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Abstract: This paper studies estimation in functional partial linear composite quantile regression

model in which the dependent variable is related to both a function-valued random variable in

linear form and a real-valued random variable in nonparametric form. The functional principal

component analysis and regression splines are employed to estimate the slope function and the

nonparametric function respectively, and the convergence rates of the estimators are obtained under

some regularity conditions. Simulation studies and a real data example are presented for illustration

of the performance of the proposed estimators.
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§1. Introduction

Nowadays, the great progress of computational tools (both memory and capacity

increasing) allows to create, store and work with large databases. In many cases, the

dataset is made up of observations from a finite dimensional distribution, measured over

a period of time or recorded at different spatial locations. When the temporal or spatial

grid is fine enough, the sample can be considered as an observation of a random variable

on a certain functional space. Analyzing this kind of data with standard multivariate

methods and ignoring its functional feature may fail dramatically because of the curse of

dimensionality, collinearity, or valuable information loss. Thus functional data analysis
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(FDA) has been turned into one of the most active statistical fields in recent years. An

overview of the basic methods of functional data analysis, computational aspects related

with their practical application and important real data modeling can be seen in the

pioneers books by [1, 2]. A detailed study on nonparametric FDA methodologies was

developed in [3]. Statistical inference related with some FDA methods was recently studied

in [4].

We also note that there are numerous works of functional data literature on function-

al linear regression models, see, e.g., [5–11] and references therein. However, relatively

few studies form a quantile regression perspective. Quantile regression has been widely

used since the seminal work of [12]. It is attractive not only by virtue of its robustness

with respect to non-Gaussian errors but also because, by considering several quantiles

simultaneously, it can provide a more complete picture of the conditional distribution of

the response. Cardot et al. [13] studied smoothing splines estimators for functional non-

parametric quantile regression models. More recently, Chen and Müller [14] developed a

method for conditional quantile analysis. They first estimated the conditional distribu-

tion function under a generalized functional regression framework and then estimated the

conditional quantile function by inverting the estimated conditional distribution function

and derived the consistency of their estimator. Kato [15] studied estimation in functional

linear quantile regression and established rates of convergence for proposed estimators and

showed that these rates were optimal in a minimax sense under some smoothness assump-

tions on covariance kernel of the predictor and the slope function. Lu et al. [16] showed

asymptotic normality of the estimator of the finite dimensional parameter vector and rate

of convergence of estimator of the infinite dimensional slope function in functional partial-

ly linear quantile regression model. The references mentioned above are concerned mainly

with quantile in functional linear models. We note that Zou and Yuan [17] proposed a

composite quantile regression technique to combine information across different quantiles

in a linear regression model. More references about composite quantile regression refers

to [18–20] among others. Quantile regression can be treated as a special case of composite

quantile regression. Therefore, we consider in this paper functional partial linear compos-

ite quantile regression models, which include not only nonparametric quantile regression

model but also the models in [15] and [16] as special cases.

The rest of paper is organized as follows. In Sections 2, we introduce the function-

al linear partial regression model, and in Section 3, we present the functional principal

component regression and spline-based method to estimate the function coefficient and

nonparametric function, respectively. Section 4 gives the rates of convergence of the esti-

mators under some regularity conditions. Section 5 discusses the tuning parameter selec-

tion problem and the computing algorithm for the proposed estimates. Some simulation
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results and an example are presented in Section 6. All proofs are given in the Appendix.

§2. Functional Partial Linear Regression Model

Let Y and Z be real-valued random variables defined on a probability space (Ω,B,P),

and let {X(t)} be a second-order stochastic process valued in H = L2([0, 1]), the Hilbert

space containing square integrable functions on [0, 1] with inner product 〈x, y〉 =
∫ 1
0 x(t)

·y(t)dt, ∀x, y ∈ H and norm ‖x‖ = 〈x, x〉1/2. The dependence between Y and {X,Z} is

expressed as

Y =

∫ 1

0
β0(t)X(t)dt+ g0(Z) + ε, (1)

where the functional coefficient β0(·) belongs to H, g0(·) is an unknown univariate smooth

function of auxiliary variable Z, ε is a random error variable with median 0, and indepen-

dent of {X,Z}. Model (1) generalizes both the nonparametric regression model and the

functional linear model which correspond to the cases β0 = 0 and g0 = 0, respectively.

Note that model (1) also includes the partial functional linear regression model proposed

by [21] when g0(Z) = UTθ. Without loss of generality, we further assume that Z ∈ [0, 1],

and X is centered, that is to say E(X(t)) = 0, for all t ∈ [0, 1].

§3. Estimation Method

In this section, we will describe how to estimate the functional coefficient β(·) and

nonparametric function g(·). As is discussed in [22], the functional principal component

analysis (FPCA) is a benchmark basis for functional data. Furthermore, regression splines

have some desirable properties in approximating a smooth function, and often provide

good approximations with small number of knots. For these reasons, we approximate the

functional coefficient by FPCA and nonparametric function by regression splines in the

following.

Let (Zi, Xi, Yi), i = 1, 2, . . . , n be independent realizations of (Z,X, Y ) generated by

model (1). Define the covariance function and the empirical covariance function for X(·)
respectively as

C(t, s) = Cov (X(t), X(s)), Ĉ(t, s) =
1

n

n∑
i=1

Xi(t)Xi(s).

