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Abstract: In this paper, the asymptotic behavior of the weak solution (ut)t>0 to the non-local

Cauchy problems as stated in (1) is considered. Only using lower bounds of jumping kernel J(x, y)

for large |x−y|, it is obtained that ‖ut‖p 6 c(t)‖u0‖q with any 1 6 q < p <∞ and large t. Explicit

and sharp formulas for c(t) are also given.
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2010 Mathematics Subject Classification: 60G51; 60G52; 60J25; 60J75

Citation: Lin H N. Decay rates of weak solutions to non-local Cauchy problems [J]. Chinese J.

Appl. Probab. Statist., 2017, 33(6): 642–654.

§1. Introduction and Main Results

Let J(x, y) be a non-negative symmetric function on Rd × Rd such that J(x, y) =

J(y, x) for all x, y ∈ Rd. In this paper, it is aim to study the asymptotic behavior of weak

solution to the following non-local Cauchy problems:

∂tu(t, x) = lim
ε>0

∫
y∈Rd:|y−x|>ε

(u(t, y)− u(t, x))J(x, y)dy

= p.v.

∫
Rd

(u(t, y)− u(t, x))J(x, y)dy in R+ ×Rd (1)

with the initial condition u(0, x) = u0(x) satisfying u0 ∈ Lq(Rd)∩Lp(Rd) for 1 6 q < p <

∞. Here, p.v.
∫
Rd · · · dy indicates the Cauchy principal value. For example, (1) includes

the case that J(x, y) = c/|x − y|d+α with α ∈ (0, 2) and c > 0, which is the kernel

corresponds to the fractional Laplacian. Throughout this paper, we assume that J is a
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Lévy-type kernel; this is, J satisfies that J(x, x) = 0 for all x ∈ Rd and

sup
x∈Rd

∫
(1 ∧ |x− y|2)J(x, y)dy <∞.

For a smooth kernel J with compact support, it is proved in [1] that the solution u

of the equation (1) has decay estimate

‖ut‖Lq(Rd) 6 ct
−(d/2)(1−1/q)‖u0‖1 (2)

for any q ∈ [1,∞) and t large. Note that this decay rate is the same as the one that holds

for solutions of the classical diffusion heat equation. When the jump kernel J(x, y) has

lower bound of the form

J(x, y) > c1|x− y|−(d+2σ)

for all |x− y| > c2 with σ ∈ (0, 1) and some constants c1, c2 > 0, it is proved in [2] that

‖ut‖Lq(Rd) 6 ct
−(d/(2σ))(1−1/q)‖u0‖1 (3)

for any q ∈ [1,∞) and t large. Both papers mentioned above adopt the so-called energy

method by combining with Sobolev type inequalities. In particular, in [2] the fractional

Sobolev-type inequality is used to derive (3). The motivation of this paper is twofold. First

we want to see how energy methods can be applied to non-local Cauchy problems with

more general kernels J , and second we establish weak Poincaré inequalities for non-local

operators, which yield a more direct approach than these of [1, 2].

To taste main contribution of this paper, we present the following statement.

Theorem 1 Assume that there are constants c0 > 0, α > 0 and β ∈ R such that for

any x, y ∈ Rd with |x− y| large enough,

J(x, y) > c0
(

1 ∧ lnβ(1 + |x− y|)
|x− y|d+α

)
.

Let u be the weak solution of (1) associated to an initial condition u0 ∈ Lq(Rd) ∩ Lp(Rd)
with 1 6 q < p <∞. Then, there exist positive constants c1, t0 such that for all t > t0,

‖ut‖p 6


c1
[
t−d/α ln−βd/α t

]1/q−1/p‖u0‖q, α ∈ (0, 2), β ∈ R;

c1
[
t−d/2 ln−(1+β)d/2 t

]1/q−1/p‖u0‖q, α = 2, β > −1;

c1t
−d(1/q−1/p)/2‖u0‖q, α > 2 or α = 2, β < −1.
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It is clear that the assertion above for the case α ∈ (0, 2) and β ∈ R extends (3)

proved in [2]. The assertion for the case α > 2 (or α = 2 and β < −1) indicates that (3)

holds for a large class of jump kernels J which satisfies that sup
x∈Rd

∫
|x− y|2J(x, y)dy <∞.

