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Abstract: Besides the claims data in the past, certain assumptions about the distribution

of claims Xi (i = 1, 2, . . . , n) are required to derive the credibility premium in the classical theory.

In the paper, the credibility premium can be calculated via the maximum entropy method if we

know nothing about the distribution of claims Xi (i = 1, 2, . . . , n). Furthermore, two corollaries are

obtained under certain assumptions, that is, new claims have more weight than the old ones and the

classical credibility formula is a special case of the credibility premium derived in the present paper.

Finally, the simulation study is presented to illustrate that the credibility premium in the present

paper is better than other models if the mean square error is taken as the evaluation criterion.
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§1. Introduction

In the actuarial field, credibility theory is an empirical model used to calculate the

premium. Given risk and data of claims in the past, actuaries can compute the feasible

premium by applying credibility theory.

Bühlmann [1] proposed the argument that credibility premium should be a weight-

ed average of individual premium and collective premium, i.e., Pc = ZX + (1 − Z)µ,

where X =
( n∑
i=1

Xi

)
/n, µ is the collective premium and Z = nτ2/(nτ2 + σ2) with σ2 =

E[Var (Xi | θ)], τ2 = Var [E(Xi | θ)], µ(θ) = E(Xi | θ). The dominant advantage of credibil-

ity premium formula outweighing Bayes premium is that we can calculate premium by

credibility formula even if we do not know the distribution of Xi. Based on the classical

Bühlmann model, Bühlmann and Straub [2] introduced natural weight ω, which extends

the Bühlmann model to a large extent.

∗The project was supported by National Natural Science Foundation of China (11361058).
?Corresponding author, E-mail: xjmath@xju.edu.cn.

Received August 8, 2014. Revised February 4, 2015.



464 Chinese Journal of Applied Probability and Statistics Vol. 32

It has been proved in bankruptcy theory the insurance companies must go bankrupt

if they only charge net premium, see [3] and [4]. A method to tackle this problem is

to replace the squared loss function in the classical credibility premium with other loss

functions. An extension to the credibility formula from the loss viewpoint was given by

Gómez-Déniz [5, 6]. He proposed the balanced square loss function,

L(δ, θ) = ω · h(θ) · (δ − δ0)2 + (1− ω) · h(θ) · (δ − θ)2,

where δ0 is chosen as a prior “target” estimator of θ, obtained for instance from the

criterion of maximum likelihood estimator, least squares, or unbiased among others. Then

he established the credibility theory for this loss function. In domestic, some scholars made

lots of contribution to this area. For instance, Wen and Wu [7] derived credibility formula

under the exponential premium principle, and Wen et al. [8] obtained the corresponding

results under balanced loss function and the similar results under a new type of generalized

weighted loss function by Wen and Mei [9].

Frees et al. [10] developed links between credibility theory and longitudinal (or panel)

data models. They demonstrated how longitudinal data models can be applied to the

credibility rate-making problem. The usual credibility models induces time dependence

among annual claim characteristics (such as number of accidents, associated costs, etc.)

via the sharing of common random effects, see [11,12] for more information. Wen et al. [13]

proved the Bühlmann credibility model with dependent structure between risks. Zheng et

al. [14] considered credibility model with time effect within risks. Teng and Wu [15] derived

double dependent credibility premium under the exponential premium principle.

The maximum-entropy principle provides a means to obtain least-biased statistical

inference whenever partial and insufficient information is available. The maximum entropy

method (MEM) was first proposed by Jaynes [16]. Since then, he did numerous research in

this field and established theoretical basis which is used to solve quantitative problem by

exploring the maximum entropy method. Later on, Kullback [17] proposed the Kullback

minimum crossing entropy method which is similar to the maximum entropy method

(MEM).

