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Abstract: In Bayesian analysis, the Markov Chain Monte Carlo (MCMC) algorithm is an efficient

and simple method to compute posteriors. However, the chain may appear to converge while the

posterior is improper, which will leads to incorrect statistical inferences. In this paper, we focus

on the necessary and sufficient conditions for which improper hierarchical priors can yield proper

posteriors in a multivariate linear model. In addition, we carry out a simulation study to illustrate

the theoretical results, in which the Gibbs sampling and Metropolis-Hasting sampling are employed

to generate the posteriors.
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§1. Introduction

In Bayesian analysis, Markov Chain Monte Carlo (MCMC) sampling is widely used

to compute the posteriors. However, sometimes it is difficult to diagnose from the results

of MCMC algorithm whether the posterior is proper (see [1] and [2]). Therefore, the

theoretical investigation is particularly important for us in practical applications.

The resulting posterior should be proper, which is one of the conditions for Markov

Chain Monte Carlo algorithm to converge (see [3]). Then an important issue arises, that

is, whether the posterior is proper or not when an improper prior is specified. In fact,

although MCMC algorithm is an efficient and simple Bayesian computing method, the

chain may appear to converge while the posterior is improper. Therefore, we need to

analyze convergence conditions theoretically.
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There is some work along this topic, for example, Hobert and Casella [1] pointed out

“it may be possible to use null Gibbs chains to make inferences about lower-dimensional

functions of the parameters that have proper posteriors”; Gelfand and Sahu [4] discussed

a Gibbs sampling issue in an embedded generalized linear models, and obtained some

meaningful results, especially for the lower-dimensional posterior. Hadjicostas and Berry [2]

also indicated how crucial it is to know whether the posterior is proper.

In this paper we focus on the effect of improper priors on Gibbs sampling in a multi-

variate linear model. The model is expressed as

Y = XB + ε, ε ∼ Nn×m(0, In ⊗ Σ), (1)

where Y is an observable n×m random matrix, X is an n×k design matrix with rank(X) =

k 6 n, and B is a k × m matrix of unknown parameters, ε is an n × m matrix of

random errors which is assumed to follow a matrix normal distribution. In ⊗ Σ denotes

the Kronecker product of In and Σ, here In is the identity matrix of order n, Σ is an

m×m unknown positive definite matrix.

The paper is structured as follows. In Section 2, we present the improper hierarchical

priors specification along with discussions about some assumptions. In Section 3, we give

the main theoretical results, i.e., the conditions of improper priors yield proper posteriors

in the multivariate linear model (1). In Section 4, we address the effects of estimation

with respect to the proper and improper posteriors by a simulation. In Section 5, we give

an example based on the data of the grain development (see [5]), from which we will show

the importance of proper posteriors. Finally, some concluding remarks are given at the

end of this paper.

§2. The Specification of Priors

In Bayesian statistical analysis, one of the important issues is to specify priors. Here

we first determine the priors for the regression coefficient matrix B and the covariance

matrix Σ. The popular noninformative prior, the so-called diffuse prior, which is a constant

prior for B, see [6] and [7]. Meanwhile, we assign a hierarchical priors for the covariance

matrix Σ that refer to Hobert and Casella [1], Daniels and Kass [8] and Bouriga and Féron [9].

Then the hierarchical priors for B and Σ are specified as follows:

π(B) ∝ 1;

Σ |Ψ, β ∼ IWm(Ψ, β), Ψ = diag(σ2
1, σ

2
2, . . . , σ

2
m);

π(σ2
i ) ∝ (σ2

i )
−aiI(0,+∞)(σ

2
i ), i = 1, 2, . . . ,m;
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π(β) ∝ 1

βδ
I(m,+∞)(β), (2)

where ai’s and δ are known, and IWm(Ψ, β), in the notation of Anderson [10], stands for

the inverted Wishart distribution with β degrees of freedom and precision matrix Ψ. The

density of IWm(Ψ, β) is

π(Σ |Ψ, β) =
1

2mβ/2Γm(β/2)
|Ψ|β/2|Σ|−(m+β+1)/2 etr

{
− 1

2
Σ−1Ψ

}
, (3)

where etr(A) = exp(tr(A)) for a matrix A, and Γm(·) is the multivariate gamma function

defined as

Γm(β) = πm(m−1)/4
m∏
i=1

Γ
(
β +

1− i
2

)
. (4)

For the above hierarchical priors, we need to propound two conditional independence

assumptions: (i) σ2
1, σ

2
2, . . . , σ

2
m and β are a priori independent; (ii) given Ψ and β, Y is

conditionally independent of B and Σ.

