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Abstract: In this paper, precise large deviations of nonnegative, non-identical distributions

and negatively associated random variables are investigated. Under certain conditions, the lower

bound of the precise large deviations for the non-random sum is solved and the uniformly asymptotic

results for the corresponding random sum are obtained. At the same time, we deeply discussed

the compound renewal risk model, in which we found that the compound renewal risk model can

be equivalent to renewal risk model under certain conditions. The relative research results of

precise large deviations are applied to the more practical compound renewal risk model, and the

theoretical and practical values are verified. In addition, this paper also shows that the impact

of this dependency relationship between random variables to precise large deviations of the final

result is not significant.
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§1. Introduction

Mainstream research on precise large deviation probabilities has been concentrated

on the study of the asymptotics P(S(t)− ES(t) > x) ∼ λ(t)F (x), which holds uniformly

for all x > γλ(t) for every fixed γ > 0 as t → ∞. Here {Xn, n > 1} is a sequence

of independent, identically distributed (i.i.d.) nonnegative heavy-tailed random variables

with common distribution function F and finite expectation µ, independent of a process

{N(t), t > 0} driven by a sequence of nonnegative, integer-valued r.v.’s. Assume that

λ(t) = EN(t) < ∞ for all t > 0 but λ(t) → ∞, as t → ∞. All limit relations, unless
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explicitly stated, are for t → ∞ or consequently for λ(t) → ∞. S(t) =
N(t)∑
i=1

Xi, t > 0,

denote random sum.

For classical works of precise large deviations with heavy tails, we refer the reader to

[1–4], while for recent works, we refer to [5–8] among many others.

We say X (or its df F ) is heavy-tailed if it has no exponential moments. An important

subclass of heavy-tailed distributions is D , which consists of all distributions with dominat-

ed variation in the sense that the relation lim sup
x→∞

F (xy)/F (x) <∞ holds for any y ∈ (0, 1)

(or equivalently, for y = 1/2). Another slightly smaller subclass is C , which consists of all

distributions with consistent variation in the sense that lim
y↘1

lim inf
x→∞

F (xy)/F (x) = 1 or,

equivalently, lim
y↗1

lim sup
x→∞

F (xy)/F (x) = 1.

Strolling in past literature on precise large deviations, we find that most works were

conducted only for independent r.v.’s, though several dealing with non-identically dis-

tributed r.v.’s, we refer the reader to [9].

It is their work that motivates our study. We will extend and improve their results

in the following directions:

Firstly, we extend the relationship of r.v.’s from the independent case to NA structure

(see Definition 1 as below);

Secondly, we do not require that r.v.’s {Xk, k > 1} have the same distribution, which

will play an important role in the study of a general compound renewal risk model (see

Definition 18 in Section 4), where several types of claims may have potentially different

distributions.

As an application of the above results, we will also discuss precise large deviations in

general compound renewal risk model.

At the end of this section, we introduce corresponding concept of negative associated.

Definition 1 Random variables X1, X2, . . . , Xk are said to be negatively associated

(NA) if for every pair of disjoint subsets A1, A2 of {1, 2, . . . , k},

Cov {f1(Xi, i ∈ A1), f2(Xj , j ∈ A2)} 6 0, (1)

whenever f1 and f2 are increasing. This dependence structure was first introduced by [10]

and [11].

The rest of paper is organized as follows. In Section 2 we introduce some useful

lemmas in the paper. The main results are presented in Section 3. In Section 4, we apply

our main results to a realistic example (General Compound Renewal Risk Model) and

obtain a specific result. Finally the proofs of our results are given in Section 5.
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§2. Preliminaries

We restate the following results that were obtained in the literature of the precise

large deviations. We need the following lemmas to prove the main results behind. At first,

we cite Theorem 3.1 of [9], which extends the related results of [4] from the identically

distributed case to the non-identically distributed case under some extra conditions.

Lemma 2 Let X, {Xn, n > 1} be independent nonnegative r.v.’s with distribution

functions F ∈ C , {Fn, n > 1} and finite expectations µ, {µn, n > 1}, respectively. Assume

that

(i) the distribution functions {Fn, n > 1} and F satisfy Assumption (A):

lim
n→∞

∑
16k6n

F k(x)/(nF (x)) = 1 holds uniformly for x > X0, for some X0 > 0;

(ii) the expectations µ and {µn, n > 1} satisfy Assumption (B):

lim
n→∞

∑
16k6n

µk/n = µ <∞, and sup
n>1

µn <∞.

