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§1. Introduction

The paper is concerned with the two-sample mean testing problem in high-dimension

settings. An easy example of this problem arises from the case-control study if too many

features are measured in both the case and control groups. Let {Xij : j = 1, 2, . . . , ni}
(i = 1, 2) be two p-dimensional simple random samples with mean µi = (µi1, µi2, . . . , µip)

T

and covariance matrix Σi. The problem of interest is to test

H0 : µ1 = µ2 ←→ H1 : µ1 6= µ2 (1)

in the high-dimensional setting, where both the dimension p = pn and the total sample size

n = n1 + n2 increase to infinity. Let Xi and Si be the sample mean and sample variance

for the ith sample (i = 1, 2) and define S∗ = {(n1 − 1)S1 + (n2 − 1)S2}/(n − 2). The

standard approach to this problem in low dimensional setting is Hotelling’s T-square test [1]

HT = (n1n2/n)(X1 −X2)
TS−1∗ (X1 −X2). Although owning many nice properties, it

does not work in the high-dimensional setting because the sample variance is not invertible

when p > n.
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In recent years, many remedies to Hotelling’s T-square test have been proposed

to adapt to the high dimensionality. Bai and Saranadasa [2], Srivastava and Du [3] and

Srivastava [4] constructed test statistics by removing S−1∗ in HT or replacing it with the

inverse of the diagonal of S∗. Chen and Qin [5] proposed a new test by removing the cross-

product terms
ni∑
j=1
XijX

T
ij (i = 1, 2) in [2]’s test. Alternative to the above sum-of-square

type tests, Cai et al. [6] introduced a max type test statistic, which is defined to be the

maximum squared length of certain projections of the mean difference X1 −X2 on the p

coordinates. An estimator of the covariance matrix is required in this test.

A natural property for a desirable high-dimensional test is component-wise scale in-

variance. That is, it should be invariant under the transformation X 7→ BX with B

being a invertible diagonal matrix. Unfortunately, except [3] and [4]’s tests, none of the

existing tests own the component-wise scale-invariance. For these tests, a different con-

clusion would be achieved if the underlying data-set is re-scaled in some of its dimensions.

Although [3] and [4]’s tests are component-wise invariant, they ignore the componen-

t dependency information in data. We may expect to have possible power gain if such

information is taken into account appropriately.

We propose a composite Hotelling’s T-square test (CHT) for (1) by integrating the

Hotelling’s T-square tests for all bivariate subvectors of the mean vectors. Its asymptotical

normality is also established. The CHT not only is component-wise scale invariant, but

also takes between-component correlation into account, therefore it is expected to have

better testing power than existing high-dimensional tests especially when the between-

component correlation in data is big. This point is confirmed by our local power analysis

and finite-sample simulation study.

We end the introduction section by introducing necessary notation. Throughout the

paper, we assume for convenience that there exists two constants ηi ∈ (0, 1) (i = 1, 2)

such that ni/n = ηi as n → ∞, although it is more natural to assume that ni/n → ηi.

For a vector Xij , let Xij,k be its kth component and let Xij(kl) denote a bivariate vector

consisting of the kth and lth components of Xij . Let S ≡ (skl)p×p = S1/η1 + S2/η2 with

Si = (si,kl)p×p (i = 1, 2). We use S(kl) to denote a 2× 2 submatrix of S consisting of skk,

skl, slk and sll. Let Σ ≡ (σij) = Σ1/η1 +Σ2/η2. The symbols Si(kl), Σ(kl), σi,kl and Σi(kl)

can be defined similarly. For clarity, we postpone all proofs to the Appendix.

§2. Composite Hotelling’s T-Square Test

Testing hypothesis (1) is equivalent to simultaneously testing H0(kl) : µ1(kl) = µ2(kl)

for all pairs (k, l) such that 1 6 k 6= l 6 p. If for each (k, l), a desirable test can be
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constructed for testing H0(kl), then pooling all these tests together gives a desirable test

for hypothesis (1).

The commonly-used test for H0(kl) is the two-sample Hotelling’s T-square test, which,

up to a scale n1n2/n
2, is

n(X1(kl) −X2(kl))
T{S(kl)}−1(X1(kl) −X2(kl))

=
n

n21n
2
2

∑
r1,r2

∑
s1,s2

(X1r1(kl) −X2s1(kl))
T{S(kl)}−1(X1r2(kl) −X2s2(kl)). (2)

Here and in what follows, the subscripts r1, r2 run from 1 to n1 and s1, s2 from 1 to

n2. Similar to the justification of [5] for their test, we find that the terms with r1 = r2

or s1 = s2 in (2) are not useful for testing hypothesis H0(kl). Naturally, we choose the

following modified Hotelling’s T-square test to serve this purpose,

Tkl =
∑
r1 6=r2

∑
s1 6=s2

n(X1r1(kl) −X2s1(kl))
T{S(kl)}−1(X1r2(kl) −X2s2(kl))

n1(n1 − 1)n2(n2 − 1)
.

Adding up Tkl’s for all different pairs (k, l) leads to the proposed composite Hotelling’s

T-square (CHT) test statistic, T =
∑
k 6=l

Tkl.

The CHT test inherits at least two nice properties from the traditional Hotelling’s

T-square test. On one hand, it captures the information on correlation between any two

dimensions of the data since each Tkl sufficiently incorporates this information. Intuitively,

this may make the CHT test to have good power. On the other hand, it is invariant under

a component-wise scale-transformation, i.e., the CHT test keeps unchanged when the data

is recorded under different measurement units.

Roughly speaking, S(kl) ≈ Σ(kl) as n is large. Therefore Tkl ≈ T ∗kl where

T ∗kl =
∑
r1 6=r2

∑
s1 6=s2

n(X1r1(kl) −X2s1(kl))
T{Σ(kl)}−1(X1r2(kl) −X2s2(kl))

n1(n1 − 1)n2(n2 − 1)
.

Accordingly T can be approximated by T ∗ =
∑
k 6=l

T ∗kl, whose limiting distribution is easier to

derive than that of T itself. Since X1r1 ’s and X2s1 ’s are both independent and identically

distributed random vector series and their means are µ1, µ2, respectively. It can be shown

that E(T ∗) = 2n(µ1 − µ2)
TA(µ1 − µ2), where A is a positive definite matrix defined in

Lemma 2. This implies that the null hypothesis H0 in (1) is equivalent to E(T ∗) = 0. If

H0 does not holds, then E(T ∗) tends to be large, so do T ∗ and T . Therefore our testing

rule is to reject H0 if T is too large. The critical values can be determined through the

limiting distribution of T , presented in the next section.



