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Abstract: This paper investigates the test of significance for the binary choice model with

stochastic trend process. The results show that when the true parameter vector is zero, the limiting

distribution of the t statistic follows standard normal distribution. The joint significance test statis-

tics Wald, LM and LR are asymptotically equivalent and have a Chi-square limiting distribution.
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§1. Introduction

Nonstationary binary choice models have attracted lots of attention during the process

of the financial and macroeconomic time series modeling. Park and Phillips [1] studies

the asymptotic theory about logit and probit models with multiple explanatory variables

following integrated processes. Their theory fundamentally based on the assumption that

‖β‖ 6= 0, where β is the true parameter vector and ‖ ·‖ is the Euclidean norm. In practice,

however, we may not have prior information about this assumption. Guerre and Moon [2]

and Mao [3] study the significance test for ‖β‖ = 0. It is worth noting that they assume

the explanatory variables following unit root processes, while numerous types of time

series in real life otherwise exhibit stochastic trend characteristics. Therefore, it should

test ‖β‖ = 0 before applying binary choice model with multiple explanatory variables

generated from stochastic trend process.
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This paper is structured as follows. Section 2 outlines the model and assumptions.

Section 3 gives the main results of the limiting distribution of the t, Wald, LM and LR

statistics and also presents some Monte Carlo simulation results. For better understanding

the theoretical research, Section 4 gives a simple empirical case. Some useful proofs of the

main theorems are given in Appendix.

§2. Model and Assumptions

The classical binary choice model is defined as

yt = 1{y∗t > 0} and y∗t = x′tβ − εt for t = 1, 2, . . . , T, (1)

where the error term εt is widely assumed to follow logistic or normal distribution. To

derive the limiting distribution results, we make the following assumptions regarding the

data generating process xt.

Assumption 1 Let xt follows a k-dimensional stochastic trend process,

xt = α+ xt−1 + µt, (2)

where the true value of α is not zero and µt ∼ i.i.d.(0,Ωµ). Then (2) can be written as

xt = x0 + αt+ (µ1 + µ2 + · · ·+ µt) = x0 + αt+ ξt

for simplicity, set ξ0 = 0. By functional central limit theorem (FCLT) we have

T−1/2ξ[Tr] ⇒ Bµ(r), (3)

where [·] denotes the floor function, ⇒ signifies convergence in distribution, and Bµ(r) is the

Brownian motion with positive definite variance matrix Ωµ.

Since ML estimator involves nonlinear functions of the process xt, we make some

assumptions about the distribution function F and density Ḟ of εt.

Assumption 2 The functions G(s) and K(s) satisfy

G(s) = Ḟ (s)/F (s)(1− F (s)), K(s) = G(s)Ḟ (s) = G(s)2F (s)(1− F (s)),

where F (s) is three times differentiable so that the first derivatives Ḟ (s), Ġ(s) and the second

derivatives F̈ (s), G̈(s) all exist. Further: G̈(s) and K̇(s) is bounded.
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Following similar techniques as in [1] and [3], it can be shown that both logit and

probit models satisfy Assumption 2.

To test ‖β‖ = 0, let et = yt − F (0). For logit and probit models, et = yt − 0.5. It is

easy to verify that et ∼ i.i.d.(0, 0.25). By FCLT we have

T−1/2
[Tr]∑
t=1

et ⇒ Be(r), (4)

where Be(r) is the Brownian motion with variance 0.25 and Be(r), Bµ(r) are independent.

§3. Main Results

The log likelihood of the model (1) has the form

lnLT (β) =
T∑
t=1

yt lnF (x′tβ) +
T∑
t=1

(1− yt) lnF (x′tβ),

and under Assumption 2 we can write the score ST (β) and hessian HT (β) as

ST (β) =
T∑
t=1

G(x′tβ)xt[yt − F (x′tβ)],

HT (β) = −
T∑
t=1

K(x′tβ)xtx
′
t +

T∑
t=1

Ġ(x′tβ)xtx
′
t[yt − F (x′tβ)].