The covariance function C(t, s) defines a linear operator which maps a function f to Cf

given by Cf(s) =
∫
C(t, s)f(t)dt. We shall assume that the linear operator with kernel

C(t, s) is positive definite. Write the spectral decomposition of the covariance function
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C(t, s) and Ĉ(t, s) as

C(t, s) =
∞∑
i=1

λivi(t)vi(s), Ĉ(t, s) =
∞∑
i=1

λ̂iv̂i(t)v̂i(s),

where

λ1 > λ2 > · · · > 0, λ̂1 > λ̂2 > · · · > λ̂n+1 = · · · = 0

are respectively the ordered eigenvalue sequences of the linear operators with kernels C(t, s)

and Ĉ(t, s), {vi} and {v̂i} are the corresponding orthonormal eigenfunction sequences. The

sequence {vi} forms an orthonormal basis in H. Then, we have the following expansions

in H:

X(t) =
∞∑
i=1

ξivi(t), β0(t) =
∞∑
j=1

β0jvj(t),

where ξi and β0j are defined by

ξi =

∫ 1

0
X(t)vi(t)dt, β0j =

∫ 1

0
β0(t)vj(t)dt,

ξi is referred to as the ith functional principal component score. It follows that ξis are

uncorrelated random variables with mean zero and variance Var (ξi) = λi, and

〈β0(·), X(·)〉 =
∞∑
j=1

β0jξj . (2)

We shall use (2) to estimate β0(t) in the following. Now we turn to function g0(·) in model

(1). Following [23], we approximate g(·) by splines. Let 0 = z0 < z1 < · · · < zkn = 1 be

a partition of the interval [0, 1]. Let N = kn + l + 1 and π1(Z), π2(Z), · · · , πN (Z) be the

normalized B-splines of order l+ 1 based on the knot mesh {zi} that form a basis for the

linear spline space. For the asymptotic theory in next section, we assume that the order

l + 1 is fixed but kn depends on the sample size n. If the nonparametric function g0(·) is

sufficiently smooth, then it can be approximated as

g0(·) ≈
N∑
s=1

α0sπs(·). (3)

Inserting (2) and (3) into (1), we get

Y ≈
m∑
j=1

β0jξj +
N∑
s=1

α0sπs(Z) + ε, (4)

where the number of included components m = m(n) and the number of spline basis

N = N(n) need to satisfy 1 6 m + N 6 n − 1, m = m(n) → ∞ and N = N(n) → ∞
as the sample size n → ∞. Let 0 < τ1 < τ2 < · · · < τK < 1, b0k be the τk quantile of ε.
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The estimates β̂(t) =
m∑
j=1

β̂j v̂j(t) and ĝ(Z) =
N∑
s=1

α̂sπs(Z) are obtained by solving following

composite quantile regression (CQR) [17]:

min
K∑
k=1

n∑
i=1

ρτk

(
Yi − bk −

m∑
j=1

βj ξ̂ij −
N∑
s=1

αsπs(Zi)
)
, (5)

with respect to βj , j = 1, 2, · · · ,m, αs, s = 1, 2, . . . , N and bk, k = 1, 2, . . . ,K, where

ρτ (u) = u(τ − I(u < 0)) is the quantile loss function [24] and ξ̂ij = 〈Xi, v̂j〉. The objective

function in (5) is a mixture of the objective functions from different quantile regression

models. Typically, we use the equally spaced quantiles: τk = k/(K+1) for k = 1, 2, · · · ,K.

§4. Asymptotic Results

In this section, we derive consistency for the proposed estimators. Let Fε be the

cumulative distribution function and fε be the density function of εi conditional on (Xi, Zi).

For a vector v in Rd we let |v| be its Euclidian norm. In the remaining part of the paper,

we denote by C a generic positive constant, which may take different values at different

places, and use an ∼ bn to express that an/bn is bounded away from zero and infinity as

n→∞. We will make the following assumptions:

C1. E‖X‖4 6 C and E[ξ4j ] 6 Cλ2j for all j > 1.

C2. For some a > 1, C−1j−a 6 λj 6 Cj−a and λj − λj+1 > C−1j−a−1 for all j > 1.

C3. For some b > a/2 + 1, |βj | 6 Cj−b for all j > 1.

C4. There exist some r = p + v > 1 and a constant C ∈ (0,∞) such that |g(p)(s) −
g(p)(t)| 6 C|s− t|v, for any 0 6 s, t 6 1.

C5. The density function fZ(z) of random variable Z has a compact support [0, 1] and

fZ(z) is bounded away from zero and infinity on [0, 1].

C6. fε is bounded from infinity in whole support, and bounded away from zero at all

b0ks, and has bounded first derivatives in the neighborhoods of b0ks.

C7. The eigenvalues of Λn/n are bounded away from infinity and zero for sufficiently

large n, where Λn is defined in the Appendix.

Remark 1 C1 – C3 are very common in the functional linear regression model [7, 8].