352 Chinese Journal of Applied Probability and Statistics Vol. 33

§3. Asymptotics of the CHT Test

The limiting distribution of T is obtained through two steps. First, we shall derive

the limiting distribution of T ∗. Then we show that the difference between T and T ∗ is

negligible compared with the standard deviation of T ∗. These two assertions immediately

implies that T and T ∗ have the same limiting distribution after standardization.

Following [2] and [5], we make the following assumption on data.

Assumption 1 The data come from Xij = ΓiZij + µi, where Γi = (Γi,kl) is a p×
m matrix, ΓiΓ

T
i = Σi, and Zij = (Zij1, Zij2, . . . , Zijm)T’s are independent and identically

distributed (i.i.d.) random vectors such that E(Zij) = 0 and Var (Zij) = Im, an m × m
identity matrix. In addition, m is required to be larger than p and there exists an positive

integer κ such that E(Z4κ
ijl) 6 K0 <∞, E(Zα1

ijl1
Zα2
ijl2
· · ·Zαq

ijlq
) = E(Zα1

ijl1
)E(Zα2

ijl2
) · · ·E(Z

αq

ijlq
),

whenever
q∑
l=1

αl 6 4κ and l1 6= l2 6= · · · 6= lq.

The i.i.d. assumption on Zij ’s implies that Xij (j = 1, 2, . . . , ni) are also i.i.d. obser-

vations for i = 1 and 2, respectively. The fact that m is arbitrary offers much flexibility

in generating a rich collection of dependence structure [5]. If the observations come from

two p-dimensional normal distributions, Assumption 1 is clearly satisfied. Therefore this

assumption can be regarded as an extension of the normality assumption.

3.1 Limiting Distribution of T ∗

We write T ∗ in a more compact form which will facilitate subsequent presentation.

Lemma 2 The T ∗ defined in Section 2 can be rewritten as

T ∗ =
2n

n1(n1 − 1)n2(n2 − 1)

∑
r1 6=r2

∑
s1 6=s2

(X1r1 −X2s1)TA(X1r2 −X2s2), (3)

where A = (akl)p×p with akk =
∑
j 6=k

σjj/(σkkσjj − σ2kj) and akl = −σkl/(σkkσll − σ2kl).

The limiting distribution of T ∗ hinges on the expectation and variance of T ∗, which

are given in the following lemma.

Lemma 3 Under Assumption 1, we have E(T ∗) = 2n(µ1 − µ2)
TA(µ1 − µ2) and

Var (T ∗) = 16n(µ1 − µ2)
TAΣA(µ1 − µ2) + 8tr{(ΣA)2}{1 + o(1)}.

With the above preparations, we present the limiting distribution of T ∗.

Theorem 4 Under Assumption 1, as n and p tend to infinity, if ni/n = ηi ∈ (0, 1)

(i = 1, 2) and (µ1 − µ2)
TAΣA(µ1 − µ2) = o(n−1tr{(ΣA)2}), then

{T ∗ − 2n(µ1 − µ2)
TA(µ1 − µ2)}/

√
8tr{(ΣA)2} d−→ N(0, 1).
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The assumption ni/n = ηi ∈ (0, 1) is imposed only for convenience purpose. It is

readily to be replaced by “ni/n→ ηi ∈ (0, 1)”.

3.2 Magnitude of the Difference T − T ∗

We need more conditions than to guarantee that the difference T − T ∗ is negligible

compared with the standard deviation of T ∗. Let ρi,kl = σi,kl/
√
σi,kkσi,ll.

Lemma 5 Suppose Assumptions 1 holds and that there exists ε0 ∈ (0, 1) such that

max
i,k,l
|ρi,kl| 6 1− ε0 uniformly for all n. If p4 = o(ntr{(ΣA)2}) and n‖µ1 −µ2‖2/p = O(1),

then (T − T ∗)/
√

tr{(ΣA)2} = op(1).

According to Lemma ?? in the Appendix, a sufficient and necessary condition for

p4 = o(ntr{(ΣA)2}) is p2 = o(ntr(R2)), where R ≡ (ρkl)p×p = D
−1/2
σ ΣD

−1/2
σ with

Dσ = diag{σ11, σ22, . . . , σpp}. This condition characterises how the between-component

correlation in data affects the data dimension that the proposed CHT test can handle.

On one hand, if Σ is a diagonal matrix or there is not any correlation between any pair of

dimensions of the data, then these two conditions are fulfilled if and only if p = o(n). We

do not recommend the CHT test in this situation because the correlation information it

incorporates becomes noise, which downplays its testing capability. On the other hand, if

the correlation coefficient of any two dimensions is a constant ρ ∈ (0, 1) then tr{(ΣA)2} =

p4ρ2(1 + ρ)−2{1 + o(1)} (see the example in the next subsection), which means that p4 =

o(ntr{(ΣA)2}) is always true for any p and any fixed ρ ∈ (0, 1) in this example.

3.3 Limiting Distribution of T

The asymptotical normality of T is a direct corollary of Theorem 4 and Lemma 5.

Theorem 6 If the conditions in Theorem 4 and Lemma 5 are all fulfilled, then

{T − 2n(µ1 − µ2)
TA(µ1 − µ2)}/

√
8tr{(ΣA)2} d−→ N(0, 1).

Although Theorem 6 shows in theory the limiting distribution of the proposed CHT

test statistic, it is still not ready for practical use because the asymptotical variance

tr{(ΣA)2} in Theorem 6 is still unknown and needs to be estimated appropriately.

Lemma 7 Assume the conditions in Theorem 6. If p2 = o(
√
n tr(R2)), then

tr{(Σ̂Â)2}/tr{(ΣA)2} = 1 + op(1),

where Σ̂ and Â are the respective moment estimators of Σ and A.
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The condition p2 = o(
√
n tr(R2)) excludes the cases with no or too weak between-

component correlation in data. According to the discussion after Lemma 5, when there is

no or too weak between-component correlation, the correlation information incorporated

in tr{(ΣA)2} is more to be noise than to be signal. We exclude these cases so that the

signal in tr{(ΣA)2} is big enough.

Theorem 8 If the conditions in Theorem 6 and Lemma 7 are all fulfilled, then

{T − 2n(µ1 − µ2)
TA(µ1 − µ2)}/

√
8tr{(Σ̂Â)2} d−→ N(0, 1).

Theorem 8 implies that if H0 : µ1 = µ2 is not true, then the proposed test statis-

tic T tends to be infinity. Naturally, we propose to reject H0 at α significance level if

T/

√
8tr{(Σ̂Â)2} > ξ1−α, the 1− α quantile of the standard normal distribution.