§3. Theoretical Results

In this section, we will discuss propriety conditions when improper hierarchical priors

can yield the proper joint posteriors. First, we need to derive the joint posterior density

of (B,Σ,Ψ, β) given Y by the Bayesian principle.

For model (1), the likelihood of (B,Σ) based on Y is given by

L(B,Σ |Y ) = 2π−mn/2|Σ−1|n/2 etr
{
− 1

2

[
(B − B̂)TXTX(B − B̂) + S

]}
, (5)

where B̂ and Σ̂ are the least squares estimator (LSE) of B and Σ, i.e.,

B̂ = (XTX)−1XTY, Σ̂ =
S

n− k
, (6)

where

S = (Y −XB̂)T(Y −XB̂). (7)

It follows (2) and (5) that the joint posterior density of (B,Σ,Ψ, β) is

π(B,Σ,Ψ, β |Y ) ∝ L(B,Σ |Y )π(B)π(Σ |Ψ, β)π(β)
m∏
i=1

π(σ2
i )

∝ |Σ−1|(n+m+β+1)/2 etr
{
− 1

2
Σ−1

[
(B − B̂)TXTX(B − B̂) + S + Ψ

]}
· |Ψ|β/2

2mβ/2Γm(β/2)βδ

m∏
i=1

π(σ2
i ). (8)

Now we give the sufficient and necessary conditions for the posterior distribution to

be proper.
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Theorem 1 For the multivariate linear model (1), under the improper hierarchical

priors (2), the posterior distribution is proper if and only if

(1) 1− (n− k)/2 < ai < 1 + β/2, i = 1, 2, . . . ,m;

(2) δ +
m∑
i=1

ai > m+ 1.

In order to prove Theorem 1, we first present some lemmas needed.

Lemma 2 Assume that Re(α) > (m− 1)/2, let Σ be a positive definite of order m,

then ∫
A>0
|A|α−(m+1)/2 etr

{
− 1

2
Σ−1A

}
dA = Γm(α)|Σ|α2mα.

Proof This Lemma is quoted from Liu [11]. �

Lemma 3 Suppose that D and H are two n× n nonnegative definite matrices, then

we have
n∏
i=1

[λi(D) + λi(H)] 6 |D +H| 6
n∏
i=1

[λi(D) + λn−i+1(H)],

where λi(A) denotes the i-th largest eigenvalue of a matrix A.

Proof See Marshall and Olkin [12]. �

Lemma 4 Let a, b ∈ R, then

lim
x→+∞

Γ(x+ a)

Γ(x+ b)xa−b
= 1.

Proof The result is due to Bustoz and Ismail [13], see Section 4 therein. �

Now we turn to give the proof of Theorem 1 in details.

Proof of Theorem 1 Integrating (8) over B, we can obtain the joint posterior

density of (Σ,Ψ, β), that is

π(Σ,Ψ, β |Y ) ∝ |Σ
−1|(n+m+β−k+1)/2 etr{−Σ−1(S + Ψ)/2}|Ψ|β/2

2mβ/2Γm(β/2)βδ

m∏
i=1

π(σ2
i ). (9)

Further, integrating (9) over Σ by Lemma 2, we have

π(Ψ, β |Y ) ∝
∫

Σ>0
π(Σ,Ψ, β |Y )dΣ

∝ 1

Γm(β/2)βδ
Γm

(n+ β − k
2

)
|Ψ|β/2|S + Ψ|−(n+β−k)/2

m∏
i=1

π(σ2
i ). (10)

In order to study the integration of π(Ψ, β |Y ) on (0,+∞)m, we first make spectral

decomposition of the symmetric matrix S defined in (7). Denote S = HTΛH, where
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Λ = diag(λ1, λ2, . . . , λm), λ1 6 λ2 6 · · · 6 λm are the sorted eigenvalues of S, and H is

an orthogonal matrix. Thus, we have

π(Ψ, β |Y ) ∝ Γm((n+ β − k)/2)|Ψ|β/2

Γm(β/2)βδ
|Ψ +HTΛH|−(n+β−k)/2

m∏
i=1

π(σ2
i ). (11)