Specially, C1 ensures the consistency of Ĉ(t, s), C2 prevents the spacings among eigenvalues

being too small for identification of the slope function β(t), and C3 makes the slope function

sufficiently smooth relative to the covariance function C(t, s). C4 states the smoothness

condition on g(·), which describes a requirement on the best convergence rate that g(·)
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can be estimated. C5 is very common in nonparametric regression [25]. C6 is a standard

assumption in quantile regression [26]. C7 is parallel to the condition A6 in [36], which is used

to obtain the convergence rate of the estimators.

Theorem 2 Suppose that conditions C1 – C7 hold, m∼n1/(a+2b) and N∼n1/(2r+1),

we have

‖β̂(·)− β0(·)‖2 = Op(n
−(2b−1)/(a+2b)) +Op(n

−2b/(a+2b)+1/(2r+1)),

‖ĝ(·)− g0(·)‖2 = Op(n
−2r/(2r+1)) +Op(n

−(a+2b−1)/(a+2b)).

The proofs of following three corollaries are similar to Theorem 2, and thus omitted.

Corollary 3 Suppose that conditions C1 – C7 hold, if m ∼ N ∼ n1/(2r+1) and 1/2

+ a < r 6 (a+ 2b− 1)/2, we have

‖β̂(·)− β0(·)‖2 = Op(n
−(2r−a)/(2r+1)), ‖ĝ(·)− g0(·)‖2 = Op(n

−2r/(2r+1)).

Corollary 4 Suppose that conditions C1 – C7 hold, if m ∼ N ∼ n1/(a+2b) and r >

(a+ 2b− 1)/2, we have

‖β̂(·)− β0(·)‖2 = Op(n
−(2b−1)/(a+2b)), ‖ĝ(·)− g0(·)‖2 = Op(n

−(a+2b−1)/(a+2b)).

Corollary 5 Suppose that conditions C1 – C7 hold, if m∼N∼n1/(a+2b)∼n1/(2r+1),

we have

‖β̂(·)− β0(·)‖2 = Op(n
−(2b−1)/(a+2b)), ‖ĝ(·)− g0(·)‖2 = Op(n

−2r/(2r+1)).

The result of Corollary 5 indicates that the estimator β̂ has the same rate of conver-

gence as the estimators of [8] and [15], which are optimal in minimax sense. The rate of

convergence for ĝ is the same as the optimal global convergence rate established by [27].

§5. Implementation

In this section, we shall discuss the selection of tuning parameters, and introduce

computing algorithm to minimize (5) in Section 3.

5.1 Tuning Parameter Selection

Throughout our numerical studies, we use B-splines of order 4 to approximate the

nonparametric component, and following the idea of [28], let N be the integer part of
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n1/5. In addition, we need to know how to choose tuning parameter m. Similar to [16],

we choose m as the minimizer to the following Schwarz-type information criterion

BIC(m) = ln
( K∑
k=1

n∑
i=1

ρτk

(
Yi − b̂k −

m∑
j=1

β̂j ξ̂ij −
N∑
s=1

α̂sπs(Zi)
))

+
lnn

2n
(m+ l + kn + 1),

where l = 3, β̂j and α̂s are the CQR estimators obtained from minimizing (5) with m

eigenfunctions. We also can refer to [26] for a similar criterion for tuning parameters

selection.

5.2 Computing Algorithm

Similar to [29], we propose the following computing algorithm to estimate the param-

eters in (5). Specifically, the optimization problem of the CQR method can be formulated

as a linear programming (LP) problem. To derive the LP formulation, we introduce

(2n) × K slack variables {(u+ik, u
−
ik), i = 1, 2, . . . , n, k = 1, 2, . . . ,K)} that satisfy the e-

quality constraints Yi−bk−
m∑
j=1

βj ξ̂ij−
N∑
s=1

αsπs(Zi) = u+ik−u
−
ik, where u+ik > 0 and u−ik > 0

represent the positive and negative parts of Yi − bk −
m∑
j=1

βj ξ̂ij −
N∑
s=1

αsπs(Zi). Similarly,

write bk = b+k − b
−
k , (b+k > 0, b−k > 0), βj = β+j −β

−
j , (β+j > 0, β−j > 0) and αs = α+

s −α−s ,

(α+
s > 0, α−s > 0). Then the CQR estimators in (5) can be obtained by minimizing

K∑
k=1

n∑
i=1

τku
+
ik + (1− τk)u−ik (6)

subject to

b+k − b
−
k + u+ik − u

−
ik +

m∑
j=1

(β+j − β
−
j )ξ̂ij +

N∑
s=1

(α+
s − α−s )πs(Zi) = Yi,

b+k > 0, b−k > 0, β+j > 0, β−j > 0, α+
s > 0, α−s > 0,

u+ik > 0, u−ik > 0, 1 6 i 6 n, 1 6 k 6 K, 1 6 j 6 m, 1 6 s 6 m.

The R lpSolve package can be used to implement the above LP problem.