The proposed CHT test also applies to the one-sample mean testing problem, which

can be regarded as a degenerate two-sample mean problem. Suppose the data are X11, X12,

. . . , X1n1 with mean µ1 and we wish to test µ1 = µ2 for a given value µ2. In this case,

S = S1, Σ = Σ1, and the CHT test reduces to

T =
∑
k 6=l

Tkl =
∑
k 6=l

∑
r1 6=r2

n(X1r1(kl) − µ2(kl))
T{S1(kl)}−1(X1r2(kl) − µ2(kl))

n1(n1 − 1)
, (4)

and Theorem 8 still holds.

3.4 Local Power

Theorem 8 indicates that the proposed CHT test has an asymptotic normal distribu-

tion under the null hypotheses H0. It also facilitates us to derive the asymptotic power of

the CHT test under a local alternative,

βCHT(δ) ≈ Φ
(
− ξα + nδTAδ/

√
2tr{(ΣA)2}

)
,

where δ = µ1 − µ2 and Φ(·) is the standard normal distribution function.

For comparison, we review the asymptotical powers of several existing competitors of

the CHT test. Under the same heterogeneity assumption on variance, Chen and Qin [5]

(CQ for short) derived the local power of their s test, i.e.,

βCQ(δ) ≈ Φ
(
− ξα + n‖δ‖2/

√
2tr(Σ2)

)
.

When variance homogeneity is assumed, say Σ1=Σ2=Σc=(σc,ij), Bai and Saranadasa [2]

(BS) and Srivastava and Du [3] (SD) found that the asymptotical powers of their tests are

βBS(δ) ≈ Φ
(
− ξα + nη1η2‖δ‖2/

√
2tr(Σ2

c)
)
,
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βSD(δ) ≈ Φ
(
− ξα + nη1η2δ

TD−1σ δ/
√

2tr(R2
c)
)
,

where Dσ = diag(σc,11, σc,22, . . . , σc,pp) and Rc = (ρc,kl) with ρc,kl = σc,kl/
√
σc,kkσc,ll.

Given that direct comparison on the above powers is intractable, we consider a special

case: Σ1 = Σ2 = Σc = (σc,kl) with σc,kk = 1, σc,kl = ρ ∈ (0, 1) for k 6= l. Because

the two variances are equal and the diagonal elements in Σc are all one, it follows that

βCQ(δ) ≈ βSD(δ) ≈ βBS(δ). Therefore the asymptotical relative efficiency (ARE) of the

CHT test over the CQ, SD and BS tests are all

ARE =
δTAδ

η1η2‖δ‖2
·

√
tr(Σ2

c)

tr{(ΣA)2}
.

Since tr(Σ2
c) = p2ρ2{1 + o(1)}, tr{(ΣA)2} = p4ρ2(1 + ρ)−2{1 + o(1)} and

δTAδ = η1η2{(p− 1 + ρ)‖δ‖2 − ρ(δT1p)
2}/(1− ρ2),

where 1p = (1, 1, . . . , 1)T is a p-variate vector, we have for large p,

ARE =
(p− 1 + ρ)‖δ‖2 − ρ(δT1p)

2

(1− ρ2)‖δ‖2
1 + ρ

p
{1 + o(1)} =

1− ρt
1− ρ

{1 + o(1)},

where t = (δT1p)
2/(p‖δ‖2). By Cauchy-Schwarz inequality, we find (δT1p)

2 6 p‖δ‖2 for

any δ 6= 0, which implies t ∈ [0, 1]. Because ρ > 0 in this example, we conclude that (i)

ARE > 1, that is, the CHT test is asymptotically more powerful than the rest three tests

excluding the degenerate and trivial cases ρ = 0 or δT1p = 0; and (ii) the advantage of

the CHT test increases as the correlation coefficient ρ increases.

§4. Simulation and a Real Application

We report a limited simulation study and a real application to investigate the finite-

sample performance of the proposed CHT test. We compare it with the CQ, BS and

SD tests as mentioned before. When p < n − 2, Hotelling’s T-square test is also consid-

ered. Throughout the simulation study, all numbers reported are obtained based on 2 000

random samples and the significance level is 5%.

4.1 A Simulation Study

Let Xij = (Xij,1, Xij,2, . . . , Xij,p)
T denote the jth observation in the ith sample (i =

1, 2; j = 1, 2, . . . , ni). We generate Xij,k’s from the following moving average model [5]:

Xij,k = Zij,k + Zij,k+1 + · · ·+ Zij,k+p−1 + µij , k = 1, 2, . . . , p,
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where Zij,k’s are i.i.d. from the centralized Gamma(4, 1) distribution in the case of equal

variance. In the case of unequal variance, Z2j,k’s are replaced with i.i.d. observations from

the centralized Gamma(3, 1) distribution. We fix µ1 = 0 and choose µ2 in the same way

as [7]. The percentage of true null hypotheses is set to be 0%, 25%, 50%, 75%, 95% and

100%. For each percentage level of true nulls, three patterns of allocations as specified

in [7] are considered: (i) the equal allocation where all the nonzero µ2,l are equal; (ii)

linearly decreasing allocations and; (iii) linearly increasing allocations. In addition, µ2 is

subject to ‖µ1 −µ2‖/
√

tr(Σ2) = 0.1 throughout this simulation. We choose p = 500 and

n1 = n2 = 158.

Table 1 Powers and sizes in percentage under the moving average model

with p = 500 and n = 158

Allocation % of true null
Equal variance Unequal variance

CHT CQ BS SD CHT CQ BS SD

Equal

0 37.16 34.32 34.64 4.32 41.42 37.35 37.38 5.78

25 42.82 33.64 33.96 3.84 48.03 37.47 37.45 4.45

50 52.40 33.30 33.62 2.98 58.97 39.33 39.36 3.38

75 73.88 34.08 34.32 1.48 82.74 40.09 40.01 2.89

95 100.00 30.82 31.24 0.88 100.00 42.13 42.17 1.03

100 7.06 6.58 6.68 0.28 7.11 7.02 7.03 0.42

Increasing

0 34.36 34.34 34.56 5.42 40.03 38.72 38.74 6.02

25 42.10 34.88 35.12 4.42 44.68 36.34 36.32 4.94

50 50.14 33.58 33.96 2.90 57.45 39.38 39.32 3.10

75 72.04 34.40 34.76 1.98 79.14 37.68 37.60 2.08

95 99.86 27.44 28.00 0.94 100.00 34.38 34.28 0.82

100 7.64 7.19 7.29 0.18 8.01 7.88 07.85 0.38

Decreasing

0 38.74 34.54 34.84 4.08 41.13 36.56 36.54 6.13

25 44.66 32.72 33.00 3.70 52.36 37.80 37.82 3.88

50 55.28 34.52 34.82 3.00 61.13 40.14 40.12 3.75

75 73.32 30.50 31.04 1.78 81.10 36.14 36.00 2.24

95 99.94 24.88 25.28 0.70 100.00 30.46 30.38 0.94

100 7.30 6.75 6.87 0.28 6.65 6.74 06.75 0.31

Table 1 tabulates our simulated sizes and powers under the moving average model.