By using Lemma 3, we get

m∏
i=1

(σ2
i + λ1) 6 |Ψ +HTΛH| 6

m∏
i=1

(σ2
i + λn). (12)

It follows from the left side of (12) that

π(β |Y ) =

∫
(0,+∞)m

π(Ψ, β |Y )dσ2
1 · · · dσ2

m

6
∫

(0,+∞)m

Γm((n+ β − k)/2)

Γm(β/2)βδ

m∏
i=1

(σ2
i )
β/2−ai

(λ1 + σ2
i )

(n+β−k)/2
dσ2

1 · · · dσ2
m

∝ Γm((n+ β − k)/2)

Γm(β/2)βδ

m∏
i=1

∫ +∞

0

(σ2
i )
β/2−ai

(λ1 + σ2
i )

(n+β−k)/2
dσ2

i

:= πmax(β |Y ). (13)

In the following, we will first show that the integral∫ +∞

0

(σ2
i )
β/2−ai

(λ1 + σ2
i )

(n+β−k)/2
dσ2

i

in (13) is finite if and only if

1− n− k
2

< ai < 1 +
β

2
. (14)

In fact, let pi = β/2 − ai, q = (n + β − k)/2, using the integral transformation t =

λ1/(λ1 + σ2
i ), then we have∫ +∞

0

(σ2
i )
β/2−ai

(λ1 + σ2
i )

(n+β−k)/2
dσ2

i = λpi−q+1
1

∫ 1

0
tq−pi−2(1− t)pidt

= λpi−q+1
1 Beta(q − pi − 1, pi + 1),

which is finite if and only if

q − pi − 1 > 0, pi + 1 > 0.

That is to say,
n− k

2
+ ai − 1 > 0,

β

2
− ai + 1 > 0, (15)
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which is equivalent to

1− n− k
2

< ai < 1 +
β

2
.

Now, by the relationship between the gamma function and the beta function, we have∫ +∞

0

(σ2
i )
β/2−ai

(λ1 + σ2
i )

(n+β−k)/2
dσ2

i = λ
−ai−(n−k)/2+1
1

Γ(β/2− ai + 1)Γ((n− k)/2 + ai − 1)

Γ((n+ β − k)/2)
.

(16)

It follows that

πmax(β |Y ) ∝ Γm((n+ β − k)/2)

Γm(β/2)βδ

m∏
i=1

Γ(β/2− ai + 1)

Γ((n+ β − k)/2)
. (17)

By Lemma 4 and the definition of the multivariate gamma function, it can be shown that,

as β → +∞,

m∏
i=1

Γ(β/2− ai + 1)

Γ((n+ β − k)/2)
∼

m∏
i=1

β1−ai−(n−k)/2,

Γm((n+ β − k)/2)

Γm(β/2)
∼ βm(n−k)/2.

Consequently, as β → +∞,

Γm((n+ β − k)/2)

Γm(β/2)βδ

m∏
i=1

Γ(β/2− ai + 1)

Γ((n+ β − k)/2)
∼ 1
/
β
δ−m+

m∑
i=1

ai
. (18)

Note that the right side of (18) is integrable on (m,+∞) if and only if

δ −m+
m∑
i=1

ai > 1. (19)

Till now, we have shown that πmax(β |Y ), an upper bound of π(β |Y ), is integrable if and

only if (14) and (19) hold simultaneously.

On the other hand, from the right side of (12), we have

π(β |Y ) >
Γm((n+ β − k)/2)

Γm(β/2)βδ

m∏
i=1

∫ +∞

0

(σ2
i )
β/2−ai

(λn + σ2
i )

(n+β−k)/2
dσ2

i := πmin(β |Y ). (20)

Similarly, it can be shown that πmin(β |Y ), an lower bound of π(β |Y ), is integrable if

and only if (14) and (19) are both satisfied. Thus, the proof of Theorem 1 is completed.

�

Corollary 5 For the multivariate linear model (1), if all ai’s in the hierarchical priors

(2) are taken as 1, then δ > 1 is the necessary and sufficient condition for the posterior

distribution to be proper.
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Proof When ai = 1, i = 1, 2, . . . ,m, then the condition (1) in Theorem 1 holds

automatically, and the condition (2) turns into δ > 1. �

Remark 6 Proposition 2 in Bouriga and Féron [9] can be regarded as a special case

of Corollary 5 where B = 0.