§6. Numerical Examples

6.1 Simulation Studies

In this subsection we investigate the finite sample performance of the proposed esti-

mation methods with Monte Carlo simulation studies. The data sets are generated from
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the following model:

Y =

∫ 1

0
β(t)X(t)dt+ g(Z) + ε. (7)

For the functional linear component, the design is similar to [21], that is, the functional

coefficient β(t) =
√

2 sin(πt/2) + 3
√

2 sin(3πt/2) and X(t) =
50∑
j=1

ξjvj(t), where the ξjs are

distributed as the independent normal with mean 0 and variance λj = ((j − 0.5)π)−2,

vj(t) =
√

2 sin((j − 0.5)πt). The nonparametric component is taken as g(Z) = sin(2πZ),

and the random variable Z is distributed uniformly on [0, 1]. The following three distribu-

tions of random error are considered to compare the CQR estimators and the least squares

(LS) estimators: (1) ε follows N(0, 1) normal distribution; (2) ε follows t(3) distribution;

(3) ε follows standard Cauchy distribution. The latter yields a model in which the expec-

tation of the response does not exist. We take τk = k/8, k = 1, 2, . . . , 7, kn as the integer

part of n1/5, and l = 3 in the simulation.

In addition to the comparison of CQR with the LS regression, we also compare the

B-spline approximation used in previous section with local linear approximation [30] to the

nonparametric function g(Z) in the composite quantile regression model (LCQR). In the

simulation, the bandwidth h = 0.5n1/5 and biweight kernel function are used for the local

linear approximation.

To assess the performance of estimates for slope function β(·) and nonparametric

function g(·), we employ the following error criteria [10]:

MSE1 =
n1∑
k=1

(β̂(tk)− β(tk))
2/n1, MSE2 =

n2∑
i=1

(ĝ(zi)− g(zi))
2/n2,

where {tk, k = 1, 2, . . . , n1} and {zi, i = 1, 2, . . . , n2} are grid points chosen to be equally

spaced in the domains of function β(·) and g(·), respectively. n1 = n2 = 200 are used.

Table 1 MSEs of β(·) and g(·)

n N(0, 1) t(3) Cauchy(0, 1)

LS CQR LCQR LS CQR LCQR LS CQR LCQR

β(·) 100 0.419 0.442 0.438 0.937 0.601 0.593 – 1.358 1.188

200 0.204 0.215 0.197 0.425 0.280 0.274 – 0.519 0.491

g(·) 100 0.066 0.070 0.065 0.193 0.108 0.102 – 0.256 2.170

200 0.032 0.034 0.035 0.087 0.047 0.055 – 0.108 0.232

Based on 1 000 repetitions, Table 1 summarizes the MSEs of the estimated β(·) and

g(·) with different sample sizes under three kinds of random error. In the table, “–” means

the value is much larger than others and we do not report them. We can see that the

MSEs decrease as the sample size increases. As is anticipated, the CQR is slightly less
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efficient than the LS regression for normal distributed errors, but stays robust when the

distribution tails of error become heavier, while the LS estimator breaks down for Cauchy

distributed errors. This verifies that the CQR estimation is necessary for the error with

heavy tails.

The comparison between CQR and LCQR is more or less complicated. Unexpectedly,

we find that the estimator of the slope obtained from LCQR performs better than that

from CQR. However, the local linear estimator of the nonparametric component may

be more affected by heavier tails of the errors, although it is similar to the B-spline

estimator for both normal distributed errors and t(3) distributed errors. We also note that

the bandwidth for local linear approximation is fixed to h = 0.5n1/5 and not optimized

considering the computation time of the simulation. In fact, the computing times of the

LCQR simulation with R on a PC (processor: Intel(R)Core(TM)2 i5-3470 CPU @ 3.20

GHz, 3.47 GB) takes 8.7 hours for one case, which is about 8 times of CQR.

Figures 1 – 3 demonstrate the average curve estimates of slope parameter β(·) and

nonparametric function g(·) over the 1 000 repetitions for three error cases with n = 200

(Figure 3 does not show the failed LS estimator). The plots for n = 100 are very similar,

thus are omitted to save space.
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Figure 1 The true β and g and their estimators for N(0, 1) random error

with n = 200: true-solid line, LS-dashed line, CQR-dotted line

6.2 Application to Spectra Data

In this subsection, we apply our proposed CQR estimation to the tecator data, which

is available at http://lib.stat.cmu.edu/datasets/tecator, and has been widely used in the
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Figure 2 The true β and g and their estimators for t(3) random error with

n = 200: true-solid line, LS-dashed line, CQR-dotted line
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Figure 3 The true β and g and their estimators for standard Cauchy

random error with n = 200: true-solid line, CQR-dotted line

context of functional data [3, 31]. For each food sample, the spectrum of the absorbance

recorded on a Tecator Infratec Food and Feed Analyzer working in the wavelength range

850 – 1 050 nm by the near-infrared transmission (NIT) principle is provided also with

the fat, protein, and moisture contents, measured in percent and determined by analytic
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chemistry.