Let β̂ be the MLE of model (1). Then we have the following lemma:

Lemma 3 Let Assumptions 1 and 2 hold. If

sup
‖T 1.5−1.5δβ‖61

∥∥∥HT (β)−HT (0)

T 3−3δ

∥∥∥ = op(1) (5)

for some δ > 0, then we have

T 3/2β̂ ⇒
(K(0)

3
αα′
)−1(

G(0)α

∫ 1

0
rdBe(r)

)
≡ MNk

(
0,

3G(0)2

4K(0)2
(αα′)−1

)
, (6)

where ≡ denotes distributional equivalence and MNk signifies a k-dimensional mixed normal

distribution.

Note that in this case the convergence rate of MLE is T 3/2, which is faster than that

of [2] and [3]. In the Appendix we prove that, for logit and probit models, there exists

δ > 0 that makes the condition (5) satisfied. Therefore, (6) can be applied to the analysis

of single significance t test and joint significance test such as Wald, LM and LR tests.

Based on the results above, we have the following theorem.
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Theorem 4 Let Assumptions 1 and 2 hold. For the logit or probit model, we have

tβi ⇒ N(0, 1), i = 1, 2, . . . , k,

Wald ≈ LM ≈ LR⇒ χ2(k), as T →∞ and under the null hypothesis ‖β‖ = 0.

The theorem suggests that the t, Wald, LM and LR statistics can be used in the

usual way for testing the significance of the nonstationary logit and probit models in large

samples. Besides, it is worth noting that the Wald, LM and LR statistics are asymptot-

ically equivalent and they all have the χ2(k) limiting distribution, where k denotes the

number of restrictions. To further illustrate this theorem, we consider a simple Monte

Carlo simulation performed with 10 000 repetitions. Firstly, we consider the property of

the four statistics in finite samples. Under ‖β‖ = 0, the independent variables’ DGPs are

assumed to be xt = α + xt−1 + µt, k = 3, µt ∼ i.i.d.(0, I3), x0 = 0, α = {0.02, 0.05, 0.08}
and T = {50, 100, 500, 1 000}. Figure 1 gives the statistical distribution of the t statistic

of the first independent variable and can be well approximated by N(0, 1) distribution in

different samples. Figure 2 shows that the Wald, LM and LR statistics are asymptotically

equivalent and can be well approximated by the χ2(3) distribution. Therefore, the stan-

dard normal and Chi-Square distribution tables can be used to test for the significance in

finite samples.
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Figure 1 Statistical distribution of the t statistics in finite samples

Then we consider the actual size of the four statistics. The simulation setting are the

same as the above. Table 1 reports the actual sizes of the four statistics under different

nominal sizes. We can see that the four statistic has actual sizes reasonably close to the

nominal sizes.
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Figure 2 Statistical distribution of the Wald, LM and LR statistics in finite samples

Table 1 Actual size of the four statistics

Statistic T
Logit Model Probit Model

0.01 0.05 0.1 0.01 0.05 0.1

t

50 0.0072 0.0498 0.1022 0.0075 0.0517 0.1027

100 0.0077 0.0455 0.1022 0.0095 0.0501 0.1043

500 0.0113 0.0538 0.1013 0.0094 0.0485 0.0994

1 000 0.0106 0.0515 0.0997 0.0090 0.0464 0.0970

Wald

50 0.0019 0.0255 0.0723 0.0034 0.0324 0.0844

100 0.0043 0.0388 0.0833 0.0066 0.0440 0.0929

500 0.0096 0.0494 0.0946 0.0090 0.0511 0.1021

1 000 0.0092 0.0468 0.0958 0.0096 0.0466 0.0961

LR

50 0.0106 0.0559 0.1075 0.0106 0.0559 0.1075

100 0.0110 0.0505 0.0993 0.0110 0.0505 0.0993

500 0.0108 0.0526 0.0986 0.0108 0.0526 0.0986

1 000 0.0102 0.0486 0.0972 0.0102 0.0486 0.0972

LM

50 0.0075 0.0445 0.0981 0.0075 0.0445 0.0981

100 0.0074 0.0472 0.0966 0.0074 0.0472 0.0966

500 0.0105 0.0484 0.1036 0.0105 0.0484 0.1036

1 000 0.0110 0.0485 0.0983 0.0110 0.0485 0.0983

Lastly, we examine the power of the four statistic. For simplicity, we only consider four