To discuss Gibbs sampling in the next section, we here provide the complete condi-

tional distributions of all parameters (B,Σ,Ψ, β), which are listed as follows:

[B |Y,Σ,Ψ, β] ∼ N(B̂, (XTX)−1 ⊗ Σ), (21)

[Σ |Y,B,Ψ, β] ∼ IW(S + Ψ + (B − B̂)TXTX(B − B̂), β + n), (22)

[σ2
i |Y,B,Σ, β] ∼ Gamma

(β
2
− ai + 1,

σii

2

)
, i = 1, 2, . . . ,m, (23)

[β |Y,B,Σ,Ψ] ∝ exp
{
cβ − δ lnβ − ln Γm

(β
2

)}
I]m,+∞[(β), (24)

where Σ−1 = (σij), and c = (ln |Σ−1|+ ln |Ψ| −m ln 2)/2.

§4. Simulation Results

The proper posterior has been ensured after setting the priors, which is especially

important in Bayesian analysis. Because the results of estimation are incorrect when

the true posterior is improper. Through the simulation study, we will learn about the

behaviour of estimation is different in proper posterior or not.

Now we first describe the calculating process of the Metropolis-Hasting-within-Gibbs

sampling method before simulation designed. Let (B(0),Σ(0),Ψ(0), β(0)) be the initial iter-

ation values for (B,Σ,Ψ, β). Suppose that the current values are labeled as (B(t−1),Σ(t−1),

Ψ(t−1), β(t−1)), then the updated values (B(t),Σ(t),Ψ(t), β(t)) are generated as follows:

Step 1: draw a sample B(t) from N(B̂, (XTX)−1 ⊗ Σ(t−1));

Step 2: draw a sample Σ(t) from IW(S+Ψ(t−1) +(B(t)−B̂)TXTX(B(t)−B̂), β(t−1) +n);

Step 3: draw a sample σ2
i

(t)
from Gamma(β(t−1)/2− ai + 1, σii

(t)
/2) for i = 1, 2, where

σii
(t)

is the (i, i)-th element in the inverse of Σ(t), then Ψ(t) = diag(σ2
1

(t)
, σ2

2
(t)

);

Step 4: draw a sample β(t) from the complete conditional distribution of [β |Y,B(t),Σ(t),

Ψ(t)].

For the fourth step, it is difficult to draw from [β |Y,B(t),Σ(t),Ψ(t)] directly by Gibbs

sampling, so the Metropolis-Hasting (M-H) algorithm is employed here to generate β(t). A

candidate value, labeled v, is drawn from a normal distribution N(β(t−1), τ2) truncated on
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the interval (m,+∞), where m = 2, and τ2 is a tuning parameter (see [14]). Denote the

right side of (24) by ϕ(β |B,Σ,Ψ), then the candidate value is accepted with probability

min
{

1,
ϕ(v |B(t),Σ(t),Ψ(t)) · Φ((v − 2)/τ)

ϕ(β(t−1) |B(t),Σ(t),Ψ(t)) · Φ((β(t−1) − 2)/τ)

}
.

If the candidate value is accepted, then β(t) = v; otherwise β(t) = β(t−1). Where Φ(·) is

distribution function of standard normal. The value of τ2 here is selected as 1 so that the

acceptance rate can be around 0.5 for the Markov chain (see [15]).

In the simulation study, we establish the following hierarchical model:

Σ |Ψ, β ∼ IW2(Ψ, 4);

Y5×2 ∼ N(XB, I5 ⊗ Σ), (25)

where Ψ = diag(2, 2) and X = (x1, x2, x3), let x1 = (1, 1, 1, 1, 1)′, x2 = (1, 1, 1, 0, 0)′,

and x3 = (1, 0, 1, 0, 1)′. To be convenient for comparison, we set B = (b1, b2), among b1 =

(−5, 1, 7)′, b2 = (−1, 9, 5)′. Moreover, two different cases are considered for the parameters

in the priors: (A) a1 = 1, a2 = 1, δ = 2; (B) a1 = 1/2, a2 = 1/2, δ = 1. By Theorem 1,

case (A) implies that the posterior is proper, while case (B) yields an improper posterior.

