ1µ2 +

σ12

c+ 1

(
1 +

c

N

)
,

where µi = EG0ψi(X). The last equity holds since pk ∼ Beta(c/N, c− c/N). �

Proof of Theorem 2 Note that given P , X∗1 , X
∗
2 , . . . , X

∗
n(P ) are i.i.d. with the

common density function g(x), hence,

(X1, X2, . . . , Xn)|P =
n(P )∏
j=1

g(x∗j ).

Following from [37], the probability mass function of any partition P is given by

$(P ) =
∑

(i1,i2,...,in(P ))

E
[ n(P )∏
j=1

π
ej
ij

]
=

(c/N)n(P )N !

c[n](N − n(P ))!

n(P )∏
j=1

(
1 +

c

N

)[ej−1]
, (17)

which only depends on the magnitude of c and N . Multiplying them together gives the

joint distribution of X1, X2, . . . , Xn and P . The conclusion follows by restricting joint

density on SC1,C2,...,Cn(P )
. �

A.2 GWCR Algorithm

Following the notation in Theorem 2, the likelihood of the observed data Y is given

by

m(Y |ϑ∗) =

∫ (∫ n∏
i=1

p(yi|θi)P(dθi)
)
DN (dP|cG0ϑ∗)

=

∫ ∫ ∫
n∏
i=1

p(yi|θi)
n∏
i=1

( N∑
k=1

πkδVk(dθi)
)
p(dπ)G0(dV |µ∗,Σ∗,Φ∗)

=
∑
P∈S

$(P )(P )p(Y |P ,ϑ∗), (18)

in which $(P ) =
∑

i1 6=i2 6=···6=ik
E{πe1i1 π

e2
i2
· · ·πekik } with n(P ) = k is given in (17), p(yi|θi) is

the probability density function of N(µi,ΛiΦiΛ
T
i +Ψi) and p(Y |P ,ϑ∗) is the conditional

density

p(Y |P ,ϑ∗) =
n(P )∏
j=1

∫ ∏
i∈Cj

p(yi|θ)G0(dθ|µ∗,Σ∗,Φ∗). (19)

In the following derivations, we suppress ϑ∗ in (18) for notation simplicity.

For r = 1, 2, . . . , n, let pr be the partition of {1, 2, . . . , r}, Y(r) = {y1,y2, . . . ,yr}, and

P(r) = {p1,p2, . . . ,pr}. Based on the well-known identity,

p(Y ,P ) = p(y1) p(p1|y1)
n∏
r=2

p(yr|Y(r−1),P(r−1)) p(pr|Y(r),P(r−1)),
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the marginal likelihood of Y is given by

m(Y ) =
∑
P

n∏
r=1

λ(r) p(pr|Y(r),P(r−1)),

where λ(1) = p(y1), λ(r) = p(yr|Y(r−1),P(r−1)) (r = 2, 3, . . . , n).

Sequential sampling is implemented by drawing pr from p(pr|Y(r),P(r−1)) sequentially

and to form draws of P . The marginal likelihood can be approximated by

m̂(Y ) =
1

M

M∑
m=1

n∏
r=1

λ(m)(r),

in which λ(m)(r) = p(yr|Y(r−1),P
(m)
(r−1)) and {P (m) : m = 1, 2, . . . ,M} are the i.i.d. random

observations simulated by the sequential sampling algorithm. To draw P , we notice that

p(pr|Y(r),P(r−1)) =
p(pr|P(r−1),Y(r−1)) p(yr|P(r),Y(r−1))

λ(r)

=
p(Y(r)|P(r))

λ(r) p(Y(r−1)|P(r−1))
×

p(P(r))

p(P(r−1))
, (20)

in which λ(r) can be considered as the normalizing constant of p(pr|Y(r),P(r−1)).