We denote the fat content as Yi, the protein content as Zi, the moisture content as

Ui, and the absorbance as Xi(t). Xi(t) = log10(p0/p), where t is the wavelegenth of the

light, p0 is the intensity of the light before passing through the meat sample, and p is

the intensity of the light after it passes through the meat sample. These absorbances can

be took as a discrete approximation to the continuous record, Xi(t). We use B-splines to

convert discrete grid form of Xi(t) to the functional form and fix the number of knots to be

100. The degree of spline functions has been chosen to be 4. To evaluate the performance

of the models, similar to [32], the sample is divided into two groups: the training sample,

I1 = {(Xi, Yi, Zi, Ui), i = 1, 2, . . . , 165}, and the test sample I2 = {(Xi, Yi, Zi, Ui), i =

166, 167, . . . , 215}. The training sample is used to estimate the parameters and the test

sample is employed to verify the quality of predictions. For this, we computed the mean

square error of prediction (MSEP), which is defined by

MSEP =
1

50

∑
i∈I2

(Yi − Ŷi)2/Var I2(Yi),

where Ŷi is the predicted value based on the training sample and Var I2 is the sample

variance of the response variable from the test sample.

According to Figure 4 and examination of the fat, water and protein data, we can

obtain that there are no obvious outliers and the LS estimator can be considered. For

comparison, we compute the MSEPs corresponding to the following 4 models:

Y =

∫ 1 050

850
X(t)β(t)dt+ g1(U) + ε (model 1),

Y =

∫ 1 050

850
X(t)β(t)dt+ aU + ε (model 2),

Y =

∫ 1 050

850
X(t)β(t)dt+ g2(Z) + ε (model 3),

Y =

∫ 1 050

850
X(t)β(t)dt+ bZ + ε (model 4).

Model 2 and model 4 are belong to partial functional linear regression model [21]. For

composite quantile regression, we use τk = k/10, k = 1, 2, . . . , 9 in computation. According

to Table 2, we can obtain that the results from CQR and LS are very similar, and the

relationship between fat content and moisture content or protein content with nonlinearity

are more accurate than linearity. Considering prediction performance, MSEP of model 1

is the smallest. This may imply that a nonparametric component of U has a strong effect

additive to the linear term of X. Moreover, we can also consider model

Y =

∫ 1 050

850
X(t)β(t)dt+ g1(U) + g2(Z) + ε,
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which intuitively has smaller MSEP than model 1. But this goes beyond the topic of this

paper and is a subject of works in progress. In addition, comparing the decrease in MSEP

from model 2 to model 1, we may anticipate that the gain of adding g2 to model 1 would

be limited.

Table 2 The MSEPs of different models

model l model 2 model 3 model 4

CQR 0.035 0.516 0.234 0.484

LS 0.036 0.489 0.244 0.464
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Figure 4 The spectrometric curves and their second derivative curves

Appendix: Proof of Theorems

The following lemma, which follows easily from Theorem 12.7 of [33], is stated for

easy reference.

Lemma 6 Under condition C4, there exists a spline function g∗(·) =
N∑
s=1

α0sπs(·),

called spline approximation of g0(·), such that

sup
z∈[0,1]

|g∗(z)− g0(z)| 6 CN−r.

For convenience, we defineUi={ξ̂i1, ξ̂i2, . . . , ξ̂im}T, πi={π1(Zi), π2(Zi), . . . , πN (Zi)}T.

π = (π1,π2, . . . ,πn)T and U = (U1,U2, . . . ,Un)T be the n × N and n ×m quasi-design
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matrix for nonparametric function and functional slope parametric component, respec-

tively. We denote by Tn the set of random vectors ((X1, Z1), (X2, Z2), . . . , (Xn, Zn)), α0 =

{α01, α02, . . . , α0N}T, β0 = {β01, β02, . . . , β0m}T, b0 = {b01, b02, . . . , b0K}T, α = {α1, α2,

. . . , αN}T, β = {β1, β2, . . . , βm}T, b = {b1, b2, . . . , bK}T, D = diag{
√
nfε(b01),

√
nfε(b02),

. . . ,
√
nfε(b0K)}, P = π(πTπ)−1πT, H2

n = NπTπ, U∗ = (I − P )U = (U∗1 ,U
∗
2 , . . . ,U

∗
n)T

and Λn = U∗TU∗.

Lemma 7 Under the conditions C1 – C7, there exist two constants C1, C2 > 0 with

probability tending to 1 such that

C1 6
λmin(Λn/n)

λm
6 C2,

where λmin(Λn/n) denotes the minimum eigenvalue of Λn/n.

Proof of Lemma 7 Observe that

1

n
Λn =

1

n
U∗TU∗ =

1

n
UT(I − P )U =

1

n
UTU − 1

n
UTPU .

Let a ∈ Rm, satisfying aTa = 1, then

1

n
aTUTUa =

1

n

m∑
l=1

m∑
k=1

al
n∑
i=1
〈Xi, v̂l〉〈Xi, v̂k〉ak

=
1

n

m∑
l=1

m∑
k=1

n∑
i=1

al〈Xi, v̂l〉〈Xi, v̂k〉ak

=
1

n

n∑
i=1

〈
Xi,

m∑
l=1

alv̂l

〉〈
Xi,

m∑
k=1

akv̂k

〉
=

1

n

n∑
i=1

∫ 1

0

∫ 1

0
Xi(t)Xi(s)

m∑
l=1

alv̂l(t)
m∑
k=1

akv̂k(s)dtds

=

∫ 1

0

∫ 1

0
Ĉ(t, s)

m∑
l=1

alv̂l(t)
m∑
k=1

akv̂k(s)dtds

=
m∑
l=1

m∑
k=1

alak

∫ 1

0

∫ 1

0
Ĉ(t, s)v̂l(t)v̂k(s)dtds

=
m∑
l=1

λ̂la
2
l .

