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§1. Introduction

Stochastic differential equations can be found in many applications in such areas as

economics, biology, finance, ecology and other sciences [1–3]. In recent years, stochastic

partial differential equations in a separable Hilbert space have been studied by many

authors and various results on the existence, uniqueness and the asymptotic behavior of

the solutions have been established (e.g., [4–8]).

The purpose of this paper is to discuss by energy method (that is, the method by

energy equality) the existence and uniqueness of the energy solutions to the stochastic

age-dependent population equations:

dtP = −∂P
∂a

dt− µ(t, a)Pdt+ f(t, P )dt+ g(t, P )dW (t) +

∫
Z
h(t, P, z)Ñ(dt,dz),

in J = (0, A)× (0, T );

P (0, a) = P0(a), in [0, A];

P (t, 0) =

∫ A

0
β(t, a)P (t, a)da, in [0, T ],

(1)
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where P (t, a) denotes the population density of age a at time t, β(t, a) denotes the fertility

rate of females of age a at time t, µ(t, a) denotes the mortality rate of age a at time t.

f(t, P )+g(t, P ) dW (t)/dt+
∫
Z h(t, P, z)Ñ(dt,dz)/dt is the effects of external environment

for population system, such as emigration, earthquake and so on. dtP is the differential

of P relative to t, i.e., dtP = (∂P/∂t) dt.

Recently, the stochastic population equations have received a great deal of attention.

For example, Wang and Wang [9] gave the convergence of the semi-implicit Euler method

for stochastic age-dependent population equations with Poisson jumps. Li et al. [10] studied

the convergence of numerical solutions to stochastic age-dependent population equations

with Markovian switching. Ma et al. [11] investigated numerical analysis for stochastic

age-dependent population equations with fractional Brownian motion and the asymptotic

stability of stochastic age-dependent population equations with Markovian switching in

[12]. Zhang et al. [13] showed the existence, uniqueness and exponential stability of the

solutions for stochastic age-dependent population. For the case where f , g and h satisfy the

global Lipschitz condition and the coercivity condition, many results are known. However

this global Lipschitz condition is seemed to be considerably strong when one discusses

variable applications in real world.

We are concerned with stochastic age-dependent population equations with Poisson

jump for the case where f , g and h do not necessarily satisfy the global Lipschitz condition.

Thus we discuss the existence and uniqueness of weak solutions to stochastic age-dependent

population equations with Poisson jump (1) with the condition proposed by the author [6, 7].

This condition was investigated by [14], [15] and the others as non-Lipschitz condition.

So in this paper we consider the existence and uniqueness of weak solutions for the case

where f , g and h satisfy the local non-Lipschitz condition of this type for the end of wider

applications.

The contents of this paper are as follows. In Section 2 the preliminaries are given. In

Section 3 the existence and uniqueness of the local energy solutions are discussed.

§2. Preliminaries

Let

V = H1([0, A])

≡
{
ϕ
∣∣∣ϕ ∈ L2([0, A]),

∂ϕ

∂a
∈ L2([0, A]), where

∂ϕ

∂a
is generalized partial derivative

}
.

V is a Sobolev space. H = L2([0, A]) such that V ↪→ H ≡ H∗ ↪→ V ∗. V ∗ is the dual space

of V . We denote by ‖ · ‖, | · | and ‖ · ‖∗ the norms in V , H and V ∗ respectively; by 〈·, ·〉
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the duality product between V , V ∗, and by (·, ·) the scalar product in H.

Let W (t) be a Wiener process defined on complete probability space (Ω,F ,P) and

taking its values in the separable Hilbert space K, with increment covariance operator

Q. Let {Ft}t>0 be the σ-algebra generated by {W (s), 0 6 s 6 t}, then W (t) is a mar-

tingale relative to (Ft)t>0 and we have the following representation of W (t): W (t) =
∞∑
i=1

√
λiβi(t)ei, where {ei}i>1 is an orthonormal set of eigenvectors of Q, βi(t) are mutually

independent real Wiener processes with incremental covariance λi > 0, Qei = λiei and

trQ =
∞∑
i=1

λi (tr denotes the trace of an operator). For an operator G ∈ L (K,H) be the

space of all bounded linear operators from K into H, we denote by ‖G‖2 its denotes the

Hilbert-Schmidt norm, i.e. ‖G‖22 = tr(GQGT).