The whole parameters estimation of model (25) are carried out with the M-H algo-

rithms described in above with 5,000 iterations, among which 2,000 are used for the burn-in

period. The average values of estimation can be obtained by repeating 1,000 times the

previous simulation process. Table 1 summarizes the simulation results for the regression

coefficient matrix B and β for the two different cases. For case (A), the results show that

the estimated values are approximately identical to the truth ones. Therefore, it is also

proved that the proper posterior is of greatest importance. However, these estimations

appear to be relatively poor for another case, especially in parameter β.

Table 1 The average values of estimation for B = (bij) and β for both different

cases, the values in parentheses refer to the standard errors

b11 b21 b31 b12 b22 b32 β

Case(A) -5.0186 0.9929 6.9967 -1.0166 9.10715 4.9323 4.1424

(1.2498) (1.3694) (1.5988) (1.1023) (1.3219) (1.3306) (2.4234)

Case(B) -5.2921 0.9299 7.2159 -2.0748 10.2802 6.3472 18.3432

(6.5989) (5.5628) (9.1573) (36.8914) (43.6491) (51.6537) (20.7892)

§5. Real Data Analysis

The objective of this section is to study the convergence of Gibbs sampling. However,

as proposed by [2], the chain may also behave nicely and convergent when the MCMC
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algorithm is used under a scheme in which the posterior is improper. Consequently, the

differences between estimation aren’t sharp in such situation, which can be misleading in

statistical inference. To reveal it, we shall here use the Anderson’s data given by Hossain

and Naik [5], which can be assembled in Table 2.

Table 2 Anderson’s data

No. 1 2 3 4 5 6 7 8

y1 40 17 9 15 6 12 5 9

y2 53 19 10 29 13 27 19 30

x1 24 11 5 12 7 14 11 18

To investigate the relationship between the weight of grain (y1), the weight of straw

(y2) and the amount of fertilizer (x1), we first establish the following multivariate regression

model:

Y8×2 = X8×2B2×2 + ε8×2, ε ∼ N(0, I8 ⊗ Σ),

where the elements in the first column of X are all 1, and the priors for B and Σ are

specified as that in (2).

In this simulation, the parameters in the priors are specified as (A) a1 = 1, a2 = 1,

δ = 2 and (B) a1 = 1, a2 = 1, δ = 1, respectively. Obviously, the posterior is improper

for Case (B). For Case (A), the left panel of Figure 1 shows 10,000 observations of β from

the Markov chain, and the right one gives the corresponding autocorrelation plot. As we

know, the autocorrelation usually decreases with increasing of the iteration step-size. The

chain in this case appears to have converged, correctly showing no signs of any problems.
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Autocorrelation plot

Figure 1 The Markov chain of β from the Gibbs sampling for Case (A)

and the corresponding autocorrelation plot

Table 3 reports the posterior means and standard errors in parentheses of regression

coefficient matrix B and β, in which 2,000 observations are also used for the burn-in
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period.

Table 3 The posterior means and standard errors in cases (A) and (B)

b11 b21 b12 b22 β

Case (A) -3.6560 1.3952 -2.3161 2.1393 3.8105

(8.4624) (0.6055) (4.2438) (0.3033) (5.3348)

Case (B) -3.8112 1.4060 -2.2740 2.1420 5.3689

(7.9779) (0.5699) (4.1596) (0.3003) (5.1481)

For Case (B), Figure 2 shows the 10,000 observations of β from the Gibbs sampling

for improper posteriors and the corresponding autocorrelation plot. As seen from the

autocorrelation plot, the chain seems reasonable and there is nothing unusual about these

observations. However, the estimates are wrong in that the posterior is improper here.

The true means and standard deviations do not exist actually. It would be very difficult

for us to diagnose from the Markov chain that there is something wrong.
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Firgure 2 The Markov chain of β from the Gibbs sampling for Case (B)

and the corresponding autocorrelation plot

§6. Concluding Remarks

In this paper, we have derived the necessary and sufficient conditions for the posteriors

to be proper in a multivariate linear model with improper hierarchical priors. According

to the results of stochastic simulation, we think the estimates are incorrect in that the

posterior is improper. Another simulation study based on the Anderson’s data is carried

out to illustrate the theoretical results. The simulation verifies that it would be hard for

us to diagnose from the Markov chain that the posterior is proper or not, which implies

that theoretical research of the posteriors is necessary.
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