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§1. Introduction

In the classical probability theory, Borel-Cantelli lemma is a very important result: If

{Ai}∞i=1 is a sequence of events on a probability space (Ω,F ,P) and
∞∑
i=1

P(Ai) <∞, then

P
( ∞⋂
n=1

∞⋃
i=n

Ai
)

= 0; if {Ai}∞i=1 is a sequence of independent events and
∞∑
i=1

P(Ai) =∞, then

P
( ∞⋂
n=1

∞⋃
i=n

Ai
)

= 1. Many attempts have been made to weaken the independent condition

in the second part of the Borel-Cantelli lemma (see [1–4]).

It is well-known that, motivated by the risk measures and stochastic volatility prob-

lems in finance, Peng [5] has introduced a new kind of nonlinear expectation. Hu [6], Hu

and Zhang [7] have obtained Cramér’s theorem and the central limit theorem for capaci-

ties induced by sublinear expectations. Chen et al. [8] have obtained a strong law of large

numbers for capacities. In this paper, the authors derive a Borel-Cantelli lemma for ca-

pacities induced by sublinear expectations, supposing {An}∞n=1 are mutually independent

with respect to v, i.e. v
( ∞⋂
i=n

Aci
)

=
∞∏
i=n

v(Aci ). The natural question is: In the framework

of sublinear expectations, will Borel-Cantelli lemma still hold true under a weaker condi-

tion? Song [9] has achieved a Borel-Cantelli lemma for capacities. In this paper, we will
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prove another Borel-Cantelli lemma for those capacities which covers the previous results

induced by [9].

This paper is organized as follows: In Section 2, we will give some basic notions and

lemma which will be used in the following section. In Section 3, we state and prove the

main result of this paper.

§2. Preliminaries

Let (Ω,F ) be a measurable space and H be a linear space of real valued functions

defined on Ω. Firstly, we give the definition of sublinear expectation (see [5, 10–12]).

Definition 1 ([5]) A sublinear expectation is a functional Ê : H 7→ R satisfying for

all X,Y ∈H ,

(a) monotonicity: Ê[X] > Ê[Y ], if X > Y ;

(b) constant preserving: Ê[c] = c, for c ∈ R;

(c) sub-additivity: Ê[X + Y ] 6 Ê[X] + Ê[Y ];

(d) positive homogeneity: Ê[λX] = λÊ[X], for λ > 0.

The triple (Ω,H , Ê) is called a sublinear expectation space.

From [12], we have the following representation theorem for sublinear expectations.

Lemma 2 ([12]) Let Ê be a sublinear functional defined on H , i.e., (c) and (d) hold

for Ê. Then there exists a family {Eθ, θ ∈ Θ} of linear functionals on H , such that

Ê[X] = max
θ∈Θ

Eθ[X], for X ∈H .

If (a) and (b) also hold, then Eθ is linear expectation for θ ∈ Θ. If we make furthermore

the following assumption: (H1) For each sequence {Xn}∞n=1 ⊂ H such that Xn(ω) ↓ 0 for

ω, we have Ê[Xn] ↓ 0. Then for each θ ∈ Θ, there exists a unique (σ-additive) probability

measure Pθ defined on σ(H ) such that

Eθ[X] =

∫
Ω
X(ω)dPθ(ω), for X ∈H .

In this paper, we are interested in the following sublinear expectation:

E[·] = sup
P∈P

EP[·],

where P is a set of probability measures.
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For this P, we define

V (A) := E[IA] = sup
P∈P

EP[IA], ∀A ∈ F ,

v(A) := −E[−IA] = inf
P∈P

EP[IA], ∀A ∈ F ,

then, V and v are two capacities. It is easy to check that the pair of capacities satisfies

V (A) + v(Ac) = 1, ∀A ∈ F ,

where Ac is the complement set of A.

§3. Main Result

Theorem 3 (Borel-Cantelli lemma for capacities) Let {Ai}∞i=1 be a sequence of

events in F , (V , v) be a pair of capacities induced by sublinear expectation E.

(i) If
∞∑
i=1

V (Ai) <∞, then V
( ∞⋂
m=1

∞⋃
i=m

Ai
)

= 0;

(ii) Let H be an arbitrart real constant, set

αH = lim inf
n→∞

∑
16i<j6n

(V (AiAj)−HV (Ai)V (Aj))( n∑
i=1

v(Ai)
)2

. (1)

If

∞∑
i=1

v(Ai) =∞, and lim
n→∞

n∑
i=1

V (Ai)

n∑
i=1

v(Ai)

= a, (2)

then a2H + 2αH > 1 and v
( ∞⋂
m=1

∞⋃
i=m

Ai
)
> (a2H + 2αH)−1.

Remark 4 It is obvious that a > 1. In fact, when capacities V and v satisfy V = v,

the result is the same as that in [3]. Therefore, Theorem 3 generalizes previous result.

In order to prove Theorem 3, we need the following lemmas.