Let C = C([0, T ];H) be the space of all continuous function from [0, T ] into H with

sup-norm ‖ψ‖C = sup
06s6T

|ψ(s)|, LpV = Lp([0, T ];V ) and LpH = Lp([0, T ];H).

Let p = (p(t)), t ∈ Dp be a stationary Ft-Poisson point process with characteristic

measure λ. Denote by N(dt,dz) the Poisson counting measure associated with p, i.e.,

N(t, Z) =
∑

s∈Dp,s6t
IZ(p(s)) with measurable set Z ∈ B(Z − {0}) which denotes the Borel

σ-field of Z − {0}. Let Ñ(dt,dz) := N(dt,dz) − dtλ(dz) be the compensated Poisson

measure which is independent of W (t).

Let f(t, ·) : L2
H → H, g(t, ·) : L2

H → L (K,H) and h(t, ·, ·) : L2
H ×Z → H be a family

of nonlinear operators, Ft-measurable almost surely in t.

Moreover, we impose the following conditions:

(H1) µ(t, a), β(t, a) are nonnegative measurable, and0 6 µ0 6 µ(t, a) <∞ in J,

0 6 β(t, a) 6 β <∞ in J.

(H2) (i) (The growth condition) there exists a function H(t, r) : R+ × R+ → R+ such

that H(t, r) is locally integrable in t > 0 for any fixed r > 0, and is continuous

monotone nondecreasing and concave in r for any fixed t ∈ [0, T ]. Furthermore,

for any fixed t ∈ [0, T ] and u ∈ C, the following inequality is satisfied:

|f(t, u)|2 + ‖g(t, u)‖22 +

∫
Z
|h(t, u, z)|2λ(dz) 6 H(t, ‖u‖2C), t ∈ [0, T ];

(ii) for any constant γ > 0, the differential equation, dθ/dt = γH(t, θ), t ∈ [0, T ],

has a solution θ(t) = θ(t; 0, θ0) on [0, T ] for any initial value θ0.

(H3) (i) (The local condition) for any integer N > 0 there exists a function GN : R+ ×
R+ → R+ such that GN (t, r) is locally integrable in t ∈ [0, T ] for any fixed r > 0
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and is continuous, monotone nondecreasing and concave in r with GN (t, 0) =

0. Furthermore, the following inequality is satisfied: for any u, v ∈ C with

|u|, |v| 6 N ,

|f(t, u)− f(t, v)|2 + ‖g(t, u)− g(t, v)‖22 +

∫
Z
|h(t, u, z)− h(t, v, z)|2λ(dz)

6 GN (t, ‖u− v‖2C), t ∈ [0, T ];

(ii) for any constant γ > 0, if a nonnegative function z(t) satisfies that

z(t) 6 γ
∫ t

0
GN (s, z(s))ds,

for all t ∈ [0, T ], then z(t) ≡ 0 holds for any t ∈ [0, T ].

(H4) (i) (The global condition) there exists a function G(t, r) : R+×R+ → R+ such that

G(t, r) is locally integrable in t ∈ [0, T ] for any fixed r > 0 and is continuous,

monotone nondecreasing and concave in r for any fixed t ∈ [0, T ]. G(t, 0) = 0

for any fixed t ∈ [0, T ]. Furthermore, the following inequality is satisfied: for

any u, v ∈ C,

|f(t, u)− f(t, v)|2 + ‖g(t, u)− g(t, v)‖22 +

∫
Z
|h(t, u, z)− h(t, v, z)|2λ(dz)

6 G(t, ‖u− v‖2C), t ∈ [0, T ];

(ii) for any constant γ > 0, if a nonnegative function z(t) satisfies that

z(t) 6 γ
∫ t

0
G(s, z(s))ds,

for all t ∈ [0, T ], then z(t) ≡ 0 holds for any t ∈ [0, T ].