A key quantity is the p(P(r)), the probability of exchangeable partition probability

function. Ishwaran and James [37] identified these probabilities via the so-called generalized

Chinese restaurant sampling scheme, which is a sequential restaurant ‘seating arrangemen-

t’. Let pr = {Cr,1, Cr,2, . . . , Cr,n(pr)} and Cr,j is the j-th cell with size er,j = #Cr,j . It can

be shown that

p(P(r))

p(P(r−1))
=


er−1,j + c/N

c+ r − 1
, if pr = pjr = {Cr−1,1, . . . , C

∗
r−1,j , . . . , Cr−1,m};

c(1−m/N)

c+ r − 1
, if pr = pr−1 ∪ {r},

where C∗r−1,j = Cr−1,j ∪ {r}. Hence,

p(pr|Y(r),P(r−1))

=
1

λ(r)
×



er−1,j + c/N

c+ r − 1

∫
p(yr|θ)

∏
i∈Cr−1,j

p(yi|θ)G0(dθ)dθ∫ ∏
i∈Cr−1,j

p(yi|θ)G0(dθ)dθ

, if pr = pjr;

c(1−m/N)

c+ r − 1

∫
p(yr|θ)G0(dθ)dθ, if pr = pr−1 ∪ {r}.

The GWCR algorithm works by building up a sequence of nested partitions p1,p2, . . .,

pn by assigning labels {1, 2, . . . , n} into sets using a posterior partition rule. Specifically,
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(i) Set p1 = {1}, compute λ(1) = p(y1) =
∫
p(y1|θ)G0(dθ);

(ii) Given pr−1 = {Cr−1,1, Cr−1,2, . . . , Cr−1,m} derived from {1, 2, . . . , r − 1}, compute
ρr =

c(1−m/N)

c+ r − 1

∫
p(yr|θ)G0(dθ),

ρr(j) =
er−1,j + c/N

c+ r − 1

∫
p(yr|θ) p(θ|Cr−1,j ,Y(r−1,j))dθ, j = 1, 2, . . . ,m,

in which

p(θ|Cr−1,j ,Y(r−1,j)) =

∏
i∈Cr−1,j

p(yi|θ)G0(dθ)∫ ∏
i∈Cr−1,j

p(yi|θ)G0(dθ)

and the normalizing constant λ(r) = ρ(r) +
m∑
j=1

ρ(j);

(iii) pr is formed by assigning label r to one of the previous sets Cr−1,j with probability

ρr(j)/λ(r), j = 1, 2, . . . ,m, or by assigning label r to a new set with probability

ρr/λ(r);

(iv) Up to r = n, and compute

pN (Y ) =
n∏
r=1

λ(r);

(v) Repeat (i)–(iv) B times gives an estimate

p̂N (Y ) =
1

B

B∑
b=1

Λ(P (b)).

Two quantities involved in generalized weighted Chinese restaurant algorithm are∫
p(yr|θ)G0(dθ), and

∫
p(yr|θ) p(θ|Cr−1,j ,Y(r−1,j))dθ, (21)

which need assess the high dimensional integrals. This can be solved by Monte Carlo

method. More specifically, with M i.i.d. observations {θ(m) : m = 1, 2, . . . ,M} simulated

from G0(·), consistent estimates for (21) are given by∫
p(yr|θ)G0(dθ) ≈ 1

M

M∑
m=1

1

(
√

2π)p|Σ(m)|1/2
exp

{
− 1

2
d2(m)
r

}
,∫

p(yr|θ) p(θ|Cr−1,j ,Y(r−1,j))dθ

≈

M∑
m=1
|Σ(m)|−(er−1,j+1)/2 exp

{
− 1

2

( ∑
i∈Cr−1,j

d
2(m)
i + d

2(m)
r

)}
(
√

2π)p
M∑
m=1
|Σ(m)|−er−1,j/2 exp

{
− 1

2

∑
i∈Cr−1,j

d
2(m)
i

} ,
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in which d
2(m)
r = (yr − µ(m))TΣ(m)−1(yr − µ(m)) and Σ(m) = Λ(m)Φ(m)Λ(m) + Ψ(m)T.
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