Lemma 5 Let {Ai}∞i=1 be a sequence of events in F , (V , v) be a pair of capacities

induced by sublinear expectation E. Then, for each n, we have

v
( n⋃
i=1

Ai

)
>

( n∑
i=1

v(Ai)
)2

n∑
i,j=1

V (AiAj)

.
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Proof For arbitrary probability measure P ∈P, applying inequality of Chung and

Erdös (see [13]), we have

P
( n⋃
i=1

Ai

)
>

( n∑
i=1

P(Ai)
)2

n∑
i,j=1

P(AiAj)

.

So we get

inf
P∈P

P
( n⋃
i=1

Ai

)
>

inf
P∈P

( n∑
i=1

P(Ai)
)2

sup
P∈P

n∑
i,j=1

P(AiAj)

>

( n∑
i=1

inf
P∈P

P(Ai)
)2

n∑
i,j=1

sup
P∈P

P(AiAj)

.

By the definition of V and v, it is easy to obtain

v
( n⋃
i=1

Ai

)
>

( n∑
i=1

v(Ai)
)2

n∑
i,j=1

V (AiAj)

.

The proof is completed. �

Lemma 6 Let {Ai}∞i=1 be a sequence of events in F , (V , v) be a pair of capacities

induced by sublinear expectation E. Assume that (V , v) satisfies condition (2). For every

positive integer m > 1, set

α
(m)
H = lim inf

n→∞

∑
m6i<j6n

(V (AiAj)−HV (Ai)V (Aj))( n∑
i=m

v(Ai)
)2

,

then, αH = α
(m)
H for every fixed real number H and every fixed positive integer m.

Proof Let m < n. For real number aij (1 6 i < j 6 n), we have∑
16i<j6n

aij =
∑

16i<j6m
aij +

∑
m6i<j6n

aij +
∑

16i<m<j6n
aij .

By condition (2), we get

n∑
i=m

v(Ai)

n∑
i=1

v(Ai)

= 1−

m−1∑
i=1

v(Ai)

n∑
i=1

v(Ai)

→ 1 (n→∞).

αH = lim inf
n→∞

∑
16i<j6n

(V (AiAj)−HV (Ai)V (Aj))( n∑
i=1

v(Ai)
)2
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= lim inf
n→∞

∑
16i<j6n

(V (AiAj)−HV (Ai)V (Aj))( n∑
i=m

v(Ai)
)2

( n∑
i=m

v(Ai)
)2

( n∑
i=1

v(Ai)
)2

= lim inf
n→∞

∑
16i<j6n

(V (AiAj)−HV (Ai)V (Aj))( n∑
i=m

v(Ai)
)2

= lim inf
n→∞

(I1 + I2 + I3), (3)

where

I1 =

∑
16i<j6m

(V (AiAj)−HV (Ai)V (Aj))( n∑
i=m

v(Ai)
)2

,

I2 =

∑
m6i<j6n

(V (AiAj)−HV (Ai)V (Aj))( n∑
i=m

v(Ai)
)2

,

I3 =

∑
16i<m<j6n

(V (AiAj)−HV (Ai)V (Aj))( n∑
i=m

v(Ai)
)2

.

For fixed m, from condition (2), it follows that lim
n→∞

I1 = 0, and

|I3| 6
m

∑
m<j6n

(V (Aj) + |H|V (Aj))( n∑
i=m

v(Ai)
)2

=

m(1 + |H|)
∑

m<i6n
V (Ai)( n∑

i=m
v(Ai)

)2
→ 0 (n→∞). (4)

From (3) and (4), we have αH = α
(m)
H . The proof is completed. �

Now we give the proof of Theorem 3.

Proof of Theorem 3 (i) First, for each probability P ∈ P, from the classical

Borel-Cantelli lemma, we get

P
( ∞⋂
m=1

∞⋃
i=m

Ai

)
= 0.

By the definition of V , it is easy to obtain

V
( ∞⋂
m=1

∞⋃
i=m

Ai

)
= 0.

We now prove (ii). We begin with proving a2H + 2αH > 1. Obviously

2
∑

16i<j6n
V (AiAj) =

n∑
i,j=1

V (AiAj)−
n∑
i=1

V (Ai),
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2
∑

16i<j6n
V (Ai)V (Aj) =

( n∑
i=1

V (Ai)
)2
−

n∑
i=1

(V (Ai))
2.

Therefore, by the above equalities and Lemma 5, we find

2αH = lim inf
n→∞

n∑
i,j=1

V (AiAj)−
n∑
i=1

V (Ai)−H
[( n∑

i=1
V (Ai)

)2
−

n∑
i=1

(V (Ai))
2
]

( n∑
i=1

v(Ai)
)2

= lim inf
n→∞

[ n∑
i,j=1

V (AiAj)( n∑
i=1

v(Ai)
)2
−

n∑
i=1

V (Ai)( n∑
i=1

v(Ai)
)2
−H

( n∑
i=1

V (Ai)
)2

( n∑
i=1

v(Ai)
)2

+H

n∑
i=1

(V (Ai))
2

( n∑
i=1

v(Ai)
)2

]

> 1 + lim inf
n→∞

[
−

n∑
i=1

V (Ai)( n∑
i=1

v(Ai)
)2
−H

( n∑
i=1

V (Ai)
)2

( n∑
i=1

v(Ai)
)2

+H

n∑
i=1

(V (Ai))
2

( n∑
i=1

v(Ai)
)2

]
. (5)