The estimates in Theorem 1 are more delicate, e.g. see the case α = 2 and β > −1. We

believe that Theorem 1 could not be obtained by the fractional Sobolev-type inequality,

due to the appearing of the logarithmic factor.

At the end of this section, we shall briefly present the idea of the proof. The symmetry

assumption on J allows us to use the energy approach, as done in [3]. For simplicity, we

will avoid the dependence on t of the function u. For p > 1, we multiply the equation (1)

by p|u|p−2u and integrate, obtaining that

∂t‖u‖pp = 〈∂tu, p|u|p−2u〉L2(Rd)

=

∫
p|u(t, x)|p−2u(t, x)

[
p.v.

∫
Rd

(u(t, y)− u(t, x))J(x, y)dy
]
dx

= −p
2

∫∫
(u(y)− u(x))(|u(y)|p−2u(y)− |u(x)|p−2u(x))J(x, y)dydx. (4)

Now, we recall the following inequality: let p > 1 and a, b 6= 0, then, there exists a constant

C depending only on p, such that

(a− b)(|a|p−2a− |b|p−2b) > C|a− b|p, (5)

see, e.g. [2; Appendix]. Hence, combining with both the conclusions above, we obtain

∂t‖u‖pp 6 −cp
∫∫
|u(x)− u(y)|pJ(x, y)dxdy =: −cpDp(u, u). (6)

Therefore, the main task of our arguments is to present good estimates for Dp(u, u).

§2. Preliminary Properties of Weak Solution

Throughout this paper, we assume that there exists a unique weak solution u(t, x) to

the equation (1). For simplicity, we denote by u(t, x) this unique solution. This section

is mainly concerned about some properties for this unique weak solution u(t, x). As it

is common in the literature, we adopt the weak solution for the problem (1) by formally

multiplying the equation by a suitable test function and then integrating by parts, see [4;

Section 2]. Define the following symmetric bilinear form

D(u, v) =
1

2

∫
(u(x)− u(y))2J(x, y)dxdy, u, v ∈ F ,
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where

F = {u ∈ L2(Rd) : D(u, u) <∞}.

Let C lip
c (Rd) be the totality of Lipschitz continuous functions on Rd with compact support.

Since

sup
x∈Rd

∫
(1 ∧ |x− y|2)J(x, y)dy <∞,

according to [5; Example 1.2.4], C lip
c (Rd) ⊂ F and the pair (D,C lip

c (Rd)) is a closable

Markovian symmetric form on L2(Rd). Let D be the closure of C lip
c (Rd) with respect to

the norm ‖f‖D1 :=
√
D(f, f) + ‖f‖22 . Then, (D,D) is a regular Dirichlet form on L2(Rd).

Let u0 ∈ L2(Rd), a function u ∈ L2((0,∞)×Rd) is called a weak solution of the problem

(1), if for any t0 > 0,∫ t0

0

∫
Rd

u∂tϕdxdt+

∫
Rd

ϕ(0, x)u0(x)dx =

∫ t0

0
D(u(t), ϕ(t))dt

for every ϕ ∈ C1
c ((0,∞)×Rd).

The main result of this section is as follows:

Proposition 2 Let u(t, x) be the unique weak solution u(t, x) to the equation (1).

Then, we have the following two statements:

(i) If u0 ∈ Lp(Rd) for some 1 6 p 6 ∞, then u(t) ∈ Lp(Rd) for every t > 0, and

‖u(t)‖p 6 ‖u0‖p. Even more, if u0 > 0 then
∫
Rd u(t, x)dx =

∫
Rd u0(x)dx.

(ii) For any u0 ∈ L2(Rd), ∂tu(t) ∈ L2(Rd) for every t > 0.

Proof Let (Tt)t>0 and (L,D(L)) be the Markovian semigroup and the generator

associated with the regular Dirichlet form (D,D), respectively. For any u0 ∈ L2(Rd),

define u(t, x) = Ttu0(x). Then, u(t) ∈ D(L) such that for any v ∈ C lip
c (Rd) and t > 0,∫

Lu(t)vdx = −D(u(t), v).