The results in the cases of equal variance and unequal variance are very similar to each

other. When the percentage of true nulls is 100%, the reported numbers are type I errors.

We observe that all type I errors are acceptable and close to 5% although those of the CHT

test are generally slightly larger. In view of power comparison, the CHT test is always
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more powerful than the rest three tests. When none of the hypotheses is true, the CHT test

has comparable and slightly larger powers than the CQ and BS tests. As the percentage of

true null increases, the power of the CHT test becomes larger and larger, however those of

the CQ and BS tests remain nearly unchanged. This observation coincides with the local

power of CQ and BS tests, which are increasing functions of ‖µ1 − µ2‖/
√

tr(Σ2). When

95% of the hypotheses is true, the powers of the CHT test reaches 100%. Recall that we

fixed ‖µ1−µ2‖/
√

tr(Σ2) = 0.1. This implies that the CHT test has clear advantages over

the CQ and BS tests if the signal is sparse but large.

The above simulation results show the nice testing performance of the CHT test when

the dimension p is much larger than the sample size n, in which Hotelling’s T-square test

is not applicable. Naturally we would ask, how does it perform when the the dimension

p is less than but close to the sample size n? In this case, Hotelling’s T-square test (T2

for short) is applicable and can be taken as a benchmark for comparison. To this end, we

generate data from the same moving average model under two settings: (i) n1 = n2 = 200,

p = 100 and (ii) n1 = n2 = 100, p = 190. Throughout this simulation, we choose µ2 such

that ‖µ1 − µ2‖/
√

tr(Σ2) = 0.01.

The simulation results are reported in Table 2. We have the same findings as in Table

1 about the type I error and power comparisons of the CHT test and both the CQ and

BS tests. We turn our attention to the comparison of Hotelling’s T-square test and the

above three tests. The CHT, CQ and BS tests have similar and slightly inflated type I

errors, while that of Hotelling’s T-square test is almost equal to the nominal, indicating

that it has a better control on type I error. Under setting (i) where p is much smaller than

n1 + n2, Hotelling’s T-square test works well and is clearly the most powerful among all

tests. In comparison, the CHT test has very close performance and it loses less power than

the CQ and BS tests, whose powers keep almost unchanged. As p approaches n1 + n2 as

in setting (ii), sample covariance matrix S becomes ill conditioned. Hotelling’s T-square

test loses power and superiority, and is uniformly outperformed by the CHT test.

4.2 Real Data Analysis

We illustrate the usefulness of the CHT test by analyzing an amino acid data set,

which is available upon request. The data set consists of hydrophobicity measurements

of 114 family GH11 xylanase amino acid sequences (n1 = 23 basophilic and n2 = 91 aci-

dophilous), with 202 charged residues (p = 202) in each sequence. The problem of interest

is to test whether the two groups of amino acid sequences have different characteristics at

these 202 sites. The results are shown in Table 3. All the four tests lead to the conclu-
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Table 2 Powers and sizes in percentage under moving average model with

p close to n

Allocation
% of p = 100, n1 = n2 = 200 p = 190, n1 = n2 = 100

true null CHT CQ BS SD T2 CHT CQ BS SD T2

Equal

0 42.12 39.36 39.50 13.22 59.00 67.12 62.62 62.60 24.52 21.80

25 48.76 37.52 37.82 10.84 90.42 79.08 66.14 66.14 23.24 35.78

50 54.70 35.42 35.64 8.82 99.08 89.94 70.36 70.36 22.20 54.74

75 85.84 43.12 43.42 8.20 100.00 99.64 76.68 76.66 16.96 88.46

95 100.00 76.10 76.80 9.34 100.00 100.00 100.00 100.00 15.72 100.00

100 7.37 7.32 7.43 0.86 4.90 6.53 6.19 6.17 0.45 4.94

Increasing

0 39.44 38.84 38.94 14.04 42.16 65.48 64.16 64.18 27.22 15.62

25 46.14 38.38 38.56 12.24 75.18 75.00 64.38 64.36 23.90 25.84

50 58.14 38.28 38.64 10.34 94.60 88.88 69.54 69.54 22.56 40.98

75 75.38 34.78 35.20 6.58 100.00 99.30 79.10 79.12 19.70 77.38

95 99.30 23.40 23.64 2.92 100.00 100.00 82.66 82.60 7.84 100.00

100 7.20 7.01 7.10 0.90 5.09 7.71 7.34 7.35 0.71 4.87

Decreasing

0 43.74 38.28 38.46 12.06 84.48 72.92 64.10 64.10 25.36 29.72

25 49.30 36.46 36.62 10.38 99.06 83.40 66.88 66.86 24.50 55.18

50 63.18 39.32 39.66 10.36 100.00 92.38 69.16 69.12 20.52 75.52

75 75.20 32.90 33.60 5.74 100.00 99.88 81.28 81.30 17.62 98.44

95 86.98 16.74 17.06 2.20 100.00 100.00 59.10 59.14 5.00 100.00

100 6.89 6.43 6.49 0.79 4.90 7.27 7.06 7.06 0.72 5.23

sion that there is difference in hydrophobicity between the two groups. And clearly the

proposed CHT test provides the strongest evidence for the difference of the two groups.

Table 3 Testing results for the amino acid data set

CHT CQ BS SD

Statistic 7.3482 4.5109 6.1661 4.7529

p-value 1.0048e-13 3.2269e-06 3.4998e-10 1.0027e-06
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Appendix A: Proofs

Let D = diag{σ−1/211 , σ
−1/2
22 , . . . , σ

−1/2
pp } where σjj are the diagonal elements of Σ. It

is clear that the CHT based on Xij ’s is equal to that based on Yij = DXij ’s. A nice
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property of Yij ’s is that their variances and covariances are uniformly bounded, because

|Cov (Yij,k, Yij,l)| =
|σi,kl|√
σkkσll

6
ηi|σi,kl|√
σi,kkσi,ll

= ηi|ρi,kl| 6 ηi 6 1, (5)

where ρi,kl = σi,kl/
√
σi,kkσi,ll are the correlation coefficients of the ith population. Hence-

forth we shall take Xij ’s as Yij ’s for convenience. The quantities Tkl, T , T ∗kl and T ∗ all

keep unchanged.