Remark 1 (H3) (i) is a generalization of the following condition:

(i) (The local Lipschitz condition) for any fixed integer N > 0, there exists an LN > 0

such that for any u, v ∈ C with |u| 6 N and |v| 6 N ,

|f(t, u)− f(t, v)|2 + ‖g(t, u)− g(t, v)‖22 +

∫
Z
|h(t, u, z)− h(t, v, z)|2λ(dz)

6 LN‖u− v‖2C , t ∈ [0, T ].

(H4) (i) is a generalization of the following condition:

(i) (The global Lipschitz condition) there exists a constant L > 0 such that u, v ∈ C,

|f(t, u)− f(t, v)|2 + ‖g(t, u)− g(t, v)‖22 +

∫
Z
|h(t, u, z)− h(t, v, z)|2λ(dz)

6 L‖u− v‖2C , t ∈ [0, T ].
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Lemma 2 (See [8]) For any t > 0, there exists a constant c > 0 such that

E sup
06s6t

∣∣∣ ∫ s

0

∫
Z

[|h(l, P (l), z)
∣∣∣2 + 2(P (l), h(l, P (l), z))]Ñ(dl,dz)

6
1

4
E
[

sup
06s6t

|P (s)|2
]

+ cE

∫ t

0

∫
Z
|h(s, P (s), z)|2λ(dz)ds.

§3. Existence and Uniqueness of Energy Solutions

In this section we discuss the existence and uniqueness of energy solutions to the

stochastic age-dependent population equations with jumps (1) in a Hilbert space. First

we give the definition of the energy solution to (1).

Definition 3 An Ft-adapted stochastic process P (t) on the probability space (Ω,F ,

P) is called the energy solution to (1) if the following conditions are satisfied:

(i) P (t) ∈ I2(0, T ;V ) ∩ L2(Ω;C(0, T ;H));

(ii) the following equation holds in V ∗ almost surely,

P (t) = P0 −
∫ t

0

∂P (s)

∂a
ds−

∫ t

0
µ(s, a)P (s)ds+

∫ t

0
f(s, P (s))ds

+

∫ t

0
g(s, P (s))dW (s) +

∫ t

0

∫
Z
h(s, P, z)Ñ(ds, dz), in J ;

P (0, a) = P0(a), in [0, A];

P (t, 0) =

∫ A

0
β(t, a)P (s)da, in [0, T ],

where P (t) := P (t, a), P0 := P (0, a);

(iii) the following stochastic energy equality holds: for t ∈ [0, T ],

|P (t)|2 = |P0|2 + 2

∫ t

0

〈
− ∂P (s)

∂a
− µ(s, a)P (s), P (s)

〉
ds+ 2

∫ t

0
(P (s), f(s, P (s)))ds

+ 2

∫ t

0
(P (s), g(s, P (s))dW (s)) +

∫ t

0
‖g(s, P (s))‖22ds

+

∫ t

0

∫
Z

[|h(s, P (s), z)|2 + 2(P (s), h(s, P (s), z))]Ñ(ds, dz). (2)

When the coefficients f and g (i.e. h ≡ 0) of (1) satisfy the global Lipschitz condition,

Zhang et al. [13] proved the existence and uniqueness of the energy solution to (1). So using

the similar method as by [13], we have the following theorem for (1) of which the coefficients

f , g and h satisfy global non-Lipschitz condition.
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Theorem 4 Assume that conditions (H1) and (H4) are satisfied. Then there exists

a unique energy solution P (t) to (1).

We are in position to prove the main theorem in this paper.

Theorem 5 Assume that conditions (H1)–(H3) are satisfied. Then there exists a

unique energy solution P (t) to (1).

Proof Let N be a natural integer and let T0 ∈ (0, (1/4) ∧ (1/(4|Aβ2 − 2µ0|)) ∧ T ).