cases of DGPs for y∗. In Case 1 β0 = {0.25, 0,−0.01}, In Case 2 β0 = {0.25, 0.1,−0.01},
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In Case 3 β0 = {0.5, 0,−0.01} and In Case 4 β0 = {0.5, 0.1,−0.01}. Other simulation

settings are the same as above. Table 2 shows that the four statistic has substantially

higher power at nominal size of 5%.

Table 2 Power test of the four statistics

Statistic T
Logit Model Probit Model

Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4

t

50 0.4565 0.5077 0.6585 0.671 0.3867 0.4406 0.5969 0.6125

100 0.6139 0.6387 0.7425 0.7481 0.526 0.562 0.6839 0.6951

500 0.6228 0.636 0.7133 0.717 0.5411 0.563 0.6515 0.6576

1 000 0.8233 0.8161 0.8592 0.8647 0.7891 0.7966 0.8339 0.8400

Wald

50 0.8392 0.8472 0.8869 0.8933 0.6789 0.703 0.77 0.7798

100 0.9475 0.9498 0.9672 0.9666 0.9017 0.9081 0.9336 0.9342

500 0.993 0.9912 0.9931 0.9931 0.9951 0.9936 0.9947 0.9931

1 000 0.9985 0.9987 0.9994 0.9991 0.998 0.9984 0.9992 0.9992

LR

50 0.9239 0.9325 0.9696 0.9702 0.9236 0.9326 0.9696 0.9701

100 0.9696 0.9744 0.9872 0.9883 0.9694 0.9738 0.9872 0.9883

500 0.9992 0.999 0.9995 0.9996 0.9991 0.9989 0.9993 0.9996

1 000 0.9991 0.9995 0.9996 0.9996 0.999 0.9995 0.9996 0.9996

LM

50 0.968 0.9724 0.9989 0.9987 0.968 0.9724 0.9989 0.9987

100 0.9983 0.9991 1.0000 1.0000 0.9983 0.9991 1.0000 1.0000

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

§4. Empirical Case

For better understanding the theoretical research, we consider an empirical case. This

case mainly concentrates on China’s monetary policy stance and dynamic adjustment.

Following Taylor’s model and the subsequent studies in this area, we specified the China’s

monetary reaction as:

MPt = α ∗ (GDPt −GDP∗t ) + β ∗ (CPIt − CPI∗t ) + εt, (7)

Where MPt is a monetary policy stance indicator which is mainly derived from [4]’s study,

except that we construct two monetary stance indices in this case. In binary choice model,

we set 0 to indicate easy monetary policy and 1 tight monetary policy. GDPt and CPIt

are actual GDP growth and CPI inflation, while GDP∗t and CPI∗t are growth and inflation

targets respectively. The empirical data is from 2001Q1 to 2014Q4.
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In classical time series analysis, before building a model, we should test the station-

arity of the variables. If a variable is not stationary, we should take difference or detrend

it. By using ADF unit root test, we find that the term (GDPt−GDP∗t ) follows stochastic

trend process. However, in binary choice model, we do not need to concern about it and

still can use original data to do the regression, as proved in theoretical part above. Table

3 gives the estimation results. The values of LR, LM and Wald are larger, showing that

the whole model fits better. Both α and β are positive, implying that the People’s bank

of China will tighten monetary stance if economic growth and inflation are above their

targets.

Table 3 Empirical results of binary choice models

Logit Model Probit Model

GDP GDP∗ 0.273∗∗ 0.155∗

-2.103 -1.69

CPI CPI∗ 1.076∗∗∗ 0.629∗∗∗

-3.389 -2.763

LR 23.949 23.533

LM 17.96 17.96

Wald 11.966 7.776

Note: ***, ** and * denote significance at the 1%, 5% and 10% significance

level, respectively. The value in parentheses is the standard error. All

data is available upon request.