Under Assumption 1, it follows from Xij = ΓiZij with Γi = (Γi,ju)p×m that Xij,r =
m∑
u=1

Γi,juZiu,r. This together with fact Var (Xij,r) 6 ηi implies
∑
u

Γ2
i,ju 6 ηi, and

E(X4
ij,r) =

m∑
u=1

Γ4
i,juE(Z4

iu,r) + 3
∑

16u1 6=u26m
Γ2
i,ju1Γ2

i,ju2 6 K0ηi + 3η2i 6 K0 + 3.

We further conclude that skl converges in probability to σkl uniformly. See Lemma 9.

Thus under Assumption 1, all S(kl) are close enough to Σ(kl) as n is large. Keep in mind

that the Σ(kl) and S(kl) are calculated based on Yij ’s.

Proof of Lemma 2 It can be found that

T ∗ =
∑
r1 6=r2

∑
s1 6=s2

n

n1(n1 − 1)n2(n2 − 1)
U(X1r1 −X2s1 ,X1r2X2s2), (6)

where U(X,Y ) =
∑
k 6=l
XT

(kl){Σ(kl)}−1Y(kl). If Σ = (σkl)p×p, then

(Σ(kl))
−1 =

(
σkk σkl

σkl σll

)−1
=

1

σkkσll − σ2kl

(
σll −σkl
−σkl σkk

)
.

Let X(k) denote the kth component of X. Since σkl = σlk, it follows that

U(X,Y ) = 2
∑
k 6=l

X(k)Y(k)σll −X(k)Y(l)σkl

σkkσll − σ2kl
= 2

∑
k,l

X(k)Y(l)akl = 2XTAY .

This together with (6) implies (3). �

Proof of Lemma 3 Since X1i’s are independent and identically distributed (i.i.d.)

with mean µ1, X2i’s i.i.d. with mean µ2 and they are independent of each other, it can

be verified that E(T ∗) = 2n(µ1 − µ2)
TA(µ1 − µ2).

We now compute the variance of T ∗. Let Yij = Xij − µi. Then

T ∗ − E(T ∗) =
2n

n1(n1 − 1)

∑
r1 6=r2

Y T
1r1AY1r2 +

4n

n1

∑
r1

Y T
1r1A(µ1 − µ2)

+
2n

n2(n2 − 1)

∑
s1 6=s2

Y T
2s1AY2s2 −

4n

n2

∑
s1

Y T
2s1A(µ1 − µ2)
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− 4n

n1n2

∑
r1

∑
s1

Y T
1r1AY2s1 ≡

5∑
k=1

∆k.

Since the expectations of ∆k’s are all zero and that of their cross product are also zero, it

follows that

Var (T ∗) = E{T ∗ − E(T ∗)}2 =
5∑

k=1

E(∆2
k).

With tedious algebra, we have (only the leading terms are kept)

E(∆2
1) =

8n2

n1(n1 − 1)
tr(Σ1AΣ1A), E(∆2

2) =
16n2

n1
(µ1 − µ2)

TAΣ1A(µ1 − µ2),

E(∆2
3) =

8n2

n2(n2 − 1)
tr(Σ2AΣ2A), E(∆2

4) =
16n2

n2
(µ1 − µ2)

TAΣ2A(µ1 − µ2),

E(∆2
5) =

16n2

n1n2
tr(Σ1AΣ2A).

The lemma is proved by summing up the above terms and noting that Σ = (n/n1)Σ1 +

(n/n2)Σ2. �

Proof of Theorem 4 This theorem follows from the proof of Theorem 1 of [5]

with our A1/2Xij in place of their Xij . �

Lemma 9 If there exists an absolute constant K > 0 and κ > 1 such that E(Xκ
ij,k) 6

K uniformly for all i, j, k, then max
k,l
|skl − σkl| = op(1).

Proof To prove this lemma, it suffices to show max
k,l
|si,kl−σi,kl| = op(1) for i = 1, 2,

because

max
k,l
|skl − σkl| 6 max

k,l
|s1,kl − σ1,kl|/η1 + max

k,l
|s2,kl − σ2,kl|/η2.

We only prove max
k,l
|s1,kl − σ1,kl| = op(1) since the proof for i = 2 is the same. The

first subscript 1 will be dropped for convenience if no confusion is caused. Throughout

this proof we assume µ1 = 0. It is easy to see that

skl − σkl =
1

n1

n1∑
r=1

(Xr,lXr,k − σkl)−X(l)X(k),

where X(l) is the lth component of X. For any positive ε, we have

P
(

max
16l6k6p

|slk − σlk| > 2ε
)
6 max

16l6k6p
P(|slk − σlk| > 2ε)

6 max
16l6k6p

P
(∣∣∣ 1

n1

n1∑
r=1

(Xr,lXr,k − σlk)
∣∣∣ > ε

)
+ max

16l6k6p
P(|X(l)X(k)| > ε)

6 max
16l6k6p

1

ε2κ
E
{ 1

n1

n1∑
r=1

(Xr,lXr,k − σlk)
}2κ

+ max
16l6k6p

1

ε2κ
E{X(l)X(k)}2κ.
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We now study the magnitude of the two moments. Note that for each fixed pair

(l, k), Xr,lXr,k − σlk (r = 1, 2, . . . , n) are independent and identically distributed random

variables with mean zero. The condition E(X4κ
j,r) <∞ implies that they also have finite 2κ

moments. Consequently it can be verified after straightforward but lengthy algebra that

there exists a constant C > 0 not depending on n such that

E
{ 1

n1

n1∑
r=1

(Xr,lXr,k − σlk)
}2κ
6 Cn−κ

and E{X(l)X(k)}2κ 6 Cn−2κ.

Thus, it follows that

P
(

max
l,k
|slk − σlk| > 2ε

)
6
p(p+ 1)

2
· Cn

−κ + Cn−2κ

ε2κ
,

which under the assumption p = o(nκ/2) means that max
l,k
|slk − σlk| = op(1). �

Lemma 10 Under the conditions of Lemma 5, |σlk| 6 1− ε0 for any 1 6 l 6= k 6 p.