In particular, for any ϕ ∈ C1
c ((0,∞)×Rd) and any t0 > 0,∫ t0

0

∫
Rd

∂tuϕdxdt =

∫ t0

0

∫
Rd

Luϕdxdt = −
∫ t0

0
D(u(t), ϕ(t))dt,

which implies that u(t, x) is a weak solution to the equation (1).

By the assumption that there exists a unique weak solution u(t, x) to the equation (1),

we can assume that u(t, x) satisfies the properties above. Then, assertion (ii) immediately

follows from the argument above. On the other hand, it is well known that (Tt)>0 can be
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extended or restricted to a Markovian semigroup on Lp(Rd) with p ∈ [1,∞], see e.g. [5]

or [6]. By [7; Theorem 1.1], the Dirichlet form (D,D) is conservative, i.e. Tt1 = 1, a.e.

for all t > 0. Having these facts at hand, we also prove assertion (i). �

§3. General Results of Decay Rates for Non-Local

Problems

In order to get the decay rates for non-local Cauchy problems, we will study weak-

Poincaré inequalities for energy form Dp(u, u). There may be two ways to establish such

functional inequalities. The first one is based on the information on the jump kernels J .

This approach is more direct, but the assumption that J(x, y) is positive everywhere is

required. For the second argument we make use of the Fourier analysis and the comparison

with the operator of the convolution form. Despite of the complexity, such idea can give

us sharper estimates than those yielded by the first one. We remark that Fourier methods

are not directly applicable to the jump kernels which are not in convolution form.

3.1 The Case that J(x, y) is Positive Everywhere

Proposition 3 For any 1 6 q < p < ∞, there exist two constants c1, c2 > 0 such

that for all r > 0,

‖f‖pp 6 c1β(c2r)Dp(f, f) + r‖f‖pq , f ∈ Lq(Rd) ∩ Lp(Rd), (7)

where

β(r) = rq/(p−q) sup
|x′−y′|6r−q/(d(p−q))

J(x′, y′)−1. (8)

Proof For any f ∈ Lq(Rd) ∩ Lp(Rd) with 1 6 q < p <∞ and for any s > 0, define

fs(x) :=
1

|B(0, s)|

∫
B(x,s)

f(z)dz.

We have, by the Hölder inequality,

‖fs‖∞ 6
1

|B(0, s)|
sup
x

∫
B(x,s)

|f(z)|dz

6 sup
x

( 1

|B(0, s)|

∫
B(x,s)

|f(z)|qdz
)1/q

6 |B(0, s)|−1/q‖f‖q,
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and so, by Jensen’s inequality and Fubini’s theorem, for any 1 6 q < p <∞,

‖fs‖pp 6 ‖fs‖p−q∞
∫
|fs(z)|qdz

= ‖fs‖p−q∞
∫ ∣∣∣ 1

|B(0, s)|

∫
B(z,s)

f(y)dy
∣∣∣qdz

6 ‖fs‖p−q∞
∫

1

|B(0, s)|

∫
B(z,s)

|f(y)|qdydz

= ‖fs‖p−q∞
1

|B(0, s)|

∫
|f(y)|qdy

∫
B(y,s)

dz

= ‖fs‖p−q∞ ‖f‖qq
6 |B(0, s)|−(p−q)/q‖f‖pq .

Therefore, for any f ∈ Lq(Rd) ∩ Lp(Rd) with 1 6 q < p < ∞ and for any s > 0, by the

inequality that (a+ b)p 6 2p−1(ap + bp) for all a, b > 0 and Hölder’s inequality,