Therefore, λ̂m 6
m∑
l=1

λ̂la
2
l 6 λ̂1. According to ‖λj−λ̂j‖2 = Op(n

−1) (see, e.g., Theorem

2.7 of [4]), we have

C1 6
λmin(UTU/n)

λm
6 C2.

Invoking Lemma 5.1 of [34] and Theorem 4 of [25], we see that the eigenvalues

of n−1NπTπ are bounded away from zero and infinity. Since I − P is the orthogonal

projection matrix, by Theorem 5.9 of [35], we have

λj

( 1

n
Λn

)
6 λj

( 1

n
UTU

)
, j = 1, 2, . . . ,m,
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where λj(A) is the jth largest nonzero eigenvalue of A. Then, Lemma 7 follows from

condition C7. �

Lemma 8 Under the conditions of Theorem 2, one has

|θ̂| = Op(δn), (8)

where δn =
√
N +m and θ̂ is defined as (9).

Proof of Lemma 8 Let

θ


b

β

α

 =


θ1

θ2

θ3

 =


D(b− b0)

Λn
1/2(β − β0)√

1/NHn(α−α0) +
√
NHn

−1πTU(β − β0)


and

θ̂ = θ(b̂, β̂, γ̂) = (θ̂ T
1 , θ̂

T
2 , θ̂

T
3 )T. (9)

Now, we show that |θ̂| = Op(δn). To do so, let Ṽk = (0, . . . , 1/[
√
nfε(b0k)], . . . , 0)T,

Ũi = Λ
−1/2
n U∗i , π̃i = N1/2H−1n πi, Ri = UT

i β0 −
∫ 1
0 β0(t)Xi(t)dt + πT

iα0 − g(Zi), θ =

(θT
1 ,θ

T
2 ,θ

T
3)T and

fik(θ) = ρτk(εi − b0k − Ṽ T
k θ1 − ŨT

i θ2 − π̃T
i θ3 −Ri). (10)

Then, one has

L(θ) ≡
K∑
k=1

n∑
i=1

ρτk(Yi − bk −UT
i β − πT

iα)

=
K∑
k=1

n∑
i=1

ρτk(εi − b0k − Ṽ T
k θ1 − ŨT

i θ2 − π̃T
i θ3 −Ri)

=
K∑
k=1

n∑
i=1

fik(θ).

We can obtain (11) with similar arguments to these of Lemma 1 of [13]. Using Lemma

9 and Lemma 10, which will be addressed later, for any κ > 0, we can find Lκ sufficiently

large such that

P
{

inf
|θ|>Lκδn

L(θ) >
K∑
k=1

n∑
i=1

ρτk(εi −Ri − b0k)
}
> 1− κ, (11)

when n is large enough. On the other hand, we have

L(θ̂) = inf
θ∈RK+m+N

L(θ). (12)

Thus, we have

L(θ̂) 6
K∑
k=1

n∑
i=1

ρτk(εi −Ri − b0k).
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Then connecting this with (11), we obtain that when n is large enough,

P
{

inf
|θ|>Lκδn

L(θ) > L(θ̂)
}
> 1− κ.

Thus, |θ̂| = Op(δn). This achieves the proof of Lemma 8. �

Similar to identity [36]

|r − s| − |r| = −s(I(r > 0)− I(r < 0)) + 2

∫ s

0
[I(r 6 t)− I(r 6 0)]dt,

we have

ρτ (r − s)− ρτ (r) = s(I(r < 0)− τ) +

∫ s

0
[I(r 6 t)− I(r 6 0)]dt. (13)

Before giving the results of Lemma 9 and Lemma 10, we first point out that it is

equivalent to prove Lemma 9 and Lemma 10 with ρτ (u) replaced by |u| [13, 37].

Lemma 9 Under the conditions of Theorem 2, for all κ > 0, there exists L = Lκ

such that

lim
n→∞

P
[

inf
|θ|=1

n∑
i=1

(fik(Lδnθ)− fik(0)− E[fik(Lδnθ)− fik(0)] |Tn) > κ(m+N)2
]

= 0.

Proof of Lemma 9 Firstly, noting that ‖vj − v̂j‖2 = Op(n
−1j2) [21], one has

|Ri|2 =
∣∣∣UT

i β0 −
∫ 1

0
β(t)X(t)dt+ πT

iα0 − g(Zi)
∣∣∣2

6 4
∣∣∣ m∑
j=1
〈Xi, v̂j − vj〉β0j

∣∣∣2 + 4
∣∣∣ ∞∑
j=m+1

〈Xi, vj〉β0j
∣∣∣2 + 2|πT

iα0 − g(Zi)|2

= 4A1 + 4A2 + 2A3.

For A1, by condition C1 and the Hölder inequality, it is obtained

A1 =
∣∣∣ m∑
j=1
〈Xi, vj − v̂j〉β0j

∣∣∣2 6 Cm m∑
j=1
‖vj − v̂j‖2|β0j |2

6 Cm
m∑
j=1

Op(n
−1j2−2b) = Op(n

−(a+4b−4)/(a+2b)).