MEM has become popular in many areas since it appeared, such as thermodynamics,

information theory, biotechnology, industry, agriculture and so on. Nevertheless, in the

actuarial field, only several scholars combined MEM and insurance together successful-

ly. For instance, Jessop [18] used the minimum crossing entropy method to determine the

weight and estimate the target of utility function. Besides, on the basis of the utility func-

tion, Abbas [19] adjusted the utility function to the cumulative probability function. And
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Landsman and Makov [20] estimated credibility factor and the distribution of the scale pa-

rameters in dispersed exponential family with MEM method. What’s more, Darooneh [21]

deduced the utility function of non-life insurance market. And Payandeh Najafabadi et

al. [22] calculated the approximate Bayes estimators by MEM.

Consider that many scholars have done a lot of research by exploring maximum en-

tropy method, but it appears that the applications of it in the field of studying insurance

premium is still rare. This paper will make some tries in this area.

The structure of this paper is organized as follows. We introduce the maximum en-

tropy method in the second part; and in the third part, by exploring the maximum entropy

method, a main theorem with its applications is given. As some kind of verification, we

also provide numerical simulation with a table in the forth part to show that the credibility

premium obtained in this paper is better than other credibility models.

§2. The Maximum Entropy Method

Entropy is the measure of the degree of uncertainty of an event in information theory,

the greater its value, the less information we know about the event.

In 1948, Shannon published a famous paper, which established the quantitative met-

rics about uncertainty by entropy.

Definition 1 Let ξ be a random variable and it has n possible outcomes as A1, A2, . . .,

An, with the probability P(ξ = Ai) = pi for i = 1, 2, . . . , n. Then the uncertainty of ξ, in

other words, the information entropy is defined as follows,

S(ξ) = −
n∑

i=1
pi log pi.

It is worthy to note that, for a given random event, the bigger its entropy, the more

uncertainty it has. If the entropy is 0, then the event is determined.

Shannon’s definition of entropy plays an important role in quantification of the degree

of uncertainty. However, because this measure is related to the probability, the probability

distribution is required to calculate the specific values of entropy, then the extent of the

uncertainty of information can be calculated. Jaynes made a significant contribution to

widely used of entropy, entropy became a reasoning tool for a simple measure through

his work. He was the first people who recognized that in many probabilistic experiment,

the probability is unknown in advance so that the entropy can not be calculated. But

he believed that we can make use of the observation data to calculate the probability

distribution.
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The maximum entropy principle proposed by Jaynes provides us with such a selec-

tion criterion, “In making inference on the basis of partial information we must use that

probability distribution which has maximum entropy subject to whatever is known. This

is the only unbiased assignment we can make; to use any other would amount to arbitrary

assumption of information which by hypothesis we do not have”.

From the viewpoint of the insurance, the maximum entropy method indicates that

we know nothing about the probability distribution of claims Xi (i = 1, 2, · · · , n) except

observation data. In addition, the probability satisfies the axiomatic conditions:
n∑

i=1
pi = 1, for pi > 0 (i = 1, 2, . . . , n),

and the observation data can be represented by its statistical moments (such as the mean,

variance, etc.).

Then under given constraints, the problem of solving optimal probability distribution

by the maximum entropy method is amount to solving the problem of conditional extreme

values. Lagrange multiplier method is often used to tackle this kind of problems and

determine the probability distribution.

Definition 2 Suppose a discrete random variable X take distinct values X1, X2, . . .,

Xn with corresponding probabilities P(X = Xi) = pi for i = 1, 2, . . . , n and constraints

g1(·), g2(·), . . . , gm(·) which satisfy
n∑

i=1
gr(xi) = ar for r = 1, 2, . . . ,m. Then the Lagrange

multiplier which is subject to the above constraints is that

L = −
n∑

i=1
pi ln(pi)−

m∑
r=1

λr

[ n∑
i=1

gr(xi)− ar
]
,

for some λ1, λ2, . . . , λm.

In fact, parameters p1, p2, . . . , pn can be estimated by maximizing the Lagrange mul-

tiplier.

As can be seen, the more constraints of statistical moments, the more information

we get, and the smaller degree of uncertainty in the solution of the problem. Thus the

probability distribution obtained according to the maximum entropy method will be the

one making the entropy maximum under constraints of statistical moments.