‖f‖pp 6 2p−1‖f − fs‖pp + 2p−1‖fs‖pp

6 2p−1
∫ ( 1

|B(0, s)|

∫
B(x,s)

|f(x)− f(y)|dy
)p

dx+ 2p−1|B(0, s)|−(p−q)/q‖f‖pq

= 2p−1
∫ ( 1

|B(x, s)|

∫
B(x,s)

|f(x)− f(y)|dy
)p

dx+ 2p−1|B(0, s)|−(p−q)/q‖f‖pq

6 2p−1
∫ ( 1

|B(0, s)|

∫
B(x,s)

|f(x)− f(y)|pdy
)

dx+ 2p−1|B(0, s)|−(p−q)/q‖f‖pq

6

(2p−1 sup
0<|x′−y′|6s

J(x′, y′)−1

|B(0, s)|

)∫ ∫
B(x,s)

|f(x)− f(y)|pJ(x, y)dydx

+ 2p−1|B(0, s)|−(p−q)/q‖f‖pq

6

(2p−1 sup
0<|x′−y′|6s

J(x′, y′)−1

|B(0, s)|

)
Dp(f, f) + 2p−1|B(0, s)|−(p−q)/q‖f‖pq .

This yields the desired assertion by setting r = 2p−1|B(0, s)|−(p−q)/q in the inequality

above. �

The inequality (7) in Proposition 3 is the so-called Lp → Lq-weak Poincaré inequality

in the literatures, which was first established in [8] for the case p = 2 and was used to

describe various decay of Markov semigroups. Note that, the function β(r) < ∞ only

when J(x, y) is positive everywhere. On the other hand, since Dp(f, f) > 0, without loss

of generality we may and do assume that β is decreasing; otherwise we can use inf
s6r

β(s) to

replace β(r). We will use the following statement.
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Theorem 4 Let β be the function given by (8). Assume that the function β is

decreasing. Then, for any 1 6 q < p <∞, there exist positive constants c1, t0 such that for

all t > t0,

‖ut‖p 6 G−1(c1t)1/p‖u0‖q,

where

G(r) =

∫ 1

r

β(s)

s
ds

and G−1(r) = inf{s > 0 : G(s) 6 r}.

Proof According to (6) and Proposition 3,

∂t‖ut‖pp 6 −cpDp(ut, ut) 6
−‖ut‖pp + r‖ut‖pq

c3β(c2r)
, r > 0.

Using the fact that ‖ut‖q 6 ‖u0‖q for all t > 0, and taking r = ‖ut‖pp/(2‖u0‖pq) in the

inequality above, we get that

∂t‖ut‖pp 6 −c4‖ut‖pp
(
β
c2‖ut‖pp
2‖u0‖pq

)−1
.

If ‖ut‖pp > 2‖u0‖pq/c2 for every t > 0, then the inequality above along with the fact that β

is decreasing gives us

∂t‖ut‖pp 6 −c5‖ut‖pp, t > 0,

which implies that lim
t→∞
‖ut‖pp = 0 and this is a contradiction. Hence, there exists t0 ∈

[0,∞) such that ‖ut‖pp 6 2‖u0‖pq/c2 for t = t0. Due to (6), the function t 7→ ‖ut‖pp is

decreasing, and so ‖ut‖pp 6 2‖u0‖pq/c2 for any t > t0.

In the following, for any t > t0 and r > 0, set f(t) = c2‖ut‖pp/(2‖u0‖pq) and ϕ(r) =

r/β(r). Then, we have f ′(t) 6 −c6ϕ(f(t)), t > t0,

f(t0) 6 1.

Furthermore, using the fact that f(t) is a decreasing function,

G(f(t)) =

∫ 1

f(t)

1

ϕ(s)
ds

=

∫ 1

f(t0)

1

ϕ(s)
ds+

∫ f(t0)

f(t)

1

ϕ(s)
ds

=

∫ 1

f(t0)

1

ϕ(s)
ds−

∫ t

t0

1

ϕ(f(s))
df(s)

> c7 + c6(t− t0),
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which along with the decreasing property of G yields that

f(t) 6 G−1(c7 + c6(t− t0)).

In particular, there exist two positive constants c8, t1 such that

f(t) 6 G−1(c8t), t > t1.

The required assertion immediately follows from the inequality above. �

Example 5 Assume that there are constants c0, α > 0 and β ∈ R such that for any

x, y ∈ Rd,

J(x, y) > c0
(

1 ∧ lnβ(1 + |x− y|)
|x− y|d+α

)
.

Then, for any 1 6 q < p <∞, there exist positive constants c1, t0 such that

‖ut‖p 6 c1[t−1 ln−β t](d/α)(1/q−1/p)‖u0‖q, t > t0.