Proof Since σlk = σ1,lk/η1 + σ2,lk/η2 and |ρi,lk| = |σi,lk|/
√
σi,llσi,kk 6 1 − ε0, we

have

|σlk| 6 (1− ε0)
(√σ1,llσ1,kk

η1
+

√
σ2,llσ2,kk

η2

)
. (7)

Meanwhile it can be seen that(√σ1,llσ1,kk
η1

+

√
σ2,llσ2,kk

η2

)2
6
σ1,llσ1,kk

η21
+
σ2,llσ2,kk

η22
+
σ1,llσ2,kk + σ1,kkσ2,ll

η1η2

=
(σ1,ll
η1

+
σ2,ll
η2

)(σ1,kk
η1

+
σ2,kk
η2

)
.

Since 1 = σll = σ1,ll/η1+σ2,ll/η2 for any 1 6 l 6 p, we have η−11
√
σ1,llσ1,kk+η−21

√
σ2,llσ2,kk

6 1. It then follows from (7) that |σlk| 6 1− ε0. �

Proof of Lemma 5 Let U = (Ukl)p×p with

Ukl =
∑
r1 6=r2

∑
s1 6=s2

n(X1r1,k −X2s1,k)(X1r2,l −X2s2,l)

n1(n1 − 1)n2(n2 − 1)
.

Then it can be verified that Tkl − T ∗kl = tr[{(S(kl))
−1 − (Σ(kl))

−1}U(kl)].

We have shown in Lemma 9 that max
k,l
|skl−σkl| = op(1). Thus given the ε0 in Lemma

5, as n is large, P
(

max
k,l
|skl−σkl| 6 ε0/3

)
can be as close to one as possible. In the rest part

of this proof, we study Tkl − T ∗kl conditionally the event En =
{

max
k,l
|skl − σkl| 6 ε0/3

}
.

When applying the first order Taylor expansion to study the elements of (S(kl))
−1 −

(Σ(kl))
−1, we find that they all are bounded by

C1|skk − σkk|+ C2|skl − σkl|+ C3|skl − σkl|. (8)
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Take for example the (1, 1) element, which is sll/(skksll − s2kl)− σll/(σkkσll − σ2kl). Condi-

tionally on En, |skl| < 1 − (2/3)ε0 for k 6= l, and |skl| < |σkl| + ε0/3 6 1 − (2/3)ε0. The

partial derivative of sll/(skksll − s2kl) with respect to skk is bounded by∣∣∣ s2ll
(skksll − s2kl)2

∣∣∣ 6 ∣∣∣ (1 + ε0/3)2

{(1− ε0/3)2 − (1− (2/3)ε0)2}2
∣∣∣.

Similarly its partial derivatives with respect to skl and sll are also bounded.

Therefore it follows that

|Tkl − T ∗kl| 6 (C1|skk − σkk|+ C2|skl − σkl|+ C3|skl − σkl|) · (|Ukk|+ 2|Ukl|+ |Ull|). (9)

We study the magnitude of E(|Ukl|), which is controlled by√
E(U2

kl) =
√
Var (Ukl) + {E(Ukl)}2.

We need to calculate both E(Ukl) and Var (Ukl). It is easy to see E(Ukl) = n(µ1,k − µ2,k)
·(µ1,l − µ2,l). Let M(kl) be a 2 × 2 matrix with its (2, 1) element being 1 and the rest

elements 0. Then Ukl = Qkl which is defined in (11). Lemma 12 implies

Var (Ukl) = 4{1 +O(n−1)}+ 4n{(σ1,ll/η1)(µ1,k − µ2,k)2 + (σ2,kk/η2)(µ1,l − µ2,l)2}

6 4{1 +O(n−1)}+ 4n{(µ1,k − µ2,k)2 + (µ1,l − µ2,l)2},

where we have used the facts σkk = 1 and σi,kk 6 ηi. Therefore

E(U2
kl) 6 {2 + n(µ1,k − µ2,k)2}{2 + n(µ1,l − µ2,l)2}+ o(1),

which means
√

E(U2
kl) 6 2 + n(µ1,k − µ2,k)2 + n(µ1,l − µ2,l)2 + o(1).

Under Assumption 1, there exists a constant K1 > 0 such that EX4
ij,k < K1 and

therefore E|skk − σkk|2 6 K2/n for some K2 > 0. Thus summing up both sides of (9) and

employing the Schwarz inequality, we have for some constant K > 0

E|T − T ∗| 6 E
∑
k,l

|Tkl − T ∗kl|

6 Kn−1/2(p− 1)
{
p+ o(p) + 2n

p∑
k=1

(µ1,k − µ2,k)2
}

= O(n−1/2p2).

Since p4 = o(ntr{(ΣA)2}), we conclude T − T ∗ = o(
√

tr{(ΣA)2} ). �

Lemma 11 Let the matrices Σ and A be those defined in Theorem 4 and R ≡
(ρij)p×p = D

−1/2
σ ΣD

−1/2
σ with Dσ = diag{σ11, σ22, . . . , σpp}.

(a) We have tr{(ΣA)2} > (p− 1)2tr(R2).



No. 4 LI T.: Composite Hotelling’s T-Square Test for High-Dimensional Data 363

(b) If there exists ε0 ∈ (0, 1) such that max
i,j
|ρij | 6 1 − ε0 holds uniformly for all n, then

tr{(ΣA)2} 6 4(p− 1)2tr(R2)/ε20.

Proof Clearly, −1 6 ρrs 6 1 and ρrr = 1. Let R(rs,kl) be a 2× 2 matrix consisting

of the elements at the crosses of the rth, sth rows and the kth, lth columns of R. It is

not hard to verify that

tr{(ΣA)2} = tr{R(D1/2
σ AD1/2

σ )R(D1/2
σ AD1/2

σ )} =
∑
k 6=l

∑
r 6=s

xrs,kl,

where xrs,kl = tr{R(rs,kl)(R(kl))
−1R(kl,rs)(R(rs))

−1}.
Using the fact that

(R(kl))
−1 =

1

2(1− ρ2kl)

(
1 1

1 −1

)(
1− ρkl 0

0 1 + ρkl

)(
1 1

1 −1

)
,

we find

xrs,kl =
1

2(1− ρ2kl)(1− ρ2rs)

· [(1− ρkl){(ρrk + ρrl)
2 − 2ρrs(ρrk + ρrl)(ρsk + ρsl) + (ρsk + ρsl)

2}

+ (1 + ρkl){(ρrk − ρrl)2 − 2ρrs(ρsk − ρsl)(ρrk − ρrl) + (ρsk − ρsl)2}], (10)

indicating that xrs,kl is always nonnegative for all r 6= s and k 6= l.

