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§1. Introduction and Main Results

Wang and Yang [1] present probabilistic meanings for a lot of numerical characteris-

tics of birth-death processes, such as returning probability, extinction probability. This

paper is devoted to considering the corresponding problems for the single birth processes

described as follows.

On a probability space (Ω,F ,P), consider a continuous-time, homogeneous and ir-

reducible Markov chain {X(t) : t > 0} with transition probability matrix P (t) = (pij(t))

and state space Z+ = {0, 1, 2, . . .}. We call {X(t) : t > 0} a single birth process if its
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density matrix Q = (qij : i, j ∈ Z+) has the following form

Q =


−q0 q01 0 0 0

q10 −q1 q12 0 0

q20 q21 −q2 q23 0

· · · · ·

 , (1)

where qi := −qii >
∑
j 6=i

qij , qi,i+1 > 0, qi,i+j = 0 for i ∈ Z+ and j > 2. The matrix in (1) is

called a single birth Q-matrix deduced by

pij(t) =

qijt+ o(t), if j < i or j = i+ 1;

1− qit+ o(t), if j = i

as t→ 0. Throughout the rest of the paper, we consider only totally stable and conserva-

tive single birth Q-matrix: qi = −qii =
∑
j 6=i

qij < ∞ for i ∈ Z+. Especially, if qij = 0 for

0 6 i 6 j − 2 and j > 2, then (1) is just a birth death Q-matrix.

Some notations are necessary before moving on. Define q
(k)
n =

k∑
j=0

qnj for 0 6 k < n

(k, n ∈ Z+) and

m0 =
1

q01
, mn =

1

qn,n+1

(
1 +

n−1∑
k=0

q(k)
n mk

)
, n > 1,

d0 = 0, dn =
1

qn,n+1

(
1 +

n−1∑
k=0

q(k)
n dk

)
, n > 1,

F (n)
n = 1, F (i)

n =
1

qn,n+1

n−1∑
k=i

q(k)
n F

(i)
k , 0 6 i < n.

Then the numerical characteristics defined below play important roles in studying single

birth processes:

R =
∞∑
n=0

mn, Zm =
∞∑

n=m
F (m)
n , d = sup

i>0

[ i−1∑
n=0

dn

/ i−1∑
n=0

F (0)
n

]
, S = sup

k>0

k∑
n=0

(F (0)
n d− dn).

To explain what the numerical characters might mean in probability, we introduce some

stoping times. Denote the first leaping time and the n-th jumping time by η and ηn

respectively, i.e.,

ηn = inf{t > ηn−1 : X(t) 6= X(ηn−1)}, n > 1; η = lim
n→∞

ηn,

where η0 ≡ 0. The first hitting time and the first returning time of the state i are defined

respectively as follows

τi = inf{t > 0 : X(t) = i}, σi = inf{t > η1 : X(t) = i}.
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Though these numerical characteristics may seem complex, they do have explicit

probabilistic meanings and make a positive contribution towards understanding the process

clearly. Let Pi(A) = P(A |X0 = i), i.e., the condition probability given {X0 = i} and

Ei1A = Pi(A) for some measurable set A. Then Zhang [2] proved that mn = Enτn+1, R =

E0η and pointed out that

P0(σ0 < η) = 1− 1

Z0
.

So R is the mean time of the first hitting ∞ of the single birth process with starting from

0 and P0(σ0 < η) = 1 once 1/Z0 =∞. In [3], we see that d = E1τ0, E0σ0 = 1/q01 + d and

Eiτ0 =
i−1∑
n=0

(F (0)
n d− dn), i > 1.

It is easy to see that S = sup
i>0

Eiτ0.

Based on the above results, the following explicit criteria for several classical problems

can be understood clearly (cf. [2, 4–7]).

The process is unique if and only if R =∞. Assume that the Q-matrix is irreducible

and regular. Then the process is recurrent if and only if Z0 = ∞. For the regular case,

the process is ergodic if and only if d <∞, and the process is strongly ergodic if and only

if S <∞.