Proof According to the assumption on J(x, y), there is a constant c1 > 0 such that

for r ∈ (0, 1),

β(r) = r−αq/(d(p−q)) ln−β(1/r).

Then, for any r ∈ (0, 1),

G(r) = c2r
−αq/(d(p−q)) ln−β(1/r).

Therefore, for any r > 0 large enough,

G−1(r) = c3[r
−1 ln−β r]d(p−q)/(αq).

The proof is complete. �

3.2 The General Case that J(x, y) is Only Non-Negative

To consider the general case that J(x, y) is only non-negative, we will compare with

an equation in the convolution form. We note that the convolution form of the equation

allows the use of Fourier analysis to obtain decay bounds.

Proposition 6 Assume that

J(x, y) > J0(x− y), x, y ∈ Rd,
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where J0 is a non-negative measurable function on Rd. Then, there exists a constant c > 0

such that for any r > 0,

‖f‖22 6 Φ(cr1/d)D2(f, f) + r‖f‖21, f ∈ L1(Rd) ∩ L2(Rd),

where

Φ(r) =
1

inf |ξ|>r φ(ξ)
and φ(ξ) =

∫
(1− cos〈z, ξ〉)J0(z)dz.

Proof Define

D0,2(f, g) =

∫
(f(x)− f(y))(g(x)− g(y))J0(x− y)dxdy, f, g ∈ C∞c (Rd).

By the Fourier transform, we have

D0,2(f, g) =

∫
ĝ(ξ)f̂(ξ)φ(ξ)dξ,

where

f̂(ξ) = (2π)−d/2
∫

e−〈ξ,z〉f(z)dz

is the Fourier transform of f . Thus, for every s > 0,∫
{|ξ|>s}

|f̂(ξ)|2dξ 6 Φ(s)

∫
|f̂(ξ)|2φ(ξ)dξ 6 Φ(s)D0,2(f, f).

Therefore, for any s > 0,

‖f‖22 =

∫
|f̂(ξ)|2dξ

=

∫
{|ξ|>s}

|f̂(ξ)|2dξ +

∫
{|ξ|<s}

|f̂(ξ)|2dξ

6 Φ(s)D0,2(f, f) + csd‖f‖21.

By setting r = csd in the inequality above, we prove the desired assertion by the fact that

D0,2(f, f) 6 D2(f, f) for all f ∈ C∞c (Rd). �

Theorem 7 For any 1 6 q < p < ∞, there exist positive constants c0 and t0 such

that for all t > t0,

‖ut‖p 6 (G−1(c0t))
1/q−1/p‖u0‖q,

where

G(r) =

∫ 1

r

Φ(s1/d)

s
ds

and Φ(r) is defined in Proposition 6.
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Proof According to Proposition 6 and the proof of Theorem 4, there exist positive

constants c1 and t0 such that for all t > t0,

‖ut‖2 6 G−1(c1t)1/2‖u0‖1.

Using this and the iteration argument, we can arrive that for any k > 1 there exist

c2, t1 > 0 such that for all t > t1,

‖ut‖2kq 6
k∏
i=1

(G−1(c2t))
1/(2iq)‖u0‖q = (G−1(c2t))

(1/q)(1−1/2k)‖u0‖q.

Now, for any 1 6 q < p, we take k > 1 such that 2kq > p. Setting

θ =
(

1− q

p

)(
1− 1

2k

)−1
∈ (0, 1),

and using the interpolation and the fact that ‖ut‖q 6 ‖u0‖q for all t > 0, we get that for

all t > t1,

‖ut‖p 6 ‖ut‖θ2kq‖ut‖
1−θ
q

6
(
(G−1(c2t))

(1/q)(1−1/2k)‖u0‖q
)θ‖u0‖1−θq

6 (G−1(c2t))
1/q−1/p‖u0‖q.