We define the sequence of the functions {fN (t, u)}, {gN (t, u)} and {hN (t, u, z)} for (t, u) ∈
[0, T0]× C as follows:

fN (t, u) =

f(t, u), if |u| 6 N ;

f(t,Nu/|u|), if |u| > N,

gN (t, u) =

g(t, u), if |u| 6 N ;

g(t,Nu/|u|), if |u| > N,

hN (t, u, z) =

h(t, u, z), if |u| 6 N ;

h(t,Nu/|u|, z), if |u| > N.

Then the functions {fN (t, u)}, {gN (t, u)} and hN (t, u, z) for u, v ∈ C, t ∈ [0, T0]

satisfy (H2) and the following inequality

|fN (t, u)− fN (t, v)|2 + ‖gN (t, u)− gN (t, v)‖22 +

∫
Z
|hN (t, u, z)− hN (t, v, z)|2λ(dz)

6 GN (t, ‖u− v‖2C).

Thus by Theorem 4 there exist the unique energy solutions PN (t) and PN+1(t), re-

spectively to the following stochastic age-dependent population equations:

P (t) = P0 −
∫ t

0

∂P (s)

∂a
ds−

∫ t

0
µ(s, a)P (s)ds+

∫ t

0
fN (s, P (s))ds

+

∫ t

0
gN (s, P (s))dW (s) +

∫ t

0

∫
Z
hN (s, P (s), z)Ñ(ds, dz),

P (t) = P0 −
∫ t

0

∂P (s)

∂a
ds−

∫ t

0
µ(s, a)P (s)ds+

∫ t

0
fN+1(s, P (s))ds

+

∫ t

0
gN+1(s, P (s))dW (s) +

∫ t

0

∫
Z
hN+1(s, P (s), z)Ñ(ds, dz).

Define the stopping times σN := T0 ∧ inf{t ∈ [0, T ] : |PN (t)| > N}, σN+1 := T0 ∧ inf{t ∈
[0, T ] : |PN+1(t)| > N + 1}, τN := σN ∧ σN+1. By the energy equality

|PN+1(t)− PN (t)|2
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= 2

∫ t

0

〈
PN+1(s)− PN (s),−∂PN+1(s)

∂a
+
∂PN (s)

∂a
− µ(s, a)(PN+1(s)− PN (s))

〉
ds

+ 2

∫ t

0
〈PN+1(s)− PN (s), fN+1(s, PN+1(s))− fN (s, PN (s))〉ds

+ 2

∫ t

0
〈PN+1(s)− PN (s), gN+1(s, PN+1(s))− gN (s, PN (s))〉dW (s)

+

∫ t

0
‖gN+1(s, PN+1(s))− gN (s, PN (s))‖22ds

+

∫ t

0

∫
Z

[
|hN+1(s, PN+1(s), z)− hN (s, PN (s), z)|2

+ 2(PN+1(s)− PN (s), hN+1(s, PN+1(s), z)− hN (s, PN (s), z))
]
Ñ(ds, dz)

6 − 2

∫ t

0

〈
PN+1(s)− PN (s),

∂(PN+1(s)− PN (s))

∂a

〉
ds− 2µ0

∫ t

0
|PN+1(s)− PN (s)|2ds

+ 2

∫ t

0
〈PN+1(s)− PN (s), fN+1(s, PN+1(s))− fN (s, PN (s))〉ds

+

∫ t

0
‖gN+1(s, PN+1(s))− gN (s, PN (s))‖22ds

+ 2

∫ t

0
〈PN+1(s)− PN (s), gN+1(s, PN+1(s))− gN (s, PN (s))〉dW (s)

+

∫ t

0

∫
Z

[
|hN+1(s, PN+1(s), z)− hN (s, PN (s), z)|2

+ 2(PN+1(s)− PN (s), hN+1(s, PN+1(s), z)− hN (s, PN (s), z))
]
Ñ(ds, dz).

Since

−
〈
PN+1(s)− PN (s),

∂(PN+1(s)− PN (s))

∂a

〉
= −

∫ A

0
(PN+1(s)− PN (s))da(PN+1(s)− PN (s)) =

1

2

(∫ A

0
β(t, a)(PN+1(s)− PN (s))da

)2
6

1

2

∫ A

0
β2(s, a)da

∫ A

0
(PN+1(s)− PN (s))2da 6

1

2
Aβ

2|PN+1(s)− PN (s)|2.