We first prove part (a). After splitting (ρsk+ρsl)
2 into ρ2rs(ρsk+ρsl)

2+(1−ρ2rs)(ρsk+

ρsl)
2, we have

xrs,kl =
(1− ρkl){(ρrk + ρrl)− ρrs(ρsk + ρsl)}2 + (1 + ρkl){(ρrk − ρrl)− ρrs(ρsk − ρsl)}2

2(1− ρ2kl)(1− ρ2rs)

+
(1− ρkl)(ρsk + ρsl)

2 + (1 + ρkl)(ρsk − ρsl)2

2(1− ρ2kl)
.

Since the first term is nonnegative and both (1 − ρrs) and (1 + ρrs) are no less than

(1− |ρrs|), it then follows that

xrs,kl >
(ρsk + ρsl)

2 + (ρsk − ρsl)2

2(1 + |ρkl|)
>

1

2
(ρ2sk + ρ2sl).

This immediately implies

tr{(ΣA)2} =
∑
k 6=l

∑
r 6=s

xrs,kl >
1

2

∑
k 6=l

∑
r 6=s

(ρ2sk + ρ2sl) = (p− 1)2tr(R2).

We now prove part (b). Using the fact that |ρrs| 6 1 and Cauchy-Schwarz inequality,

we have

−2ρrs(ρrk + ρrl)(ρsk + ρsl) 6 (ρrk + ρrl)
2 + (ρsk + ρsl)

2.
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Then it follows that

xrs,kl 6
(1− ρkl){(ρrk + ρrl)

2 + (ρsk + ρsl)
2}+ (1 + ρkl){(ρrk − ρrl)2 + (ρsk − ρsl)2}

(1− ρ2kl)(1− ρ2rs)

6
2(ρ2rk + ρ2rl + ρ2sk + ρ2sl)

(1− |ρkl|)(1− ρ2rs)
.

The condition |ρrs| 6 1− ε0 implies that 1− |ρkl| > ε0 and (1− ρ2rs) > 2ε0. Therefore we

have xrs,kl 6 (ρ2rk + ρ2rl + ρ2sk + ρ2sl)/ε
2
0, which means

tr{(ΣA)2} =
∑
k 6=l

∑
r 6=s

xrs,kl 6
∑
k 6=l

∑
r 6=s

(ρ2rk + ρ2rl + ρ2sk + ρ2sl)/ε
2
0 = 4(p− 1)2tr(R2)/ε20. �

Lemma 12 For any 1 6 k, l 6 p, let M(kl) be a generic 2× 2 matrix and let

Qkl =
∑
r1 6=r2

∑
s1 6=s2

n(X1r1(kl) −X2s1(kl))
TM(kl)(X1r2(kl) −X2s2(kl))

n1(n1 − 1)n2(n2 − 1)
. (11)

Under Assumption 1, we have

Cov (Qkl, Qrs) = 2tr{Σ(rs,kl)M(kl)Σ(kl,rs)M
T

(rs)} × {1 +O(n−1)}

+
4n2

n1
(µ1(kl) − µ2(kl))

TM(kl)Σ1(kl,rs)M
T

(rs)(µ1(rs) − µ2(rs))

+
4n2

n2
(µ1(kl) − µ2(kl))

TMT

(kl)Σ2(kl,rs)M(rs)(µ1(rs) − µ2(rs)).

Proof We rewrite Qkl as

Qkl =
∑
r1 6=r2

nXT

1r1(kl)
M(kl)X1r2(kl)

n1(n1 − 1)
+
∑

s1 6=s2

nXT

2s1(kl)
M(kl)X2s2(kl)

n2(n2 − 1)

−
∑
r2,s1

2nXT

2s1(kl)
M(kl)X1r2(kl)

n1n2
.

Let Y1 = X1 − µ1 and Y2 = X2 − µ2. It then follows that

Qkl − E{Qkl} =
∑
r1 6=r2

nY T

1r1(kl)
M(kl)Y1r2(kl)

n1(n1 − 1)
+
∑
r2

2n(µ1(kl) − µ2(kl))
TM(kl)Y1r2(kl)

n1

+
∑

s1 6=s2

nY T

2s1(kl)
M(kl)Y2s2(kl)

n2(n2 − 1)
−
∑
s1

2nY T

2s1(kl)
M(kl)(µ1(kl) − µ2(kl))

n2

−
∑
r2

∑
s1

2nY T

2s1(kl)
M(kl)Y1r2(kl)

n1n2
≡

5∑
h=1

Jh(kl)

and Cov (Qkl) = E(Qkl − E{Qkl})2 = E
{ 5∑
h=1

Jh(kl)
}2

.
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It can be verified that the expectation of Jr(kl)Js(rs) for 1 6 r 6= s 6 5 are all equal

to zero. Let Σ1(rs,kl) be a 2× 2 submatrix of Σ1 consisting of the elements at the crosses

of the rth, sth rows and kth, lth columns. With tedious algebra, we obtain

E(J1(kl)J1(rs)) =
2n2

n1(n1 − 1)
tr{Σ1(rs,kl)M(kl)Σ1(kl,rs)M

T

(rs)},

E(J3(kl)J3(rs)) =
2n2

n2(n2 − 1)
tr(Σ2(rs,kl)M(kl)Σ2(kl,rs)M

T

(rs)),

E(J2(kl)J2(rs)) =
4n2

n1
(µ1(kl) − µ2(kl))

TM(kl)Σ1(kl,rs)M
T

(rs)(µ1(rs) − µ2(rs)),

E(J4(kl)J4(rs)) =
4n2

n2
(µ1(kl) − µ2(kl))

TMT

(kl)Σ2(kl,rs)M(rs)(µ1(rs) − µ2(rs)),

E(J5(kl)J5(rs)) =
4n2

n1n2
tr(ΣT

2(rs,kl)M(kl)Σ1(kl,rs)M
T

(rs)).

The lemma is proved by summing up the above covariances and simplifying the summation

using the fact Σ(kl,rs) = (n/n1)Σ1(kl,rs) + (n/n2)Σ2(kl,rs). �

Proof of Lemma 7 Without loss of generality, we assume σkk = 1 for all k =

1, 2, . . . , p. Let En be the event defined in the proof of Lemma 7 and xrs,kl be the quantity

defined in the proof of Lemma 12. Lemma (9) implies that the probability of En converges

to 1 as n is large. Therefore if Lemma 7 holds conditionally on En, then Lemma 7 is proved.