Then, for any fixed γ > 0, P(Sn − E(Sn) > x) ∼ nF (x) holds uniformly for x > γn, where

Sn =
n∑
k=1

Xk.

In the next Lemma we establish an important asymptotical relation for the tail prob-

abilities of sums of NA r.v.’s.

Lemma 3 Let {Xn, n > 1} be nonnegative NA r.v.’s with common distribution

function F ∈ C and finite expectation µ. Then, for any fixed n > 1, the relation

P(Sn > x) ∼ nF (x) holds as x→∞. (2)

Remark 4 The relation (2) is the popularization of Theorem 3.1 and Theorem 3.2

of [6]. Compared with the later, our result is focus on any fixed n. Using the same approach

as used in the proof of Theorem 4.1 of [4] we can easily obtain the conclusion.

Lemma 5 Let {Xk, k > 1} be NA r.v.’s with distribution functions {Fk, k > 1} and

mean vector be 0, satisfying sup
k>1

E(X+
k )r < ∞ for some r > 1. Then for each fixed γ > 0

and p > 0, there exist positive numbers υ and C = C(υ, γ) irrespective to x and n such that

for all x > γn and n = 1, 2, . . .,

P
( ∑

16k6n
Xk > x

)
6

∑
16k6n

F k(υx) + Cx−p.
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Remark 6 In fact, Lemma 5 is a modification of Lemma 2.3 of [6]. We just need

give some modifications as following:

(i) nF (υx) in [6] is replaced by
n∑
k=1

F k(υx);

(ii) h′ = (υx)−1 log
(
υq−1xq/[nE(X+

1 )q] + 1
)

in [6] is replaced by

h = (υx)−1 log
(
υq−1xq

/ n∑
k=1

E(X+
k )q + 1

)
;

(iii) C ′ = sup
x>0

exp
{

1/υ + υq−1xq F (υx)/E(X+
1 )q
}(
vq−1γ/E(X+

1 )q
)−1/(2υ)

< ∞ in [6] is

replaced by

C = sup
x>0

exp
{1

υ
+υq−1xq

n∑
k=1

F k(υx)
/ n∑
k=1

E(X+
k )q
}(
vq−1γ

/
max
16k6n

E(X+
k )q
)−1/(2υ)

<∞.

This lemma will be used in deriving the lower bound of the large-deviation probabil-

ities in the proof of Theorem 15.

Lemma 7 and Lemma 8 can be found in [4]. These inequalities will play a key role in

the proof of Theorem 15.

Lemma 7 For a distribution function F ∈ D with a finite expectation, 1 6 γF <∞
and as x→∞, x−p = o(F (x)) for any p > γF .

Lemma 8 For a distribution function F ∈ D and every ρ > γF , there exist positive

x0 and B such that, for all θ ∈ (0, 1] and all x > θ−1x0, F (θx)/F (x) 6 Bθ−ρ.

Lemmas 9 and 10 are reformulations of Lemmas 3.3 and 3.5 of [3]. We will need these

two lemmas in the later part of this paper.

Lemma 9 Let {ζ(t), t > 0} be a stochastic process with a common expectation

Eζ(t) = 1. If for any fixed δ > 0, Eζ(t)I{ζ(t)>1+δ} = o(1), then ζ(t)
P→ 1.

Lemma 10 Suppose {Yn, n > 1} is a sequence of i.i.d. non-negative r.v.’s with a

common mean EY1 = 1/λ, constituting a renewal counting process {N(t), t > 0}. We have

for any positive constants δ and m,
∑

k>(1+δ)λ(t)

kmP(N(t) = k) = o(1).

Next, we give three useful lemmas, which are the popularization and application of

Theorem 1 in [12], Lemma 2.3 in [13] and Lemma 3.2 of [14] respectively. These inequalities

will play a key role in the proof of Theorem 15 and Theorem 16.

Lemma 11 Let {Xn, n > 1} be NA r.v.’s with distribution functions {Fn, n > 1},
x > 0 be any positive constant, and let (y1, y2, . . . , yn) be any set of positive numbers. Then
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for y > max
16k6n

{yk} and 0 < t 6 1, we have

P(Sn > x) 6
n∑
k=1

P(Xk > yk) + P1,

where

P1 = exp
{x
y
− x

y
ln
[
xyt−1

/( n∑
k=1

∫ yk

0
ut dFk(u)

)
+ 1
]}
.