§3. Main Results

3.1 The Maximum Entropy Method to the Credibility Estimation

Based on the net premium principle, we can obtain the following credibility estimation

by applying the maximum entropy method.
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Theorem 3 Suppose the claims of a contract in the past n years are X1, X2, . . . , Xn,

then an optimal linear nonhomogeneous estimator of the future claim Xn+1 is given by

X̂∗n+1 = α∗0 +
n∑

k=1

α∗kXk, (1)

which satisfies the following two conditions:

(i) minimize the expected loss function of E
[
Xn+1 − α0 −

n∑
i=1

αiXi

]2
;

(ii) maximize the entropy,

with

α∗0 = E(Xn+1)
/{

1 +
n∑

i=1
exp

[
λ

n∑
j=1

Cov (Xi, Xj)
E(Xn+1)

E(Xi)

]}
,

α∗k = α∗0 exp
[
λ

n∑
j=1

Cov (Xk, Xj)
E(Xn+1)

E(Xk)

]/
E(Xk),

where λ is the solution of the following equation,

n∑
i=1

exp
[
λ

n∑
j=1

Cov (Xi, Xj)
E(Xn+1)

E(Xi)

] n∑
j=1

Cov (Xi, Xj)
E(Xn+1)

E(Xi)

=
[
1 +

n∑
i=1

exp
[
λ

n∑
j=1

Cov (Xi, Xj)
E(Xn+1)

E(Xi)

]] n∑
j=1

Cov (Xn+1, Xj).

Proof We shall first solve the minimization problem, i.e.,

minE
[
Xn+1 − α0 −

n∑
i=1

αiXi

]2
.

For simplicity, let

H = E
[
Xn+1 − α0 −

n∑
i=1

αiXi

]2
. (2)

Differentiate equation (2) on α0 and let the resulting formula equal to 0, it follows that

α0 = E(Xn+1)−
n∑

i=1
αiE(Xi),

which can be written as follows,

f1(α) ,
α0

E(Xn+1)
+

n∑
i=1

αi
E(Xi)

E(Xn+1)
− 1 = 0,

with α = (α0, α1, . . . , αn).

Take α0 into equation (2), then differentiate it on αj and let the resulting formula

equal to 0, we have that

Cov (Xn+1, Xj)−
n∑

i=1
αiCov (Xi, Xj) = 0,
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which is equivalent to

f2(α) ,
n∑

j=1
Cov (Xn+1, Xj)−

n∑
j=1

n∑
i=1

αiCov (Xi, Xj) = 0.

The corresponding Lagrange multiplier formula can be expressed in the following way,

L = −
n∑

i=1
pi ln(pi)− λ0f1(α)− λf2(α)

= − α0

E(Xn+1)
ln
( α0

E(Xn+1)

)
−

n∑
i=1

αi
E(Xi)

E(Xn+1)
ln
(
αi

E(Xi)

E(Xn+1)

)
− λ0

( α0

E(Xn+1)
+

n∑
i=1

αi
E(Xi)

E(Xn+1)
− 1
)

− λ
[ n∑
j=1

Cov (Xn+1, Xj)−
n∑

j=1

n∑
i=1

αiCov (Xi, Xj)
]
. (3)

Differentiate (3) on α0, it follows that

α0 = E(Xn+1) · exp(−1− λ0).

Take the α0 into (3), we have

L = (1 + λ0) exp(−1− λ0)−
n∑

i=1
αi

E(Xi)

E(Xn+1)
ln
(
αi

E(Xi)

E(Xn+1)

)
− λ0 exp(−1− λ0)

− λ0 ·
n∑

i=1
αi

E(Xi)

E(Xn+1)
+ λ0 − λ

[ n∑
j=1

Cov (Xn+1, Xj)−
n∑

j=1

n∑
i=1

αiCov (Xi, Xj)
]
. (4)

Similarly as above, differentiate (4) on αk, and let the resulting formula equal to 0, we

obtain

αk =
E(Xn+1)

E(Xk)
exp

[
λCov (Xk, nX)

E(Xn+1)

E(Xk)
− 1− λ0

]
.