Therefore, we get that

|PN+1(t)− PN (t)|2

6 |Aβ2 − 2µ0|
∫ t

0
|PN+1(s)− PN (s)|2ds+

∫ t

0
‖gN+1(s, PN+1(s))− gN (s, PN (s))‖22ds

+ 2

∫ t

0
〈PN+1(s)− PN (s), fN+1(s, PN+1(s))− fN (s, PN (s))〉ds

+ 2

∫ t

0
〈PN+1(s)− PN (s), gN+1(s, PN+1(s))− gN (s, PN (s))〉dW (s)
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+

∫ t

0

∫
Z

[
|hN+1(s, PN+1(s), z)− hN (s, PN (s), z)|2

+ 2(PN+1(s)− PN (s), hN+1(s, PN+1(s), z)− hN (s, PN (s), z))
]
Ñ(ds, dz).

It holds that

2E
[

sup
06s6t∧τN

∫ s

0
〈PN+1(r)− PN (r), fN+1(r, PN+1(r))− fN (r, PN (r))〉dr

]
6 E

∫ t∧τN

0
|PN+1(s)− PN (s)|2ds+ E

∫ t∧τN

0
|fN+1(s, PN+1(s))− fN (s, PN (s))|2ds

6 TE
[

sup
06s6t∧τN

|PN+1(s)− PN (s)|2
]

+ E

∫ t∧τN

0
|fN+1(s, PN+1(s))− fN (s, PN (s))|2ds.

By the Burkholder-Davis-Gundy’s inequality, we have

2E
[

sup
06s6t∧τN

∣∣∣ ∫ s

0
〈PN+1(r)− PN (r), gN+1(r, PN+1(r))− gN (r, PN (r))〉dW (r)

∣∣∣]
6

1

4
E
[

sup
06s6t∧τN

|PN+1(s)− PN (s)|2
]

+ kE

∫ t∧τN

0
‖gN+1(s, PN+1(s))− gN (s, PN (s))‖22ds,

for some positive constant k > 0.

Applying Lemma 2, for any t > 0 and certain positive constant c we can yield that

E
[

sup
06s6t∧τN

∣∣∣ ∫ s

0

∫
Z

[
|hN+1(r, PN+1(r), z)− hN (r, PN (r), z)|2

+ 2(PN+1(r)− PN (r), hN+1(r, PN+1(r), z)− hN (r, PN (r), z))
]
Ñ(dr, dz)

∣∣∣]
6

1

4
E
[

sup
06s6t∧τN

|PN+1(s)− PN (s)|2
]

+ cE

∫ t∧τN

0

∫
Z
|hN+1(s, PN+1(s), z)− hN (s, PN (s), z)|2λ(dz)ds.

Hence

E
[

sup
06s6t∧τN

|PN+1(s)− PN (s)|2
]

6 |Aβ2 − 2µ0|E
∫ t∧τN

0
|PN+1(s)− PN (s)|2ds+

1

2
E
[

sup
06s6t∧τN

|PN+1(s)− PN (s)|2
]

+ (1 + k)E

∫ t∧τN

0
‖gN+1(s, PN+1(s))− gN (s, PN (s))‖22ds

+ E

∫ t∧τN

0
|fN+1(s, PN+1(s))− fN (s, PN (s))|2ds

+ cE

∫ t∧τN

0

∫
Z
|hN+1(s, PN+1(s), z)− hN (s, PN (s), z)|2λ(dz)ds.
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Then since for 0 6 s 6 τN , fN+1(s, PN (s)) = fN (s, PN (s)), gN+1(s, PN (s)) = gN (s,

PN (s)), hN+1(s, PN (s), z) = hN (s, PN (s), z), we have that

E
[

sup
06s6t∧τN

|PN+1(s)− PN (s)|2
]

6 |Aβ2 − 2µ0|E
∫ t∧τN

0
|PN+1(s)− PN (s)|2ds+

1

2
E
[

sup
06s6t∧τN

|PN+1(s)− PN (s)|2
]

+ (1 + k)E

∫ t∧τN

0
‖gN+1(s, PN+1(s))− gN+1(s, PN (s))‖22ds

+ E

∫ t∧τN

0
|fN+1(s, PN+1(s))− fN+1(s, PN (s))|2ds

+ cE

∫ t∧τN

0

∫
Z
|hN+1(s, PN+1(s), z)− hN+1(s, PN (s), z)|2λ(dz)ds.