Now we still need to study the probabilistic meanings of Zm and Zm,n defined as

Zm,n =
n−1∑
i=m

F
(m)
i , n > m > 0

with the convention that Zm,n =
n−1∑
i=m

F
(m)
i = 0 if m > n. It will be seen later that these

quantities are related to Pk(τm < τn), which is the probability of arriving at m along the

trajectory before reaching n with starting from k.

Before presenting our main results, we mention that if the single birth process is

ergodic, then the stationary distribution (πi) can be described as (cf. [8])

πk =
1

qk,k+1ck
, ck = sup

i>k

[ i−1∑
n=k

mn

/ i−1∑
n=k

F (k)
n

]
, k > 0. (2)

Moreover,

ck
i−1∑
n=k

F (k)
n = Ekτi + Eiτk, 0 6 k < i. (3)

It is easy to see that ck is the mean commute time between k and k+ 1. Now, we present

our main results as follows.

Theorem 1 Suppose that m < n. Then Pk(τn < τm) + Pk(τm < τn) = 1, and
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(i) for 0 6 k 6 n,

Pk(τn < τm) =
Zm,k

Zm,n
, Pk(τm < τn) = 1−

Zm,k

Zm,n
;

(ii) for k > n,

Pk(τm < τn) = Zn,kPn+1(τm < τn) +
Zn,kF

(m)
n

Zm,n
−
Zm,k

Zm,n
+ 1.

Moreover, if the process is ergodic, then

Pn+1(τm < τn) =
1

Zm,n

( cn
cm

+
1

qn,n+1

n−1∑
j=m+1

qnjZm,j

)
− q

(n−1)
n

qn,n+1
.

It is easy to see that Pk(τm < τn) = 1 and Pk(τn < τm) = 0 for 0 6 k 6 m,

Pn(τm < τn) = 0 and Pn(τn < τm) = 1.

As for Pk(σm < τn), it is obvious that Pk(σm < τn) = Pk(τm < τn) for k 6= m and

Pk(σn < τm) = Pk(τn < τm) for k 6= n. Moreover, we have the following theorem.

Theorem 2 Suppose that m < n.

(i) Suppose the single birth process is ergodic. Then

Pn(τm < σn) =
qn,n+1cn
qncmZm,n

, Pn(σn < τm) = 1− qn,n+1cn
qncmZm,n

.

(ii)

Pm(σm < τn) = 1− qm,m+1

qmZm,n
, Pm(τn < σm) =

qm,m+1

qmZm,n
,

and Pm(τm < σm) = 1, Pm(σm < τm) = 0.

Pk(σm < η) is the probability of reaching m along the trajectory through finitely

many jumps with starting from k. In particular, Pm(σm < η) is the probability, starting

from m, of returning to m along the trajectory through finitely many jumps after leaving

m, which is called a returning probability.

Corollary 3 For Pk(σm < η), we have

Pk(σm < η) =



1 if k < m;

1− qm,m+1

qmZm
if k = m;

1−
Zm,k

Zm
if k > m,

where we use the convention that 1/∞ = 0.
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In practical applications, Pk(σ0 < η) is called an extinction probability, i.e., the

probability that there exist k individuals initially but (through finitely many steps of

transition) they finally die out (namely reach the state 0). About extinction probability,

one may also refer to [9; Chapter 9] for the case m = 0 in Corollary 3.

§2. Proofs of the Main Results

Proof of Theorem 1 It is easy to see that Pk(τm < τn) = 1 and Pk(τn < τm) = 0

for 0 6 k 6 m. To prove the remainders, denote Pk(τm < τn) by pk. By the strong Markov

property of the process, for m < k 6= n, we have

pk =
qk,k+1

qk
pk+1 +

k−1∑
j=0

qkj
qk
pj .