Take αk into (4), then

L = exp[−1−λ0]+λ0−λCov (Xn+1, nX)+
n∑

i=1
exp

[
λCov (Xi, nX)

E(Xn+1)

E(Xi)
−1−λ0

]
. (5)

Tackle the equation (5) with respect to λ0 with the same operations as above, it follows

that,

λ0 = ln
[
1 +

n∑
i=1

exp
(
λCov (Xi, nX)

E(Xn+1)

E(Xi)

)]
− 1,

and then

L = ln
[
1 +

n∑
i=1

exp
(
λCov (Xi, nX)

E(Xn+1)

E(Xi)

)]
− λCov (Xn+1, nX).
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Differentiate the above equation on λ, and let the resulting formula equal to 0, and after

a series of simple calculation, an equation about λ can be presented as follows,

n∑
i=1

exp
(
λCov (Xi, nX)

E(Xn+1)

E(Xi)

)
· Cov (Xi, nX)

E(Xn+1)

E(Xi)

=
[
1 +

n∑
i=1

exp
(
λCov (Xi, nX)

E(Xn+1)

E(Xi)

)]
· Cov (Xn+1, nX). (6)

We consider λ as the solution of equation (6), and solve α0 and αk, respectively.

α∗0 = E(Xn+1)
/{

1 +
n∑

i=1
exp

[
λCov (Xi, nX)

E(Xn+1)

E(Xi)

]}
;

α∗k = α∗0 · exp
[
λCov (Xk, nX)

E(Xn+1)

E(Xk)

]/
E(Xk).

Consequently,

X̂∗n+1 = α∗0 +
n∑

k=1

α∗kXk, (7)

as desired. �

Remark 4 Given risk parameter θ, suppose Xi (i = 1, 2, . . . , n) are independent and

identically distributed according to an exponential family of distribution. Moreover, suppose

that π is a conjugate prior distribution. Then, under the square-error loss function, the Bayes

premium can be written in the form of credibility premium formula. Payandeh Najafabadi

et al. [22] generalized this situation in the following way: when claims Xi (i = 1, 2, . . . , n)

have been distributed according to the log-concave distributions, the Bayes premium can also

be expressed in the form of the linear credibility formula by the MEM. The present paper is

different from [22], we make no distribution assumption about claims Xi in this paper, under

this condition, the estimation of the premium X̂n+1 is limited to some linear function class

which is similar to the classical credibility theory and combined with the MEM to calculate

the optimal premium X̂∗n+1.

3.2 Applications

Claims for different years are given the same weight in classical Bühlmann credibility

model. However, this assumption is clearly unreasonable in practice. Therefore, the time

effect is ought to be considered. We refer to [14] and [23] in this field. According to Theorem

3 and given a proper dependent structure, we can prove that the sequence {α∗k}16k6n is

nondecreasing.

We first give some assumptions:
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Assumption 5 Suppose random variables X1, X2, . . . , Xn have their own risk pa-

rameters Θ1,Θ2, . . . ,Θn, respectively. Given time effect Θ, suppose that X1, X2, . . . , Xn are

mutually independent and have the same distribution. Let

E(Xi | θi) = µ(θi); Var (Xi | θi) = σ2(θi).

Assumption 6 The distribution of risk parameters Θi is πi(θ), define structure pa-

rameters as follows,

E[µ(θi)] = µ; E[σ2(θi)] = σ2; Cov [µ(θi), µ(θj)] = γ(θ, |i− j|),

where γ(θ, t) is a non-increasing function with respect to t. For example, we can take

γ(θ, t) = ρt · τ2, 0 < ρ < 1.

Corollary 7 Under the Assumptions 5 and 6, the sequence {α∗k; k = 1, 2, . . . , n}
satisfies the following inequalities:

(i) If λ > 0, k 6 [n/2], then α∗1 6 α
∗
2 6 · · · 6 α∗[n/2]−1 6 α

∗
[n/2] = α∗[n/2]+1 = · · · = α∗n.