Lemma 12 Let {Xn, n > 1} be NA r.v.’s with distribution functions {Fn, n > 1}
and finite expectations {µn, n > 1}, and let {N(t), t > 0} be a stochastic process generated

by non-negative integer-valued r.v.’s independent of the sequence {Xn, n > 1}. Assume that

(i) the expectations {µn, n > 1} satisfy that for some µ <∞, lim
n→∞

n−1
n∑
k=1

µk = µ;

(ii) the stochastic process N(t) satisfies that N(t)/λ(t)
P→ 1, as t→∞.

Then ES(t) ∼ µλ(t), i.e. ES(t) = µλ(t)(1 + o(1)).

Lemma 13 Let {Xn, n > 1} be NA non-negative r.v.’s with common distribution

function and finite expectation µ. Then, for all υ > 0, x > 0 and n > 1, P(Sn > x) 6

nF (x/υ) + (eµn/x)υ.

Remark 14 In fact, all the work that we need to do is just changing the independence

property among the r.v.’s {Xn, n > 1} which appears in Theorem 1 of [12], Lemma 2.3 of

[13] and Lemma 3.2 of [14] into negative associated structure. However, this kind of change

of relationships will not effect the final result at all.

§3. Main Results

Based on Lemma 2, we hope to obtain more results under relatively relaxed conditions.

For nonnegative r.v.’s {Xn, n > 1} with distributions {Fn, n > 1}, we need the following

condition: there exists a proper distribution F on [0,∞) and 0 < α < β <∞ such that

α = lim inf
x→∞

inf
n>1

Fn(x)/F (x) 6 lim sup
x→∞

sup
n>1

Fn(x)/F (x) = β. (3)

The following theorem is a result about precise large deviations of nonrandom sum:

Theorem 15 Let {Xn, n > 1} be a sequence of nonnegative NA r.v.’s with distribu-

tion functions {Fn, n > 1} and finite expectations {µn, n > 1}; X be a nonnegative random

variable with a distribution function F ∈ C and a finite expectation µ. Assume that

(i) the distribution functions {Fn, n > 1} and F satisfy (3);
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(ii) the expectations µ and {µn, n > 1} satisfy Assumption (B) in Lemma 2.

Then, for any fixed γ > 0,

α 6 lim inf
n→∞

inf
x>γn

P(Sn − E(Sn) > x)

nF (x)
6 lim sup

n→∞
sup
x>γn

P(Sn − E(Sn) > x)

nF (x)
6 β, (4)

where Sn =
n∑
k=1

Xk.

Based on Theorem 15, we have the asymptotic results for random sum as follows:

Theorem 16 Let {Xn, n > 1} be a sequence of nonnegative NA r.v.’s with distribu-

tion functions {Fn, n > 1} and finite expectations {µn, n > 1}; X be a nonnegative random

variable with a distribution function F ∈ C and a finite expectation µ. Assume that

(i) the distribution functions {Fn, n > 1} and F satisfy (3);

(ii) the expectations µ and {µn, n > 1} satisfy Assumption (B) in Lemma 2;

(iii) {N(t), t > 0} is a non-negative and integer-valued process independent of {Xn, n >

1}, and satisfies Assumption I: ENp(t)I{N(t)>(1+δ)λ(t)} = O(λ(t)).

Then, for any fixed γ > 0,

α 6 lim inf
t→∞

inf
x>γλ(t)

P(S(t)− E(S(t)) > x)

λ(t)F (x)
6 lim sup

t→∞
sup

x>γλ(t)

P(S(t)− E(S(t)) > x)

λ(t)F (x)
6 β.

(5)

§4. Application to General Compound Renewal Risk

Model

In this section, we provide a realistic application (Compound Renewal Risk Model) of

Theorem 16. Tang et al. [3] studied the precise large deviations in the compound renewed

model, the model is as follows:

Definition 17 The Compound Renewal Risk Model

(a) the individual claim sizes {Xn, n > 1} are i.i.d. nonnegative r.v.’s with a common

distribution function F and a finite mean µ = EX1;

(b) the accident inter-arrival times {Yn, n > 1} are i.i.d. non-negative r.v.’s with a finite

mean EY1 = 1/λ, independent of {Xn, n > 1};