Then by the conservative property of Q-matrix and pk = 1 for 0 6 k 6 m, it follows from

the above equality that

qk,k+1(pk − pk+1) =
k−1∑
i=m

q
(i)
k (pi − pi+1), m < k 6= n. (4)

Denote pi − pi+1 by vi for i > 0. So we have the difference equation

vk =
1

qk,k+1

k−1∑
i=m

q
(i)
k vi, m < k < n

with the boundary conditions pm = 1 and pn = 0. By the induction, it is seen that

vi = vm · F (m)
i , m 6 i < n. (5)

By definitions of vi and Zm,n, it is derived that

1 = pm − pn =
n−1∑
i=m

vi = vm
n−1∑
i=m

F
(m)
i = vm · Zm,n.

So vm = 1/Zm,n and vi = F
(m)
i /Zm,n(m 6 i < n). Therefore, it follows from pn = 0 that

pk = pk − pn =
n−1∑
i=k

vi =
( n−1∑

i=k

F
(m)
i

)/
Zm,n =

( n−1∑
i=m

F
(m)
i −

k−1∑
i=m

F
(m)
i

)/
Zm,n = 1−

Zm,k

Zm,n

for m < k < n. By the similar argument, one can prove the second part of the assertion (i).

Of course, it is followed immediately from the property of Pk(τm < τn) +Pk(τn < τm) = 1

too.
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To prove the assertion (ii), we will discuss firstly the relation between pn+1 and pk

with k > n+ 1. By (4) and (5), it is seen that

vk =
1

qk,k+1

( n−1∑
i=m

q
(i)
k F

(m)
i vm +

k−1∑
i=n

q
(i)
k vi

)
, k > n.

Then

F
(m)
k vm − vk =

1

qk,k+1

k−1∑
i=n

q
(i)
k (F

(m)
i vm − vi), k > n.

Define ui = F
(m)
i vm − vi (i > n). Thus, one obtains that

uk =
1

qk,k+1

k−1∑
i=n

q
(i)
k ui, k > n.

By the equalities above and the induction, it follows that ui = F
(n)
i un (i > n). Hence, one

deduces that

vi = F
(m)
i vm − ui = F

(m)
i vm − F (n)

i un = F
(m)
i vm − F (n)

i (F (m)
n vm − vn)

= (F
(m)
i − F (n)

i F (m)
n )vm + F

(n)
i vn, i > n.

Note that vn = pn − pn+1 = −pn+1. Furthermore, it is obtained that for k > n,

pk = pk − pn = −
k−1∑
i=n

vi =
k−1∑
i=n

(
(F

(n)
i F (m)

n − F (m)
i )vm + F

(n)
i pn+1

)
=
(
Zn,kF

(m)
n −

k−1∑
i=n

F
(m)
i

)/
Zm,n + Zn,kpn+1

= Zn,kpn+1 +
Zn,kF

(m)
n

Zm,n
−
Zm,k

Zm,n
+ 1.

By the similar argument or the property Pk(τm < τn) + Pk(τn < τm) = 1, one can prove

the second part of the assertion (ii).

Now it remains to show the assertion on the expression of pn+1. Using the strong

Markov property with Theorem 1, we have

Pn(τm < σn) =
qn,n+1

qn
pn+1 +

n−1∑
j=0

qnj
qn
pj

=
qn,n+1

qn
pn+1 +

q
(m)
n

qn
+

n−1∑
j=m+1

qnj
qn

(
1− Zm,j

Zm,n

)
=
qn,n+1

qn
pn+1 +

q
(n−1)
n

qn
−

n−1∑
j=m+1

qnj
qn
· Zm,j

Zm,n
.

Combining the above equality with the assertion (i) in Theorem 2, which needs only some

simple calculations, the required assertion holds immediately. �

Before proving Theorem 2, we introduce the following result (refer to [10]).
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Proposition 4 Given an ergodic Markov chain {X(t) : t > 0} with the stationary

distribution (πi). Then for j 6= i, we have

Pi(τj < σi) =
1

qiπi(Eiτj + Ejτi)
.