Appendix: Mathematical Proofs

Proof of Lemma 3 Theorem 10.1 in [5] is suitable to solve the present problem.

To better use the theorem, we verify the key conditions (iii) and (iv) of this theorem.

By mean value theorem we have

0 = ST (β̂) = ST (0) +HT (β+)(β̂ − 0), (8)

where β+ is the mean values. To arrive at nondegenerate limiting distribution, we pre-

multiply the (8) by an inverse of scaling matrix D
1/2
T and write the result as

0 = D
−1/2
T ST (0) +

[
D
−1/2
T HT (0)D

−1/2
T

]
D

1/2
T β̂

+ T−3δ
(
C
−1/2
T [HT (β)−HT (0)]C

−1/2
T

)
D

1/2
T β̂, (9)
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where CT = DTT
−3δ for some δ > 0. Next find out the scaling matrix D

1/2
T . Under

‖β‖ = 0 and the Assumptions 1 and 2, we have

ST (0) = G(0)
T∑
t=1

xtet = G(0)
( T∑
t=1

x0et +
T∑
t=1

αtet +
T∑
t=1

ξtet

)
, (10)

HT (0) = −K(0)
T∑
t=1

xtx
′
t = −K(0)

T∑
t=1

(x0 + αt+ ξt)(x0 + αt+ ξt)
′. (11)

We rewrite the (10) by order in probability

ST (0) = Op(T
1/2) +Op(T

3/2) +Op(T ),

the second term in above equation asymptotically dominates the other two components,

so we have

T−3/2ST (0)⇒ G(0)α

∫ 1

0
rdBe(r). (12)

Similarly, we expand the (11) totally

HT (0) = −K(0)
T∑
t=1

(x0x
′
0 + x0α

′t+ x0ξ
′
t + αx′0t+ αα′t2 + αξ′tt+ ξtx

′
0 + ξtα

′t+ ξtξ
′
t).

It is easy to find that the time trend term t2 dominates other components and the order

in probability is Op(T
3), so we have the convergence of HT (0)

T−3HT (0)
p→ −K(0)αα′/3. (13)

Thus we find out the scaling matrix and let D
1/2
T = T 3/2Ik, where Ik is the k by k identity

matrix. Consequently, CTD
−1
T = o(1) as T → ∞, which shows that condition (iii) (a)

holds. Besides, condition (iv) is ensured by (12) and (13). To obtain (6), it is sufficient to

show that

T 3/2β̂ =
[
− T−3HT (0)

]−1[
T−3/2ST (0)

]
+ op(1),

which follows from (9) if the last term of (9) is op(1). This will be so, if the condition (iii)

(b) holds. To show this is so, we need to proof (5). Note that

sup
‖T 1.5−1.5δβ‖61

∥∥∥HT (β)−HT (0)

T 3−3δ

∥∥∥
= sup
‖T 1.5−1.5δβ‖61

∥∥∥∥∥
T∑
t=1

{
Ġ(x′tβ)[yt − F (x′tβ)]− [K(x′tβ)−K(0)]

}
xtx
′
t

T 3−3δ

∥∥∥∥∥. (14)
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Since for any square matrix ‖A‖ =
(∑

i

∑
j
|Aij |2

)1/2
6 kmax

i,j
|Aij | and by absolute value

inequality, (14) can be written as

sup
‖T 1.5−1.5δβ‖61

∥∥∥HT (β)−HT (0)

T 3−3δ

∥∥∥
6 kmax

i,j
sup

‖T 1.5−1.5δβ‖61

∣∣∣∣∣
T∑
t=1

{
Ġ(x′tβ)[yt − F (x′tβ)]− [K(x′tβ)−K(0)]

}
xitxjt

T 3−3δ

∣∣∣∣∣
6 kmax

i,j
sup

‖T 1.5−1.5δβ‖61

(∣∣∣∣∣
T∑
t=1

Ġ(x′tβ)[yt − F (x′tβ)]xitxjt

T 3−3δ

∣∣∣∣∣+

∣∣∣∣∣
T∑
t=1

[K(x′tβ)−K(0)]xitxjt

T 3−3δ

∣∣∣∣∣
)
.