(c) the number of accidents in the interval [0, t] is denoted by τ(t) = sup{n > 1 : Tn 6 t,

t > 0}, where Tn =
n∑
i=1

Yi, n > 1, denote the arrival time of the nth accident; the
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number of individual claims caused by the nth accident is a non-negative, integer-valued

r.v. Zn, and {Zn, n > 1} constitutes a process of i.i.d. r.v.’s with a common df W ,

independent of {Xn, n > 1} and {Yn, n > 1};

(d) the total number of claims up to time t is given by N ′(t) =
τ(t)∑
i=1

Zi, t > 0; the total

claim amount process {S′(t), t > 0} is defined by

S′(t) =
N ′(t)∑
i=1

Xi. (6)

For more details in compound renewal risk model, Tang et al. [3] proved the precise

large deviations results, while Kaas and Tang [5] proved again the precise large deviations

results when the number of individual claims {Zn, n > 1} in Definition 17 are ND struc-

ture. Based on Definition 17 and Equation (3), we introduce the following more realistic

model in the context of insurance.

Definition 18 The General Compound Renewal Risk Model is given by conditions

(b) – (d) in Definition 17 and

(a′) the individual claim sizes {Xn, n > 1} are NA non-negative r.v.’s with a finite mean

vector µ = (EX1,EX2, . . . ,EXn, . . .);

(e) the individual claim sizes {Xnk, 1 6 k 6 Zn} caused by the nth accident with common

distribution Fn and finite expectation µn for every fixed n, n > 1.

Generally speaking, however, it describes a more realistic risk model since the random

sum (6) is equal to

S′(t) =
τ(t)∑
n=1

Zn∑
k=1

Xnk =
Z1∑
k=1

X1k +
Z2∑
k=1

X2k + · · ·+
Zτ(t)∑
k=1

Xτ(t)k =
τ(t)∑
n=1

An, (7)

where An =
Zn∑
k=1

Xnk, 1 6 n 6 τ(t). From [11], the increasing functions defined on disjoint

subsets of a set of NA r.v.’s are NA, we know that {An, n > 1} are NA non-negative r.v.’s

with distribution functions {Gn, n > 1}. We have the asymptotic result for random sum

(7) as follows:

Theorem 19 In the general compound renewal risk model, let F , Fn ∈ C , n > 1

satisfy relation (3), and EZp1 <∞ for some p > 1. Then, for any fixed γ > 0,

α 6 lim inf
t→∞

inf
x>γλ′(t)

P(S′(t)− E(S′(t)) > x)

λ′(t)F (x)
6 lim sup

t→∞
sup

x>γλ′(t)

P(S′(t)− E(S′(t)) > x)

λ′(t)F (x)
6 β,

(8)
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where λ′(t) = EN ′(t) and S′(t) =
τ(t)∑
i=1

Ai.

Proof Since {An, n > 1} are NA non-negative r.v.’s with distribution functions

{Gn, n > 1}, we know that S′(t) is random sum of nonnegative NA r.v.s {An, n > 1}.
Combining EAn = µnEZ1 and Assumption (B) we can easily see that Assumption (B) in

Theorem 16 are satisfied for {An, n > 1}. Using Lemma 10 we know that renewal counting

process τ(t) satisfies Assumption I in Theorem 16. To complete the proof of Theorem 19,

we need to verify that Gn, n > 1 satisfy relation (3). So we only need to verify that for

all i > 1, there exist some Ci > 0, such that Gi(x) ∼ Ci F i(x) as x→∞.

For all υ > 0, x > 0 and n > 1, using Lemma 13, we know that

P
( ∑

16k6n
Xik > x

)
6 nF i(x/υ) + (eµn/x)υ, for n > 1.

Let υ = p, where p > γF > 1, for all large n, we have

P
( ∑

16k6n
Xik > x

)
6 nF i(x/υ) + (eµn/x)υ 6 nBi p

ρ F i(x) + (eµ)pnp F i(x)

6 2Ci0n
p F i(x),

where Ci0 is a positive number irrespective to x and n, we use Lemma 7 and Lemma 8 in

the second inequality.