As for A2, due to

E
{ ∞∑
j=m+1

〈Xi, vj〉β0j
}

= 0,

and

Var
{ ∞∑
j=m+1

〈Xi, vj〉β0j
}

=
∞∑

j=m+1
λjβ

2
0j 6 C

∞∑
j=m+1

j−(a+2b)

= O(n−(a+2b−1)/(a+2b)),
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one has

A2 = Op(n
−(a+2b−1)/(a+2b)).

By Lemma 6, one has

A3 = Op(N
−2r).

Taking these together, we have

|Ri|2 = Op(n
−(a+2b−1)/(a+2b) +N−2r). (14)

Using the definition of functions fik, we have

sup
|θ|61

n∑
i=1

(fik(Lδnθ)− fik(0)− E[fik(Lδnθ)− fik(0)] |Tn)

= sup
|θ|61

n∑
i=1

(|εi − b0k − Lδn(Ṽ T
k θ1 + ŨT

i θ2 + π̃T
i θ3)−Ri| − |εi − b0k −Ri|

− E[|εi − b0k − Lδn(Ṽ T
k θ1 + ŨT

i θ2 + π̃T
i θ3)−Ri| − |εi − b0k −Ri|]).

Denoting ∆i(θ) = |εi − b0k − Lδn(Ṽ T
k θ1 + ŨT

i θ2 + π̃T
i θ3)−Ri| − |εi − b0k −Ri|. To prove

Lemma 9, it suffices to show that for any κ > 0, there exists L = Lκ such that

lim
n→∞

P
(

sup
|θ|61

n∑
i=1

[∆i(θ)− E(∆i(θ) |Tn)] > κ(N +m)2
)

= 0.

Let C ≡ {θ : θ ∈ RK+m+N , |θ| 6 1}. As C is a compact set, we can cover it with open

balls, that is C =
Kn⋃
j=1

Cj , with chosen for all j from 1 to Kn, such that

diam(Cj) 6
κ
√
N +m

L
√
n

, j = 1, 2, . . . ,Kn

and

Kn 6
( L

√
n

κ
√
N +m

)K+m+N
. (15)

According to condition C6, Lemma 5.1 of [34] and Lemma 7, respectively, we can easily

conclude that

|Ṽk|2 = Op

( 1

n

)
, |π̃i|2 = Op

(N
n

)
, |Ũi|2 = Op

(m
n

)
, (16)

where 1 6 k 6 K, 1 6 i 6 n. Now, for j = 1, 2, . . . ,Kn, let θ∗j ∈ Cj . Using the definition

of ∆i(θ) and (16), we have

min
j=1,2,...,Kn

n∑
i=1

[∆i(θ)− E(∆i(θ) |Tn)]− [∆i(θ
∗
j )− E(∆i(θ

∗
j ) |Tn)]

6 C(m+N)3/2κ 6
κ

4
(m+N)2, (17)
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and

sup
θ∈C
|∆i(θ)| 6 CLδ2n√

n
. (18)

Besides, for θ fixed in C , with the same arguments as before, one has

n∑
i=1

Var (∆i(θ) |Tn) 6 CL2(N +m)2. (19)

We are now able to prove Lemma 9. By inequalities (15), (17) – (19) and Bernstein in-

equality, we obtain, as n→ +∞,

P
(

sup
|θ|61

n∑
i=1

[∆i(θ)− E(∆i(θ) |Tn)] > κ(m+N)2
∣∣∣Tn)

6 P
(

max
j=1,2,...,Kn

n∑
i=1

[∆i(θ
∗
j )− E(∆i(θ

∗
j ) |Tn)] >

κ

2
(m+N)2

∣∣∣Tn)
6

Kn∑
j=1

P
( n∑
i=1

[∆i(θ
∗
j )− E(∆i(θ

∗
j ) |Tn)] >

κ

2
(m+N)2

∣∣∣Tn)
6 2 exp

{
ln
( L

√
n√

(N +m)κ

)K+m+N
− κ2(N +m)4/4

CL2(N +m)2 + κCL(m+N)3/
√
n

}
→ 0.

The bound on the right hand side does not depend on the sample Tn. Hence, if we

take the expectation on both sides, the direction of inequality remain unchanged. This

achieves the proof of Lemma 9. �

Lemma 10 Under the conditions of Theorem 2, for all κ > 0, there exists L = Lκ

(sufficiently large) such that

lim
n→∞

P
[

inf
|θ|=1

n∑
i=1

E[fik(Lδnθ)− fik(0) |Tn] > (m+N)2
]
> 1− κ.

Proof of Lemma 10 According to (13), we have

E(ρτk(εi − b0k − a− b)− ρτk(εi − b0k − b) |Tn) =
1

2
fε(b0k)a

2 + fε(b0k)ab+ o((a+ b)2).