(ii) If λ < 0, k > [n/2], then α∗1 = α∗2 = · · · = α∗[n/2]−1 6 α
∗
[n/2] 6 α

∗
[n/2]+1 6 · · · 6 α

∗
n.

Proof We only give the proof of the first part, and that of the second part is omitted

as its proof is similar to the first part.

Define a sign function Sign as follows,

Sign(x) =


1 if x > 0;

0 if x = 0;

−1 if x < 0.

If λ > 0, k 6 [n/2],

Sign
(α∗k+1

α∗k
− 1
)

= Sign
(exp[λCov (Xk+1, nX)(E(Xn+1)/E(Xk+1))]

exp[λCov (Xk, nX)(E(Xn+1)/E(Xk))]
− 1
)

= Sign(exp[λCov (Xk+1 −Xk, nX)]− 1)

= Sign[Cov (Xk+1 −Xk, nX)]

= Sign
[ n∑
i=1

Cov (Xk+1, Xi)−
n∑

i=1
Cov (Xk, Xi)

]
. (8)

Consider that

n∑
i=1

Cov (Xi, Xj) =
n∑

i=1
Cov (µ(θi), µ(θj)) + σ2 =

n∑
i=1

γ(θ, |i− j|) + σ2.
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It follows that

Sign
(α∗k+1

α∗k
− 1
)

= Sign
[ n∑
i=1

γ(θ, |i− k − 1|)−
n∑

i=1
γ(θ, |i− k|)

]
= Sign[γ(θ, k)− γ(θ, n− k)]. (9)

Notice that γ(θ, k) is a non-increasing function. Thus Sign(α∗k+1/α
∗
k − 1) > 0 if k 6 [n/2].

�

Remark 8 If we consider a special time effect in the model of Theorem 3, the

conclusion of Corollary 7 illustrates that the new claims have more weight than the old

claims, which is consistent with reality.

As is known to all that the credibility estimator with geometric weights has the

similar property mentioned as above. Estimator in this form have previously been studied

by Gerber and Jones [24, 25] and Sundt [26], under the assumption of Bühlmann model, the

estimator can be calculated recursively by

X̂n+1 = (1− c) ·Xn + c · X̂n; X̂1 = µ. (10)

According to this recursion, we can get

X̂n+1 = (1− c) ·
n∑

k=1

cn−kXk + cnµ, (11)

with X̂1 = µ, c = τ2/(τ2 + σ2).

Actually, the credibility estimator with geometric weights is derived via the recursive

model, that is, the credibility premium X̂n+1 is the weighted average of the claims Xn

and the credibility premium X̂n. However, this assumption is not required in the present

paper.

When a credibility model is established, we often consider the mutual independence

of random variables. The following content is a special case of Theorem 3 in which the

assumption of independence is considered.

Assumption 9 Given the risk parameter θ, suppose random variables X1, X2, . . . , Xn

are mutually independent and identically distributed. And

E(Xi | θ) = µ(θ); Var (Xi | θ) = σ2(θ).

Assumption 10 The distribution of the risk parameter Θ is π(θ), and define the

structure parameters as follows,

E[µ(θ)] = µ; E[σ2(θ)] = σ2; Var [µ(θ)] = τ2.
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Corollary 11 Under the Assumptions 9 and 10, the optimal linear nonhomogeneous

estimates X̂∗n+1 can be written as:

X̂∗n+1 = (1− Z∗)µ+ Z∗X,

with Z∗ = nτ2/(nτ2 + σ2), X = n−1
n∑

i=1
Xi.

Proof Firstly, we should find the solution of λ.

Since

Cov (Xi, nX) = nτ2 + σ2; Cov (Xn+1, nX) = nτ2.

Take the above two formulas into (6), it follows that

λ =
1

nτ2 + σ2
ln
( τ2
σ2

)
.

Then we can get

α∗0 =
σ2

nτ2 + σ2
µ; α∗k =

τ2

nτ2 + σ2
.