Since EZp1 <∞, by the dominated convergence theorem, we have

lim
x→∞

Gi(x)

F i(x)
= lim

x→∞

{[ ∞∑
n=1

P
( n∑
k=1

Xik > x
)]/

F i(x)
}
P(Zi = n)

=
∑
n>1

lim
x→∞

{[
P
( n∑
k=1

Xik > x
)]/

F i(x)
}
P(Z1 = n)

=
∑
n>1

nP(Z1 = n) = EZ1. (9)

Using (9) we have

αEZ1 = lim inf
x→∞

inf
n>1

Gn(x)/F (x) 6 lim sup
x→∞

sup
n>1

Gn(x)/F (x) = βEZ1. (10)

So, using Theorem 16 we have that, for any fixed γ > 0,

αEZ1 6 lim inf
t→∞

inf
x>γ E τ(t)

P(S′(t)− E(S′(t)) > x)

Eτ(t)F (x)

6 lim sup
t→∞

sup
x>γ E τ(t)

P(S′(t)− E(S′(t)) > x)

Eτ(t)F (x)
6 βEZ1. (11)

Combining (11) and λ′(t) = EZ1E τ(t) we have (8), then the proof of Theorem 19 is

completed. �
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§5. Proofs

5.1 The Proof of Theorem 15

Proof We modify the proof of Theorem 15 in [4]. At first, we estimate the lower

bound. For any λ > 1,

P
(
Sn −

∑
16k6n

µk > x
)

> P
(
Sn −

∑
16k6n

µk > x, max
16j6n

Xj > λx
)

>
∑

16j6n
P
(
Sn −

∑
16k6n

µk> x,Xj> λx
)
−

∑
16j<l6n

P
(
Sn −

∑
16k6n

µk> x,Xj> λx,Xl> λx
)

>
∑

16j6n
P
(
Sn −Xj −

∑
16k6n

µk > (1− λ)x,Xj > λx
)
−
( ∑

16j6n
F j(λx)

)2
>

∑
16j6n

F j(λx)
(

1−
∑

j6k6n
F k(λx)

)
−

∑
16j6n

P
(
S(j)
n −

∑
16k6n

µk 6 (1− λ)x
)
, (12)

where S
(j)
n =

∑
16k 6=j6n

Xk. Here we use the NA r.v.’s property (see Property P1 and P2

of [11]) in the second inequality, use an elementary inequality P(AB) > P(B)− P(Ac) for

all events A and B in the third inequality. For any δ1 > 0, using Assumption (A), for all

large x and for all k, k > 1, we have that

(1− δ1)αF (x) 6 F k(x) 6 (1 + δ1)β F (x). (13)

We estimate the second term in (12), for all large x, x > X0, we have

P
(
S(j)
n −

∑
16k6n

µk 6 (1− λ)x
)
6 P

( ∑
16k 6=j6n

(µk −Xk) > (λ− 1)x/2
)
.

By NA r.v.’s property (see [14] and Definition 2.3 of [11]), the r.v.’s {µk −Xk, k > 1} are

still NA. Then for arbitrarily fixed γ > 0 and p > γF , by Lemma 5 there exist positive

constants υ0 and C irrespective to x and n such that the inequality

P
( ∑

16k 6=j6n
(µk −Xk) > (λ− 1)x/2

)
6

∑
16k 6=j6n

P(µk −Xk > (λ− 1)x/(2υ0)) + Cx−p

6
∑

16k6n
Fk(−(λ− 1)x/(4υ0)) + Cx−p

holds for all x > γn and n > 1. Using the fact that {Xn, n > 1} be non-negative r.v.’s

and Lemma 7, we know that

P
(
S(j)
n −

∑
16k6n

µk 6 (1− λ)x
)

= o(F (λx)). (14)
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Plugging (13) and (14) into (12) yields that

P
(
Sn −

∑
16k6n

µk > x
)
> (1− δ1)αnF (λx)(1− (1 + δ1)βnF (λx))− δ1(nF (λx)).

Let δ1 ↓ 0, we have

lim inf
n→∞

inf
x>γn

P
(
Sn −

∑
16k6n

µk > x
)
/(nF (λx)) > lim inf

n→∞
inf
x>γn

α(1− βnF (λx)).

Hence, we have

lim inf
n→∞

inf
x>γn

P
(
Sn −

∑
16k6n

µk > x
)
/(nF (x))

>
(

lim inf
n→∞

inf
x>γn

α(1− βnF (λx))
)

lim inf
x→∞

F (λx)/F (x) = α lim inf
x→∞

F (λx)/F (x).