Considering |θ| = 1, if we set R′i = 2Ri, then

n∑
i=1

E[ρτk(εi − b0k − Lδn(Ṽ T
k θ1 + ŨT

i θ2 + π̃T
i θ3)−Ri)− ρτk(εi − b0k −Ri) |Tn]

=
1

2

n∑
i=1

fε(b0k)[L
2δ2n(Ṽ T

k θ1 + ŨT
i θ2 + π̃T

i θ3)
2 + Lδn(Ṽ T

k θ1 + ŨT
i θ2 + π̃T

i θ3)R
′
i]

+ o((Lδn(Ṽ T
k θ1 + ŨT

i θ2 + π̃T
i θ3) +R′i)

2)

>
1

4

n∑
i=1

fε(b0k)[L
2δ2n(Ṽ T

k θ1 + ŨT
i θ2 + π̃T

i θ3)
2 −R′i

2
] + op((m+N)2).
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According to the definition of fik and (16), we have

1

(m+N)2
inf
|θ|=1

n∑
i=1

E[fik(Lδnθ)− fik(0) |Tn]

>
1

4(m+N)2
inf
|θ|=1

n∑
i=1

fε(b0k)[L
2δ2n(Ṽ T

k θ1 + ŨT
i θ2 + π̃T

i θ3)
2 −R′i

2
] + op(1)

> CL2 −Op
( 1

m+N

)
+ op(1),

which can be made arbitrarily large (as n→∞) by choosing L.

This leads to

lim
n→∞

P
[ 1

(m+N)2
inf
|θ|=1

n∑
i=1

E[fik(Lδnθ)− fik(0) |Tn] > 1
]

= 1.

The proof of Lemma 10 is hence completed. �

Proof of Theorem 2 By the definition of θ̂, Lemma 7 and Lemma 8, one has

|β̂ − β0|2 = |Λ−1/2n θ̂2|2 = Op(n
−(2b−1)/(a+2b)) +Op(n

−2b/(a+2b)+1/(2r+1)).

Observe that

‖β̂(t)− β0(t)‖2 =
∥∥∥ m∑
j=1

β̂0j v̂j −
∞∑
j=1

β0jvj

∥∥∥2
6 2
∥∥∥ m∑
j=1

β̂j v̂j −
m∑
j=1

β0jvj

∥∥∥2 + 2
∥∥∥ ∞∑
j=m+1

β0jvj

∥∥∥2
6 4
∥∥∥ m∑
j=1

(β̂j − β0j)v̂j
∥∥∥2 + 4

∥∥∥ m∑
j=1

β0j(v̂j − vj)
∥∥∥2 + 2

∞∑
j=m+1

β20j

= 4B1 + 4B2 + 2B3.

By orthogonality of {v̂j} and ‖vj − v̂j‖2 = Op(n
−1j2), one has

B1 =
∥∥∥ m∑
j=1

(β̂j − β0j)v̂j
∥∥∥2 6 m∑

j=1
|β̂j − β0j |2 = |β̂ − β0|2

= Op(n
−(2b−1)/(a+2b)) +Op(n

−2b/(a+2b)+1/(2r+1)),

B2 =
∥∥∥ m∑
j=1

β0j(v̂j − vj)
∥∥∥2 6 m m∑

j=1
‖v̂j − vj‖2β20j 6

m

n
Op

( m∑
j=1

j2β20j

)
= Op

(
n−1m

m∑
j=1

j2−2b
)

= Op(n
−1m) = op(n

−(2b−1)/(a+2b)),

B3 =
∞∑

j=m+1
β20j 6 C

∞∑
j=m+1

j−2b = O(n−(2b−1)/(a+2b)).

Thus, we have

‖β̂(t)− β0(t)‖2 = Op(n
−(2b−1)/(a+2b)) +Op(n

−2b/(a+2b)+1/(2r+1)).



188 Chinese Journal of Applied Probability and Statistics Vol. 33

On the other hand, by the definition of θ̂, one has

|α̂−α0|2 = |
√
NH−1n θ̂3 −NHn

−2πTU(β̂ − β0)|2.

We note that

|
√
NH−1n θ̂3|2 = N θ̂T

3H
−2
n θ̂3 = Op

(N(N +m)

n

)
, (20)

similarly ∣∣∣N
n
H−2n πTU(β̂ − β0)

∣∣∣2 =
N2

n2
(β̂ − β0)

TUTπH−4n πTU(β̂ − β0)

= Op

(N(N +m)

n

)
. (21)

As a result, we obtain

|α̂−α0|2 = Op

(N(N +m)

n

)
. (22)

Using Lemma 6, Hölder inequality and (22), one has

‖ĝ − g0‖2 =
∥∥∥ N∑
s=1

α̂sπs − g0
∥∥∥2

6 2‖ĝ − g∗‖2 + 2‖g∗ − g0‖2

= 2
∥∥∥ N∑
s=1

(α̂s − α0s)πs

∥∥∥2 + 2
∥∥∥ N∑
s=1

α0sπs − g0
∥∥∥2

= O
( 1

N

)
|α̂−α0|2 + 2

∥∥∥ N∑
s=1

α0sπs − g0
∥∥∥2

= Op

(N +m

n

)
+O(N−2r)

= Op(n
−2r/(2r+1)) +Op(n

−(a+2b−1)/(a+2b)).

This achieves the proof of Theorem 2. �
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