Proof of Theorem 2 The assertion (i) follows directly from (2), (3) and Propo-

sition 4 by some simple calculations. By the strong Markov property and the assertion

below Theorem 1, it turns out that

Pm(τn < σm) =
m−1∑
j=0

qmj

qm
Pj(τn < τm) +

qm,m+1

qm
Pm+1(τn < τm)

=
qm,m+1

qm
Pm+1(τn < τm)

=


qm,m+1

qm
=

qm,m+1

qmZm,m+1
if n = m+ 1

qm,m+1Zm,m+1

qmZm,n
=
qm,m+1

qmZm,n
if n > m+ 1

=
qm,m+1

qmZm,n
.

The remainders of the assertion (ii) are easily obtained. �

Remark 5 By induction, it is not difficult to obtain that F
(n)
i F

(m)
n 6 F (m)

i , i > n >

m. Further, we get the following inequality: Zm,n 6 Zm,k − Zn,kF
(m)
n , m < n < k. Hence,

it follows that ZnF
(m)
n 6 Zm −Zm,n, m < n. In particular, we see that ZnF

(0)
n 6 Z0 −Z0,n

for all n > 0.

Proof of Corollary 3 Note that τn ↑ η as n → ∞ almost surely with respect to

Pk. Hence Pk(τm < τn) ↑ Pk(σm < η) as n → ∞ for k 6= m. Combining these facts with

the assertions proved above, one gets easily the first and the third parts of the assertion.

By the strong Markov property and argument above, it is seen that

Pm(σm < η) =
m−1∑
j=0

qmj

qm
Pj(σm < η) +

qm,m+1

qm
Pm+1(σm < η)

=
q

(m−1)
m

qm
+
qm,m+1

qm

(
1− Zm,m+1

Zm

)
= 1− qm,m+1

qmZm
.

In the last equality, we use the fact that Zm,m+1 = F
(m)
m = 1. �
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§3. Examples

The first example is about the birth-death process which is a special class of single

birth processes.

Example 6 For birth-death processes with birth rate ai and death rate bi at i, denoted

by (ai, bi). We have these important quantities with simple forms, as follows

mn = µ[0, n]νn, dn = µ[1, n]νn, F (m)
n =

νn
νm

, n > m > 0,

where µ[i, k] =
k∑

j=i
µj with {µi} is the invariant measure having the following form

µ0 = 1, µi =
b0b1 · · · bi−1

a1a2 · · · ai
(i > 1);

and νi is another measure related to the recurrence of the process with νi = 1/µibi (i > 0).

In the following, we always let ν[i, k] denote the term
k∑

j=i
νj and ν[i,∞) :=

∞∑
j=i

νj for some

measure.

For the process we have the following results, which can also refer to [1].

Corollary 7 Suppose that m < n. For birth-death processes, we have

(i) Pk(τm < τn) = 1 and Pk(τn < τm) = 0 for all 0 6 k 6 m; Pk(τm < τn) = 0 and

Pk(τn < τm) = 1 for all k > n;

(ii) For m < k < n,

Pk(τn < τm) =
νi[m, k − 1]

νi[m,n− 1]
, Pk(τm < τn) =

νi[k, n− 1]

νi[m,n− 1]
;

(iii) Pm(τm < σm) = 1, Pm(σm < τm) = 0 and

Pm(τn < σm) =
1

(am + bm)µmν[m,n− 1]
= 1− Pm(σm < τn);

(iv)

Pn(τm < σn) =
1

(an + bn)µnν[m,n− 1]
= 1− Pn(σn < τm);

(v)

Pk(σm < η) =



1 if k < m

1− 1

µm(am + bm)ν[m,∞)
if k = m

1− ν[m, k − 1]

ν[m,∞)
if k > m

in convention that 1/∞ = 0.
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Proof By Theorems 1, 2 and Corollary 3, all the assertions are derived directly

except the assertion (iv), which is proven as follows. By the strong Markov property and

the assertion (i) as well as (ii), we have

Pn(τm < σn) =
bn

an + bn
Pn+1(τm < τn) +

an
an + bn

Pn−1(τm < τn)

=
an

an + bn
Pn−1(τm < τn)

=


an

an + bn
if m = n− 1

anνn−1

/[
(an + bn)

n−1∑
i=m

νi

]
if m < n− 1

= 1
/[

(an + bn)µn
n−1∑
i=m

νi

]
.