X̂∗n+1 = α∗0 +
n∑

k=1

α∗kXk = (1− Z∗)µ+ Z∗X, with Z∗ = nτ2/(nτ2 + σ2), X = n−1
n∑

k=1

Xk.

So this completes the proof. �

Remark 12 Obviously, Corollary 11 is a special case of Theorem 3, the result coin-

cides with the classical Bühlmann credibility estimator, Theorem 3 can thus be seen as an

extension of classical credibility estimator. Note that Corollary 11 is the same as classical

Bühlmann credibility estimators, so we omit the problem of parameter estimation here.

Remark 13 The classical credibility theory is derived by minimizing the expected

loss function under the assumption that the claims Xi (i = 1, 2, . . . , n) are independent and

identically distributed given θ. What’s more, the coefficient αi (i = 1, 2, . . . , n) calculated

is equal to each other. However, we cannot obtain the coefficient αi by just minimizing

the expected loss function because no assumption about the distribution of Xi is made in

this paper, so the MEM is used to optimize it for the second time under the condition of

minimizing the expected loss function and then the coefficient αi is derived. In addition, the

classical credibility theory is proved as a special case of Theorem 3 in Corollary 11, which

illustrates that using the MEM does not affect minimizing the expected loss function.

§4. Numerical Simulation

We give a simulation study to compare the credibility premium in our paper with

classical credibility premium, the credibility estimator with geometric weights and the

credibility premium in [22], respectively.
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We assume that the claims in the ith year are Xi ∼ N(Θi, σ
2), for i = 1, 2, . . . , n,

Θ = (Θ1,Θ2, . . . ,Θn)′ ∼ N(µ1n, τ
2 · Σ), where Σ is defined in the following,

Σ =


1 ρ ρ2 · · · ρn−2 ρn−1

ρ 1 ρ · · · ρn−3 ρn−2

...
. . .

...

ρn−1 ρn−2 ρn−3 · · · ρ 1

 .

Obviously, the correlation between two claims decreases as the time distance between

them is large.

First we assume that ρ = 0.3, τ2 = 2.5, σ2 = 8.1, µ = 0.7. The random values Xi

(i = 1, 2, . . . , n + 1) is generated according to the distribution assumptions above, where

Xi (i = 1, 2, . . . , n) are taken as the sample values, and Xn+1 is seen as the real value to

be estimated. In addition, the mean square error between Xn+1 and X̂n+1 is taken as the

evaluation criterion in this paper. For convenient expression, we use MSE1, MSE2, MSE3

and MSE4 to represent for the mean square error in Theorem 3, the classical credibility

premium, the credibility estimator with geometric weights and the credibility premium in

[22], respectively.

We consider n = 5, 10, 20, respectively, finish the simulation 10 000 times and list the

corresponding results as follows.

Table 1 Results of numerical simulation

MSE MSE1 MSE2 MSE3 MSE4

n = 5 68.3697 73.3302 109.3460 79.7394

n = 10 67.9487 71.4389 108.1630 79.0551

n = 20 66.5341 69.0905 106.3300 78.1634

As we can see, the MSE in these four models become smaller when the year n is

bigger. Furthermore, the MSE1 in our model is smaller than the other three models.

The MSE2 of the classical credibility theory is bigger than the MSE1 because all claims

Xi (i = 1, 2, . . . , n) have the same weight in the classical credibility theory. Though the

credibility estimator with geometric weights has the property that new claims have more

weight than the old ones, the MSE3 of the credibility estimator with geometric weights is

the biggest because it is derived under the certain assumption that the credibility premium

X̂n+1 is the weighted average of the claimsXn and the credibility premium X̂n. Finally, the

credibility premium in [22] is derived via the MEM, and it also has the characteristic that

new claims have more weight than the old ones, but it is obtained under the assumption
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that the claims Xi (i = 1, 2, . . . , n) have been distributed according to the logconcave

distributions. Therefore, the MSE4 of the credibility premium in [22] is bigger than that

of the model in Theorem 3. In conclusion, the credibility premium in Theorem 3 is better

if we take MSE as the evaluation criterion.
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