Here, we use nF (λx)→ 0, as n→∞, holds uniformly for x > γn in the inequality. Since

F ∈ C and λ > 1 is arbitrary, we can conclude that

lim inf
n→∞

inf
x>γn

P
(
Sn −

∑
16k6n

µk > x
)
/(nF (x)) > α lim

λ↘1
lim inf
x→∞

F (λx)/F (x) = α. (15)

Now we start to estimate the upper bound. For any θ ∈ (0, 1), we define

X̃k := XkI(Xk6θx) for k > 1, S̃n :=
∑

16k6n
X̃k and x̃ := x+

∑
16k6n

µk.

By a standard truncation argument, we can show that

P
(
Sn −

∑
16k6n

µk > x
)
6 P

(
max
16k6n

Xk > θx
)

+ P
(

max
16k6n

Xk 6 θx, Sn −
∑

16k6n
µk > x

)
6

∑
16k6n

P(Xk > θx) + P(S̃n > x̃). (16)

Applying (13) to the first term in (16), we can conclude that, for any δ2 > 0,

P
(
Sn −

∑
16k6n

µk > x
)
6

∑
16k6n

F k(θx) + P(S̃n > x̃)

6 (1 + δ2)βnF (θx) + P(S̃n > x̃). (17)

We estimate the second term in (17). Let a = {− log(nF (θx)), 1}, which tends to∞ holds

uniformly for x > γn. For arbitrarily fixed h = h(x, n) > 0, we have

P(S̃n > x̃)/(nF (θx)) 6 e−hx̃+a E ehS̃n 6 exp
{ ∑

16k6n

∫ θx

0
(eht − 1) dFk(t)− hx̃+ a

}
. (18)
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Here we use the property of NA r.v.’s (see Property P2 and P6 of [11]) in the second

inequality. The value of h above will be specified later. We split the integral on the right-

hand side of (18) into two terms, and applying an inequality ex − 1 6 xex for all x, we

obtain that for every k > 1,∫ θx

0
(eht − 1) dFk(t) =

∫ θx/a2

0
(eht − 1) dFk(t) +

∫ θx

θx/a2
(eht − 1) dFk(t)

6 ehθx/a
2

∫ θx/a2

0
htdFk(t) + ehθx F k(θx/a

2)

6 hµke
hθx/a2 + ehθx F k(θx/a

2). (19)

Plugging (19) into (18) yields that, for all large n, for any δ3 > 0 and for any δ4 > 0, we

have

P(S̃n > x̃)

nF (θx)
6 exp

{
h
∑

16k6n
µke

hθx/a2 + ehθx
∑

16k6n
F k(θx/a

2)− hx̃+ a
}

6 exp
{
h
∑

16k6n
µk(e

hθx/a2 − 1) + (1 + δ3)βehθxnF (θx/a2)− hx+ a
}

6 exp
{

(1 + δ4)hnµ(ehθx/a
2 − 1) + (1 + δ3)βBa

2ρehθxnF (θx)− hx+ a
}
. (20)

Here we use (3) in the second inequality, and use Assumption (B) and Lemma 8 in the

third inequality. Let h = (a − 2ρ log a)/(θx) in (20), we obtain that, for all large n, for

any δ5 > 0,

P(S̃n > x̃)/(nF (θx)) 6 exp
{

(1 + δ4)nhµ(ea
−1− 1) + (1 + δ3)βB − (a− 2ρ log a)θ−1 + a

}
6 e(1+δ3)Bβ exp{(1− θ−1 + (1 + δ4)δ5)a}. (21)

Let δ2 ↓ 0, δ3 ↓ 0, δ4 ↓ 0, δ5 ↓ 0, combining (21) with (17) we have

lim sup
n→∞

sup
x>γn

P
(
Sn−

∑
16k6n

µk > x
)
/(nF (θx)) 6 β+lim sup

n→∞
sup
x>γn

P(S̃n > x̃)/(nF (θx)) = β.

Since F ∈ C and the arbitrariness of θ ∈ (0, 1) we obtain that

lim sup
n→∞

sup
x>γn

P
(
Sn −

n∑
k=1

µk > x
)

nF (x)
= lim

θ↗1
lim sup
n→∞

sup
x>γn

(P
(
Sn −

n∑
k=1

µk > x
)

nF (θx)

F (θx)

F (x)

)
6 β.