Since T0 > 0 is given as a sufficiently small time as |Aβ2 − 2µ0|T < 1/4 and

|Aβ2 − 2µ0|E
∫ t∧τN

0
|PN+1(s)− PN (s)|2ds 6 1

4
E
[

sup
06s6t∧τN

|PN+1(s)− PN (s)|2
]
,

we get that

E
[

sup
06s6t

|PN+1(s ∧ τN )− PN (s ∧ τN )|2
]

6 4(1 + k)E

∫ t

0
‖gN+1(s ∧ τN , PN+1(s ∧ τN ))− gN+1(s ∧ τN , PN (s ∧ τN ))‖22ds

+ 4E

∫ t

0
|fN+1(s ∧ τN , PN+1(s ∧ τN ))− fN+1(s ∧ τN , PN (s ∧ τN ))|2ds

+ 4cE

∫ t

0

∫
Z
|hN+1(s ∧ τN , PN+1(s ∧ τN ), z)− hN+1(s ∧ τN , PN (s ∧ τN ), z)|2λ(dz)ds

6 4(2 + k + c)E

∫ t

0
GN+1(s ∧ τN , ‖PN+1(s ∧ τN )− PN (s ∧ τN )‖2C)ds.

Thus, there exists a γ > 0 such that

E
[

sup
06s6t

|PN+1(s ∧ τN )− PN (s ∧ τN )|2
]

6 γ
∫ t

0
GN+1

(
r ∧ τN ,E

[
sup

06r6s
|PN+1(r ∧ τN )− PN (r ∧ τN )|2

])
dr

for all t ∈ [0, T0], by (H3),

E
[

sup
06s6T∧τN

|PN+1(s)− PN (s)|2
]

= 0.

Therefore we obtain that PN+1(t) = PN (t) for 0 6 t 6 T0 ∧ τN , a.e. ω. For each ω ∈ Ω

there exists an N0(ω) > 0 such that 0 < T0 6 τN0 . Define P (t) by P (t) = PN0(t) for
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t ∈ [0, T0]. Since P (t ∧ τN ) = PN (t ∧ τN ), in V ∗ it holds that

P (t ∧ τN ) = P (0)−
∫ t∧τN

0

∂PN (s)

∂a
ds−

∫ t∧τN

0
µ(s, a)PN (s)ds+

∫ t∧τN

0
fN (s, PN (s))ds

+

∫ t∧τN

0
gN (s, PN (s))dW (s) +

∫ t∧τN

0

∫
Z
hN (s, PN (s), z)Ñ(dz)ds

= P0 −
∫ t∧τN

0

∂P (s)

∂a
ds−

∫ t∧τN

0
µ(s, a)P (s)ds+

∫ t∧τN

0
f(s, P (s))ds

+

∫ t∧τN

0
g(s, P (s))dW (s) +

∫ t∧τN

0

∫
Z
h(s, P (s), z)Ñ(dz)ds.

Letting N →∞, we have that in V ∗

P (t) = P0 −
∫ t

0

∂P (s)

∂a
ds−

∫ t

0
µ(s, a)P (s)ds+

∫ t

0
f(s, P (s))ds

+

∫ t

0
g(s, P (s))dW (s) +

∫ t

0

∫
Z
h(s, P (s), z)Ñ(dz)ds, t ∈ [0, T0].

The energy equation for P (t) holds as PN satisfies the energy equation. Thus we have

that P (t) is an energy solution to (1), which completes the proof of the theorem. �
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