The proof is complete. �

In the following, we assume that J0 is radial and will establish some estimates for this

case. For any ξ ∈ Rd, using the fact that J0 is radial and the inequality that

1− cos r >
cos 1

2
r2, r ∈ (−1, 1),

we obtain

φ(ξ) =

∫
(1− cos〈ξ, z〉)J0(|z|)dz

=

∫
(1− cos(|ξ|z1))J0(|z|)dz

>
cos 1

2
|ξ|2

∫
{|ξ||z1|61}

|z1|2J0(|z|)dz

>
cos 1

2d
|ξ|2

∫
{|z|61/|ξ|}

|z|2J0(|z|)dz. (9)

Recall that a measurable and positive function l : (1,∞) → (0,∞) is said to vary

regularly at infinite with index α if for every λ > 0,

lim
r→∞

l(λr)

l(r)
= λρ.
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Proposition 8 The following statements hold.

(i) Assume that J0(|z|) > l(|z|)/|z|d, where l varies regularly at infinite with index −α ∈
(−2, 0]. Then, there is a constant c1 > 0 such that for all ξ ∈ Rd with |ξ| small enough,

φ(ξ) > c1l(1/|ξ|). In particular, if there are α ∈ [0, 2), β ∈ R and c2 > 0 such that for

z ∈ Rd with |z| large enough,

J0(|z|) >
c2
|z|d+α

lnβ |z|.

Then there is a constant c3 > 0 such that for all ξ ∈ Rd with |ξ| small enough,

φ(ξ) > c3|ξ|α lnβ(1/|ξ|).

(ii) Assume that there are two constants c4 > 0 and β > −1 such that for z ∈ Rd with |z|
large enough,

J0(|z|) >
c4
|z|d+2

lnβ |z|.

Then, there is a constant c5 > 0 such that for all ξ ∈ Rd with |ξ| small enough,

φ(ξ) > c5|ξ|2 ln1+β(1/|ξ|).

(iii) If
∫
Rd |z|2J0(|z|)dz <∞, then there is a constant c6 > 0 such that for all ξ ∈ Rd with

|ξ| small enough, φ(ξ) > c6|ξ|2.

Proof The assertion (i) is a consequence of Karamata’s theorem ([9; Proposi-

tion 1.5.8]) and (9). By some calculations, the assertion (ii) follows from (9). It is also

easy to see that the assertion (iii) immediately follows from (9) and the assumption that∫
Rd |z|2J0(|z|)dz <∞. �

As an application of all the results in this subsection, we present the following ex-

amples. In particular, the assertion in Example 9 (i) below improves that of Example

5.

Example 9 (i) Assume that there are constants c0 > 0, α > 0 and β ∈ R such

that for any x, y ∈ Rd with |x− y| large enough,

J(x, y) > c0
(

1 ∧ lnβ(1 + |x− y|)
|x− y|d+α

)
.

Then, for any 1 6 q < p < ∞, there exist positive constants c1, t0 such that for all

t > t0,

‖ut‖p 6


c1[t
−d/α ln−βd/α t]1/q−1/p‖u0‖q, α ∈ (0, 2), β ∈ R;

c1[t
−d/2 ln−(1+β)d/2 t]1/q−1/p‖u0‖q, α = 2, β > −1;

c1t
−(d/2)(1/q−1/p)‖u0‖q, α > 2 or α = 2, β < −1.
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(ii) Assume that there are constants c0 > 0 and β < −1 such that for any x, y ∈ Rd with

|x− y| large enough,

J(x, y) > c0
(

1 ∧ lnβ(1 + |x− y|)
|x− y|d

)
.

Then, for any 1 6 q < p < ∞, there exist positive constants c1, t0 such that for all

t > t0,

‖ut‖p 6 exp
[
− c1

(1

q
− 1

p

)
t1/(1−β)

]
‖u0‖q.

Proof (i) When α ∈ (0, 2) and β ∈ R, we apply Proposition 8 (i) and get that for

r > 0 small enough,

G(r) � r−α/d ln−β(1/r).

For the case that α = 2 and β > −1, it follows from Proposition 8 (ii) that for r > 0 small

enough,

G(r) � r−2/d ln−(1+β)(1/r).

Note that, if α > 2 or α = 2 with β < −1, then
∫
Rd |z|2J0(|z|)dz < ∞. Hence, by

Proposition 8 (iii), we find that

G(r) � r−2/d.

The proof is complete. �
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