Define x̂rs,kl be xrs,kl with all ρrs’s replaced by ρ̂rs = σ̂rs/
√
σ̂rrσ̂ss. Thus we have

|tr{(Σ̂Â)2} − tr{(ΣA)2}| = |
∑
r,s,k,l

x̂rs,kl − xrs,kl| 6
∑

r 6=s,k 6=l
|x̂rs,kl − xrs,kl|.

Conditionally on En, there exists a constant C1 (dependent on ε0 not on n, i, j, k, l) such

that

|x̂rs,kl − xrs,kl| 6 C1
∑

r,s∈{r,s,k,l}
|σ̂rs − σrs|.

The above two inequalities imply

|tr{(Σ̂Â)2} − tr{(ΣA)2}| 6 C1
∑

i 6=s,k 6=l

∑
r,s∈{r,s,k,l}

|σ̂rs − σrs| 6 16C1p
2∑
r,s
|σ̂rs − σrs|.

According to Lemma 11, tr{(ΣA)2} > (p − 1)2tr(R2). Thus Lemma 7 will be proved if

we can show
∑
r,s
|σ̂rs − σrs| = op(tr(R

2)).

Under Assumption 1 and the assumption σkk = 1, Xij ’s have uniformly bounded

fourth moments, i.e., there exists C2 > 0 such that max
i,j

E|X4
ij | < C2. At the same time,

there exists a constant C3 > 0 such that max
k,l

E{(σ̂kl − σkl)2} < C3/n. Thus

E
(∑
k,l

|σ̂kl − σkl|
)2
6 p2

∑
k,l

E(σ̂kl − σkl)2 6 p4C3/n = o({tr(R2)}2),
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where the last equality follows from the assumption p2 = o(
√
ntr(R2)). Consequently we

have
∑
k,l

|σ̂kl − σkl| = op(tr(R
2)). �

Appendix B: Simulation for One-Sample Case

Denote R = (ρkl) with ρkk = 1 and ρkl = ρ ∈ (0, 1). Let Z be a random vector from

N(0,R) and W be a random variable from χ2
v, independent of Z. The degree of freedom

v may be 4 or 8. Let X = (X1, X2, . . . , Xp)
T. We generate data from three models: (1)

multi-normal distribution X = Z + µ, (2) multi-t distribution X = Z/W + µ, and (3)

multi-χ2 distribution Xi =
v∑
j=1

Z2
j,i + µi, where Zj,i and µi denote the ith components of

Zj and µ, and Zj ’s are i.i.d. copies of Z. Suppose the hypothesis to test is H0 : µ = 0.

We fix n = 100 and p = 300. Four choices of ρ are considered: 0, 0.2, 0.5 and 0.8.

The simulated type I errors are tabulated in the first panel of Table 4. We find that when

ρ > 0, the type I errors of the CHT test are comparable with those of the CQ and BS

tests. When ρ = 0, the type I errors of the CHT test is much smaller than the significance

level 5%, indicating that the CHT test is very conservative in this situation compared with

the rest three tests. This is probably because the estimation of the zero ρ values enlarges

the estimated variance of the CHT test.

In power comparison, we generated data-sets with µ1 = µ2 = · · · = µ6 = 1 and µ7 =

µ8 = · · · = µp = 0. The simulated powers are presented in the second panel of Table

4. We also transform the generated data-sets by a component-wise transformation, D =

diag(d11, d22, . . . , dpp) with dii’s i.i.d. from the uniform distribution on (0, 10); The D

keeps unchanged throughout this simulation. The corresponding simulated powers of the

CQ and BS tests are given in the last panel of Table 4.

When ρ > 0, the CHT test have uniformly larger powers than the rest three tests. In

particular, under models (2) with v = 4 and ρ = 0.5 or 0.8, the power gain of the CHT

test over the CQ and BS tests can be as large as 60%. Meanwhile under component-wise

transformation, the CHT test keeps unchanged while the CQ and BS tests both suffer from

component-wise scale changes in data. For example, the powers of the CQ and BS tests

can vary from 41% to 77% under model (1) with ρ = 0.8, indicating that they show some

sensitivity to scale transformations. When ρ = 0, the CHT test seems inferior to the rest

three tests, which is probably due to the too conservative variance estimation of T . There

is room for improvement of the CHT test when the data have little between-component

correlation.
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Table 4 Simulated rejection rates (%) in the one-sample case

model v ρ
Type I error Power Power (scaled)

CHT CQ BS SD CHT CQ BS SD CQ BS

(1)

0 0.44 5.09 4.88 5.17 100.00 100.00 100.00 100.00 100.00 100.00

0.2 6.31 6.77 6.76 4.62 100.00 100.00 100.00 100.00 100.00 100.00

0.5 7.10 7.05 7.05 1.44 100.00 94.74 94.74 19.20 84.86 84.80

0.8 7.45 7.37 7.37 0.30 100.00 41.28 41.30 1.38 77.08 77.12

(2)

4

0 0.01 5.41 0.03 0.03 99.56 99.99 96.75 96.47 99.94 96.36

0.2 5.09 7.55 5.51 3.13 97.78 96.16 89.05 75.35 98.52 94.75

0.5 6.77 7.21 6.79 1.33 94.65 33.46 31.38 5.62 16.00 14.89

0.8 6.95 7.40 7.15 0.30 99.96 17.89 17.25 0.72 14.40 13.93

8

0 0.12 5.84 1.09 0.95 100.00 100.00 100.00 100.00 100.00 100.00

0.2 5.93 7.16 6.47 3.95 100.00 99.99 99.97 99.25 100.00 99.98

0.5 7.25 7.51 7.39 1.53 100.00 64.67 63.35 10.68 63.84 62.73

0.8 7.01 7.07 6.99 0.28 100.00 25.68 25.45 1.34 19.52 19.22

(3)

4

0 2.36 5.83 5.42 14.38 64.78 87.33 86.35 91.37 90.06 89.42

0.2 9.56 7.51 7.04 7.18 20.22 16.36 15.23 11.96 25.83 24.12

0.5 8.91 7.75 7.50 2.36 14.57 10.22 9.92 3.11 9.21 8.96

0.8 8.33 7.77 7.59 0.78 19.66 8.61 8.45 0.84 8.06 7.95

8

0 1.03 5.38 5.00 9.12 14.97 43.8 42.65 47.73 46.37 45.61

0.2 8.14 7.45 7.25 6.09 11.76 11.2 10.77 8.01 9.46 9.08

0.5 8.01 7.27 7.17 1.91 10.17 8.37 8.23 2.27 8.47 8.32

0.8 7.84 7.46 7.43 0.52 11.97 7.97 7.91 0.42 8.04 7.95
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