Using condition (2), we get

lim
n→∞

n∑
i=1

V (Ai)( n∑
i=1

v(Ai)
)2

= 0, lim
n→∞

H

( n∑
i=1

V (Ai)
)2

( n∑
i=1

v(Ai)
)2

= a2H. (6)

For any event Ai, we have (V (Ai))
2 6 V (Ai). Hence

0 6

n∑
i=1

(V (Ai))
2

( n∑
i=1

v(Ai)
)2
6

n∑
i=1

V (Ai)( n∑
i=1

v(Ai)
)2
→ 0 (n→∞). (7)

One can easily deduce from (5), (6) and (7) that a2H + 2αH > 1.

We are now ready to prove v
( ∞⋂
m=1

∞⋃
i=m

Ai
)
> (a2H + 2αH)−1.

Let Bm =
∞⋃
i=m

Ai, then B1 ⊃ B2 ⊃ · · · ⊃ Bm ⊃ Bm+1 · · · , and
∞⋂
m=1

∞⋃
i=m

Ai =
∞⋂
m=1

Bm.

We only need to prove v
( ∞⋂
m=1

Bm
)
> (a2H+2αH)−1. Let m < n, from Lemma 5, we have

v
( n⋃
i=m

Ai

)
>

( n∑
i=m

v(Ai)
)2

n∑
i,j=m

V (AiAj)

. (8)

On the other hand, it is easy to check that

n∑
i,j=m

V (AiAj) =
n∑

i=m
V (Ai) + 2

n∑
m6i<j6n

V (AiAj) =
n∑

i=m
V (Ai) + J1 + J2, (9)
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where

J1 = 2
n∑

m6i<j6n
(V (AiAj)−HV (Ai)V (Aj)), J2 = 2H

n∑
m6i<j6n

V (Ai)V (Aj).

By (8) and (9), we can deduce that

v
( n⋃
i=m

Ai

)
>

( n∑
i=m

v(Ai)
)2

n∑
i=m

V (Ai) + J1 + J2

=

[ n∑
i=m

V (Ai)( n∑
i=m

v(Ai)
)2

+
J1( n∑

i=m
v(Ai)

)2
+

J2( n∑
i=m

v(Ai)
)2

]−1

. (10)

Since

0 6

n∑
i=m

(V (Ai))
2

( n∑
i=m

v(Ai)
)2
6

n∑
i=m

V (Ai)( n∑
i=m

v(Ai)
)2
. (11)

For fixed positive integer m, from condition (2) and inequality (11), it follows that

lim
n→∞

n∑
i=m

(V (Ai))
2

( n∑
i=m

v(Ai)
)2

= 0, (12)

lim
n→∞

J2( n∑
i=m

v(Ai)
)2

= H lim
n→∞

( n∑
i=m

V (Ai)
)2
−

n∑
i=m

(V (Ai))
2

( n∑
i=m

v(Ai)
)2

= a2H. (13)

For fixed m, from (10), (12), (13) and Lemma 6, we have

v
( ∞⋃
i=m

Ai

)
>

[
a2H + lim inf

n→∞

J1( n∑
i=m

v(Ai)
)2

]−1

.

That is to say v(Bm) > (a2H+2αH)−1, for every fixed m. This yields that v
( ∞⋂
m=1

∞⋃
i=m

Ai
)
>

(a2H + 2αH)−1. We complete the proof. �

From Theorem 3, we can easy obtain the following corollary.

Corollary 7 Let {Ai}∞i=1 be a sequence of events in F , (V , v) be a pair of capacities

induced by sublinear expectation E. Assume that V (AiAj) = V (Ai)V (Aj) for all i, j > L
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such that i 6= j and for constant L. If

∞∑
i=1

v(Ai) =∞, and lim
n→∞

n∑
i=1

V (Ai)

n∑
i=1

v(Ai)

= a,

then v
( ∞⋂
n=1

∞⋃
i=n

Ai
)
> 1/a2.

Finally, let us introduce the following Example 8.

Example 8 Let Ω = N, P = {Pn, n ∈ N}, where P1({1}) = 1 and Pn({1}) =

1 − 1/n2, Pn({kn}) = 1/n3, k = 1, 2, . . . , n, for n = 2, 3, . . .. Define capacities V (A) =

sup
P∈P

P(A), v(A) = inf
P∈P

P(A), for A ∈ F . Let event B = {ω : ω = 1}, event C = {ω : 2 6

ω 6 4}, then V (B) = 1, v(B) = 3/4, V (C) = 1/4, v(C) = 0, V (B∩C) = 0, V (B∪C) = 1,

v(B ∪ C) = 25/27. For arbitrary positive integer k, put A2k−1 = B, A2k = C, then

a = lim
n→∞

n∑
i=1

V (Ai)

n∑
i=1

v(Ai)

=
5

3
, and v

( ∞⋂
n=1

∞⋃
i=n

Ai

)
= v(B ∪ C) =

25

27
>

1

a2H + 2αH
=

9

20
.
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