The proof is finished. �

Especially, the extinction probability

Pk(σ0 < η) = 1−
k−1∑
n=0

νn

/ ∞∑
n=0

νn, k > 1.

The following example is an extension of the one in [8] or [11].

Example 8 Let qn,n+1 = 1 for all n > 0, q10 = b, qn,n−1 = b− a, qn,n−2 = a for all

n > 2 and qij = 0 for other i 6= j, where a and b are constants satisfying b > a > 0.

By computing, we know that {F (k)
n }n>k are generalized Fibonacci numbers for every

k.

F
(k)
k+n =

pn+1 − qn+1

p− q
, n > 0, k > 0,

where p = (b+
√
b2 + 4a)/2 and q = (b−

√
b2 + 4a)/2. Note that p > b and −1 < q < 0.

Now

Zm,n =


1

p− q

(pn−m+1 − p
p− 1

− qn−m+1 − q
q − 1

)
if p 6= 1;

n−m
1− q

+
qn−m+1 − q

(1− q)2
if p = 1,

mn =


1

p− q

(pn+2 − p
p− 1

− qn+2 − q
q − 1

)
if p 6= 1;

n+ 1

1− q
+
qn+2 − q
(1− q)2

if p = 1,

and

dn =


1

p− q

(pn+1 − p
p− 1

− qn+1 − q
q − 1

)
if p 6= 1;

n

1− q
+
qn+1 − q
(1− q)2

if p = 1.
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Hence, it turns out that R =
∞∑
n=0

mn = ∞, i.e., the process is always unique for all

b > a > 0. Moreover, we get that

Zm =


∞ if p > 1;

1

p− q

( p

1− p
+

q

q − 1

)
if p < 1.

Thus, when p > 1 (equivalently, a+ b > 1), we have Z0 =∞, the process is recurrent and

Pk(σm < η) = 1 for all k > 0. When p < 1 (equivalently, a+ b < 1), we have Z0 <∞ and

the process is transient,

Pk(σm < η) =



1 if k < m;

a+ b if k = m = 0;

1− (1− p)(1− q)
1 + b

if k = m > 0;

1− p(1− q)(1− pk−m)− (1− p)q(1− qk−m)

p− q
if k > m.

Moreover, for p 6= 1, we get that

Pk(τn < τm) =
pq(pk−m − qk−m)− pk−m+1 + qk−m+1) + p− q
pq(pn−m − qn−m)− pn−m+1 + qn−m+1 + p− q

, m < k < n;

P0(τn < σ0) =
(p− q)(p− 1)(q − 1)

pq(pn − qn)− pn+1 + qn+1 + p− q
, 0 < n;

Pm(τn < σm) =
(p− q)(p− 1)(q − 1)

(1 + b)(pq(pn−m − qn−m)− pn−m+1 + qn−m+1 + p− q)
, 1 6 m < n,

for p = 1, one obtains that

Pk(τn < τm) =
k −m− (k −m+ 1)q + qk−m+1

n−m− (n−m+ 1)q + qn−m+1
, m < k < n;

P0(τn < σ0) =
(1− q)2

n−m− (n−m+ 1)q + qn−m+1
, 0 < n;

Pm(τn < σm) =
(1− q)2

(1 + b)(n−m− (n−m+ 1)q + qn−m+1)
, 1 6 m < n.

By the way, when p = 1, the process is null recurrent because d =∞.
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