(22)

The result (4) follows from (15) and (22). �
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5.2 The Proof of Theorem 16

Proof By Lemma 9 with ζ(t) = N(t)/λ(t), we can easily see that Assumption I

implies

N(t)/λ(t)
P→ 1. (23)

By the same approach as used in the proof of Lemma 4.2 of [2] and Theorem 4.1 of [4] we

know that, for any δ > 0, we have

P(S(t)− E(S(t)) > x)

=
∑
n>0

P(N(t) = n)P(Sn − E(S(t)) > x)

=
( ∑
n6(1+δ)λ(t)

+
∑

n>(1+δ)λ(t)

)
P(N(t) = n)P(Sn − E(S(t)) > x). (24)

First, we estimate the first term in (24), clearly,∑
n6(1+δ)λ(t)

P(N(t) = n)P(Sn − E(S(t)) > x)

=
∑

|n−λ(t)|<ε(t)λ(t)
+

∑
n−λ(t)<−ε(t)λ(t)

+
∑

ε(t)λ(t)<n−λ(t)<δλ(t)

=: K1 +K2 +K3. (25)

Here ε(t) is a positive function, such that ε(t) → 0 as t → ∞. By Lemma 12 and

Assumption (B), we know that, for any δ6 > 0, t→∞,

(1− δ6)λ(t)µ 6 ES(t) 6 (1 + δ6)λ(t)µ.

Start with the estimation of K1, for any δ7 > 0,

K1 6
∑

|n−λ(t)|<ε(t)λ(t)
P(N(t) = n)P(Sn − E(Sn) > x− (1 + δ6)nµ+ (1− δ6)µλ(t))

6
∑

|n−λ(t)|<ε(t)λ(t)
P(N(t) = n)P(Sn − E(Sn) > x− ε(t)λ(t)µ− δ6(n+ λ(t))µ)

6 β(1 + δ7)(1 + ε(t))λ(t)F (x)
∑

|n−λ(t)|<ε(t)λ(t)
P(N(t) = n).

Here, in the last step, we use Theorem 15 and the fact

F (x− ε(t)λ(t)µ− δ6(n+ λ(t))µ) 6 β(1 + δ7)F (x).

for any fixed γ > 0, holds uniformly for x > γλ(t), as t → ∞, since F ∈ C . For any

δ8 > 0, by the same treatment we obtain the corresponding asymptotic lower bound as

K1 > (1− δ8)α(1− ε(t))λ(t)F (x)(1− o(1))
∑

|n−λ(t)|<ε(t)λ(t)
P(N(t) = n),
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for any fixed γ > 0, x > γλ(t), as t→∞. Furthermore, according to (23), we have∑
|n−λ(t)|<ε(t)λ(t)

P(N(t) = n) = P(|N(t)− λ(t)| < ε(t)λ(t))→ 1, as t→∞.

Thus, we can obtain

α 6 lim inf
t→∞

inf
x>γλ(t)

K1

λ(t)F (x)
6 lim sup

t→∞
sup

x>γλ(t)

K1

λ(t)F (x)
6 β. (26)

Next, we estimate K2, for any δ9, δ10 > 0,

K2 6 P
(
S[(1−ε(t))λ(t)] − E(S(t)) > x

) ∑
n−λ(t)<−ε(t)λ(t)

P(N(t) = n)

6 P
(
S[(1−ε(t))λ(t)] − ES[(1−ε(t))λ(t)] > x+ (1− δ9)λ(t)µ− (1 + δ9)[(1− ε(t))λ(t)]µ

)
× P(N(t)− λ(t) < −ε(t)λ(t))

6 δ10(1 + δ10)
2β[(1− ε(t))λ(t)]F (x) = o(λ(t)F (x)), (27)

where δ9, and δ10 are small enough. By the same approach as used in the proof of K2, we

know that

K3 = o(λ(t)F (x)). (28)

Plugging (26), (27) and (28) into (25) we can obtain for any fixed γ > 0,

α 6 lim inf
t→∞

inf
x>γλ(t)

∑
n6(1+δ)λ(t)

P(N(t) = n)P(Sn − E(S(t)) > x)

λ(t)F (x)

6 lim sup
t→∞

sup
x>γλ(t)

∑
n6(1+δ)λ(t)

P(N(t) = n)P(Sn − E(S(t)) > x)

λ(t)F (x)
6 β. (29)

for any fixed γ > 0, holds uniformly for x > γλ(t), as t→∞.