By mean value theorem and Cauchy-Schwarz inequality ‖x′tβ‖ 6 ‖xt‖ ‖β‖, the right hand

side of the inequality above can be bounded by

kmax
i,j

sup
‖T 1.5−1.5δβ‖61

( T∑
t=1
|G̈(x′tβ

+)| |yt − F (x′tβ)| |xitxjt| ‖xt‖ ‖β‖

T 3−3δ

+

T∑
t=1
|K̇(x′tβ

+)| |xitxjt| ‖xt‖ ‖β‖

T 3−3δ

)
.

Since ‖xt‖ 6
√
kmax

l
|xlt|, ‖β‖ 6 T−1.5+1.5δ and |yt − F (x′tβ)| 6 2, meanwhile G̈(s) and

K̇(s) is bounded under Assumption 2, so the above inequality can be further bounded by

6

ck3/2
T∑
t=1
|xitxjtxlt|

T 9/2−9δ/2
,

where the c is a generic positive constant. Since
T∑
t=1

3|xitxjtxlt| 6
T∑
t=1

(|xit|3 + |xjt|3 + |xlt|3),

to proof (5), it suffices to verify
T∑
t=1
|xit|3/T 9/2−9δ/2 = op(1). Because |xit|3 is regular, we

can use the Theorem 3.2 of [6], who proofed that T−1−k/2
T∑
t=1
|xit|k = Op(1) for k > 0.

Choose 0 < δ < 4/9, we can easily deduce that
T∑
t=1
|xit|3/T 9/2−9δ/2 = op(1). Hence (5)

holds. we complete the proof of Lemma 3. �

Proof of Theorem 4 The t statistic is characterized by

t
β̂i

=
β̂i√

(−HT (β̂))−1
ii

=
T 3/2β̂i√

(−T−3HT (β̂))−1
ii

.
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By (5), (6) and (13), we have

t
β̂i
⇒

{
(K(0)αα′/3)−1

(
G(0)α

∫ 1

0
rdBe(r)

)}
i√

(K(0)αα′/3)−1
ii

.

For logit and probit models, G2(0) = 4K(0). Consequently, we have

t
β̂i
⇒ N(0, 1), i = 1, 2, . . . , k.

Next we consider testing ‖β‖ = 0 by the Wald, LM and LR statistics. Under ‖β‖ = 0, the

Wald statistic can be written as

Wald = −β̂′HT (β̂)β̂ = (T 3/2β̂)′(−T−3HT (β̂))(T 3/2β̂).

By (5), (6) and (13), we have

Wald =
G(0)2

4K(0)
(T 3/2β̂)′

[ 3G(0)2

4K(0)2
(αα′)−1

]−1
(T 3/2β̂) + op(1).

Since G2(0) = 4K(0), thus we can obtain the limiting distribution of Wald statistic

Wald⇒
(
G(0)α

∫ 1

0
rdBe(r)

)′(K(0)

3
αα′
)−1(

G(0)α

∫ 1

0
rdBe(r)

)
≡ χ2(k). (15)

The LM statistic is defined by

LM = ST (β̃)′[−HT (β̃)]−1ST (β̃),

where β̃ is the restricted estimator vector. Under ‖β‖ = 0, it is easy to verify that β̃ = 0,

so we can rewrite the LM as

LM = ST (0)′[−HT (0)]−1ST (0) = (T−3/2ST (0))′[−T−3HT (0)]−1(T−3/2ST (0)).

By (12), we have

T−3/2ST (0)⇒ G(0)α

∫ 1

0
rdBe(r) ≡ MNk(0, G(0)2αα′/12),

Then, by (5), (6) and (13), we obtain

LM =
G(0)2

4K(0)
(T−3/2ST (0))′[G(0)2αα′/12]−1(T−3/2ST (0)) + op(1).