To complete the proof, it remains to estimate the second term in (24). We use Lemma

11 and set t = 1, yk = x/(2v), v > 1, y = x/v, v > 1
(
y > max

16k6n
{yk} for large x

)
, for any

δ11, δ12 > 0, we obtain

P(Sn > x) 6
∑

16k6n
P(Xk > yk) + exp

{
xy−1 − xy−1 ln

(
x
/[ n∑

k=1

∫ yk

0
udFk(u)

]
+ 1
)}

6
∑

16k6n
P(Xk > x/(2v)) + exp

{
v − v ln

( x

nµ(1 + δ11)

)}
6 (1 + δ12)βnF (x/(2v)) + ev(nµ(1 + δ11))

vx−v.

Hence, we have ∑
n>(1+δ)λ(t)

P(N(t) = n)P(Sn − E(S(t)) > x)
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6
∑

n>(1+δ)λ(t)

P(N(t) = n)P(Sn > x)

6 (1 + δ12)β F (x/(2v))
∑

n>(1+δ)λ(t)

nP(N(t) = n)

+ (eµ(1 + δ11))
vx−v

∑
n>(1+δ)λ(t)

nvP(N(t) = n)

=: J1 + J2. (30)

Firstly, we estimate J1. From Assumption I, we know that

∑
n>(1+δ)λ(t)

nP(N(t) = n) = o(λ(t)).

So, we have

J1 6 (1 + δ12)Bβ(2v)ρ F (x) o(λ(t)) = o(λ(t)F (x)). (31)

Here we have used the Lemma 8 in the first inequality. Where B is a positive number and

ρ > γF . Next, we estimate J2. Setting v in J2 equal to p, where p > γF > 1, we obtain

J2 = (eµ(1 + δ11))
px−p

∑
n>(1+δ)λ(t)

npP(N(t) = n)

= O(λ(t))(eµ(1 + δ11))px−p = o(λ(t)F (x)), (32)

where we use Assumption I in the second equality, and use Lemma 7 in the last equality.

Plugging (31), (32) into (30), we know that

∑
n>(1+δ)λ(t)

P(N(t) = n)P(Sn − E(S(t)) > x) = o(λ(t)F (x)). (33)

Plugging (29) and (33) into (24), we know that (5) holds. �
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[2] Klüppelberg C, Mikosch T. Large deviations of heavy-tailed random sums with applications in insur-

ance and finance [J]. J. Appl. Probab., 1997, 34(2): 293–308.

[3] Tang Q H, Su C, Jiang T, et al. Large deviations for heavy-tailed random sums in compound renewal

model [J]. Statist. Probab. Lett., 2001, 52(1): 91–100.

《
应
用
概
率
统
计
》
版
权
所
有



No. 4 YUAN L. L., et al.: Precise Large Deviations of Negatively Associated Random Variables 407

[4] Ng K W, Tang Q H, Yan J A, et al. Precise large deviations for sums of random variables with

consistently varying tails [J]. J. Appl. Probab., 2004, 41(1): 93–107.

[5] Kaas R, Tang Q H. A large deviation result for aggregate claims with dependent claim occurrences [J].

Insurance Math. Econom., 2005, 36(3): 251–259.

[6] Tang Q H. Insensitivity to negative dependence of the asymptotic behavior of precise large deviation-

s [J]. Electron. J. Probab., 2006, 11(4): 107–120.

[7] Tang Q H. Insensitivity to negative dependence of asymptotic tail probabilities of sums and maxima

of sums [J]. Stoch. Anal. Appl., 2008, 26(3): 435–450.

[8] He W, Cheng D Y, Wang Y B. Asymptotic lower bounds of precise large deviations with nonnegative

and dependent random variables [J]. Statist. Probab. Lett., 2013, 83(1): 331–338.

[9] Lu D W, Song L X, Xu Y. Precise large deviations for sums of independent random variables with

consistently varying tails [J]. Comm. Statist. Theory Methods, 2014, 43(1): 28–43.

[10] Ebrahimi N, Ghosh M. Multivariate negative dependence [J]. Comm. Statist. Theory Methods, 1981,

10(4): 307–337.

[11] Joag-Dev K, Proschan F. Negative association of random variables with applications [J]. Ann. Statist.,

1983, 11(1): 286–295.

[12] Fuk D k, Nagaev S V. Probability inequalities for sums of independent random variables [J]. Theory

Probab. Appl., 1971, 16(4): 643–660.
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