Since G2(0) = 4K(0), we can obtain the limiting distribution of LM statistic by simple

calculation

LM⇒
(
G(0)α

∫ 1

0
rdBe(r)

)′(K(0)

3
αα′
)−1(

G(0)α

∫ 1

0
rdBe(r)

)
≡ χ2(k). (16)
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The likelihood ratio test is defined by

LR = −2(lnLT (β̃)− lnLT (β̂)).

To get the limiting distribution of LR, take a second-order Taylor’s approximation of

lnLT (β̃) around lnLT (β̂)

lnLT (β̃) = lnLT (β̂) + ST (β̂)(β̂ − β̃) + 1/2(β̂ − β̃)′HT (β)(β̂ − β̃),

where ST (β̂) = 0, β is the mean values. Then the above equation can be written as

lnLT (β̃)− lnLT (β̂) = 1/2(β̂ − β̃)′HT (β)(β̂ − β̃),

so we have

LR = (β̂ − β̃)′HT (β)(β̂ − β̃)

under ‖β‖ = 0, we know that β̃ = 0. By (5), we obtain

LR = (T 3/2β̂)′(−T−3HT (0))(T 3/2β̂) + op(1).

Similar to Wald statistic, we can obtain the limiting distribution of LR statistic

LR⇒
(
G(0)α

∫ 1

0
rdBe(r)

)′(K(0)

3
αα′
)−1(

G(0)α

∫ 1

0
rdBe(r)

)
≡ χ2(k). (17)

From (15) to (17), we observe that the Wald, LM and LR statistics are asymptotically

equivalent and they all have χ2(k) limiting distribution, which completes the proof of

Theorem 4. �

Acknowledgments Helpful comments and suggestions from the editor and the

anonymous referee are greatly appreciated. Thanks to Zhuang J. and Zhao H. M. in

writing help.

References

[1] Park J Y, Phillips P C B. Nonstationary binary choice [J]. Econometrica, 2000, 68(5): 1249–1280.

[2] Guerre E, Moon H R. A note on the nonstationary binary choice logit model [J]. Econom. Lett., 2002,

76(2): 267–271.

[3] Mao G Y. Testing for joint significance in nonstationary binary choice model [J]. Econom. Lett., 2014,

122(2): 311–313.

[4] Xu P, Xu W G. Monetary policy stance and dynamic adjustment: an empirical study of China

monetary policy reports [J]. J. Finance Economics, 2015, 30(4): 3–16. (Chinese)

《
应
用
概
率
统
计
》
版
权
所
有



312 Chinese Journal of Applied Probability and Statistics Vol. 32

[5] Wooldridge J M. Estimation and inference for dependent processes [M] // Engle R F, McFadden D L.

Handbook of Econometrics, Volume 4. North-Holland: Elsevier Science Publishers, 1994: 2639–2738.

[6] Park J Y, Phillips P C B. Asymptotics for nonlinear transformations of integrated time series [J].

Econometric Theory, 1999, 15(3): 269–298.

�k�Åª³����ÀJ�.wÍ5u�ïÄ

M +

(Hm�Æ²LÆ�êþ²LïÄ¤, U9, 300071)

�©d

(H®ã²�Æã��[ÖÆ�, H®, 210000)

îfW

(¥I¬Ê�Æ²L�+nÆ�, U9, 300300)

Á �: �©Ì�é�²­��ÀJ�.�wÍ5u�?1ïÄ. ïÄ(Jw«, �ý¢ëê�"�,

tÚOþ�©ÙÂñuIO��©Ù. Ó�éÜwÍ5u�ÚOþWald!LMÚLRìC����©ÙÂñu

k�©Ù.

'�c: ��lÑÀJ�.; �Åª³L§; wÍ5u�

¥ã©aÒ: F224.0

《
应
用
概
率
统
计
》
版
权
所
有




