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Abstract: This note deals with an insurance company with multiple lines of business. In the

context of heavy-tailed heterogeneous claim amounts with the 1st upper-orthant tail dependence,

based on the so-called k-out-of-n ruin set, we can exhibit the Radon measure µ and derive the

asymptotic ruin probability for some of all lines business to ruin in a finite time. One numerical

example is also presented to illustrate our main results.
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§1. Introduction

Insurance companies in the business of risks pool together risks faced by individuals

or business companies and compensate the potential loss so as to offset their financial

burden. To ensure the promised obligations, the insurance company sets aside amount

called the reserve or surplus from which it can draw when claims are due. The ruin

happens whenever the reserve fails to cover the claim amounts. So it plays the important

role to evaluate the probability to ruin in insurance industry. The ruin probability with

respect to the univariate risk has been intensively investigated in the past decades, readers

may refer to [1], a comprehensive monograph, and the references therein for more details

in literature.
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This paper studies the insurance company with multiple lines of business, which are

exposed to catastrophic risks such as earthquakes, floods, hurricanes or terrorist attacks

etc. Since such risks usually have an substantial effect on all lines of business at the same

time, the statistical dependence among claims from these lines should be considered. To

the best of our knowledge, fewer studies on the ruin probability with respect to multivari-

ate risks were conducted in 10 years. To name a few, Collamore [2] was one among the

first to introduce the high dimensional general ruin set problem with respect to light-tailed

claims, we also refer readers to [3] and [4] and references therein for light-tailed claims. For

the multi-dimensional heavy-tailed claim processes, Hult et al. [5] firstly studied the ruin

probability in the context of multivariate regularly varying random walks and presented

sharp asymptotic general ruin boundaries. Afterward, for the claim amount vector with

multivariate regularly varying distributions, Hult and Lindskog [6] derived the asymptotic

decay of the ruin probability as the initial capital is large. And then, Biard et al. [7] relaxed

the independence and stationarity in the renewal risk model and successfully extended

some asymptotic results on finite-time ruin probabilities of heavy-tailed claim amounts.

Hereafter, Biard [8] again obtained the asymptotic finite-time ruin probability in the con-

text of homogeneous regularly varying marginal claim amounts with some dependence

structures. Recently, under the framework of heterogeneous heavy-tailed marginal claim

amounts with certain dependence structures, Li et al. [9] derived the asymptotic finite-time

ruin probability and developed the optimal allocation of the global initial reserve in the

sense of minimizing the asymptotic ruin probability.

On the other hand, recent research works on the finite-time ruin problem in the

literature were developed only for multivariate tail-independent claim amount. However,

it is not uncommon to confront with claim amount vectors which are not tail-independent.

So, along this line, in this study we consider the multivariate ruin set based on the well

known k-out-of-n fault tolerant reliability system, and our research work here focuses on

the multivariate finite-time k-out-of-n ruin probability in the framework of heterogeneous

heavy-tailed marginal claim amounts with upper-orthant tail dependence. The rest of this

paper is organized as follows: In Section 2, we present some important notions to be used

throughout this paper. Section 3 introduces the k-out-of-n ruin set and the r-th upper-

orthant tail dependence. In Section 4 we present the asymptotic multivariate finite-time

ruin probability of the the k-out-of-n ruin set.

Throughout the paper, random vectors and real vectors are denoted by bold English

letters in upper and lower cases, respectively. For example, X = (X1, X2, . . . , Xn)′, x =

(x1, x2, . . . , xn)′, the L1 norm ‖X‖ = |X1| + |X2| + · · · + |Xn|, a = (a1, a2, . . . , an) >

(b1, b2, . . . , bn) = b means ai > bi for all i = 1, 2, . . . , n and a − b = (a1 − b1, a2 −
b2, . . . , an−bn)′. We also denote 1 = (1, 1, . . . , 1)′, 0 = (0, 0, · · · , 0)′, ∞ = (∞,∞, · · · ,∞)′



No. 1 WU J. T., LI X. H.: Asymptotic Finite-Time Ruin Probability for Multivariate Heavy-Tailed Claims 23

and R = [−∞,+∞].

§2. Preliminaries

The regularly varying random variables are usually employed to describe losses due to

catastrophic risks with heavy-tails. For a comprehensive presentation of theory, methods

and applications of heavy-tailed distributions, we refer readers to [10].

A real function L is said to be regularly varying with order α > 0 (written as Rα)

if L(tx)/L(t) → x−α for all x > 0 as t → ∞. In this note we will study multivariate

claim amounts and thus the multivariate version of regular variation is at the center of

our discussion.

Definition 1 (Multivariate regular variation) A multivariate random vector X ∈ Rn

with an unbounded support is said to be regularly varying if there exists some nonzero Radon

measure µ such that

lim
t→∞

P(X ∈ tA)

P(‖X‖ > t)
= µ(A), (1)

for any Borel set A ∈ Rn with µ(∂A) = 0 and bounded away from 0.

Since for the Radon measure µ in Definition 1, there exists some α > 0 such that

µ(tA) = t−αµ(A) holds for any t > 0 and each Borel set A ⊂ Rn bounded away from

0, X is also said to be regularly varying with index α and limiting measure µ (denoted

as X ∈ MRα,µ). Also the following equivalent definition for the multivariate regular

variation is quite convenient in some occasions.

Definition 2 [10] A multivariate random vector X ∈ Rn with an unbounded support

is regularly varying if there exists a Radon measure ν on [0,∞]\{0} such that

lim
t→∞

P(X/t ∈ [0,x]c)

P(X/t ∈ [0,1]c)
= ν([0,x]c), (2)

for any x ∈ [0,∞)\{0}, here ν([0, ·]c) is continuous.

§3. Ruin Set and Upper Tail Dependence

To describe the reserve of an insurance company with n lines of business, we consider

a multivariate risk process

Rt = ua + tc− St, (3)

where u is the global initial reserve, a = (a1, a2, . . . , an)′ ∈ (0, 1)n with a1 +a2 + · · ·+an =

1 is the vector according to which the initial capital u is allocated to all n lines and



24 Chinese Journal of Applied Probability and Statistics Vol. 34

c = (c1, c2, . . . , cn)′ ∈ (0,∞)n is the vector of premium rates, St =
N(t)∑
i=1

Xi gives the

vector of aggregate claim amounts, N(t) is a Poisson process with λ > 0, and Xi =

(Xi1, Xi2, . . . , Xin)′ is a sequence of i.i.d. random claim vectors, which are independent of

N(t). From now on, we write X = (X1, X2, . . . , Xn)′ for a generic element of Xi’s and

denote F i = 1− Fi be the survival function of the marginal Xi, i = 1, 2, . . . , n.

The univariate finite-time ruin probability is defined as, for u, t∗ > 0,

ψ(u, t∗) = P(Rt < 0 for some t ∈ [0, t∗] |R0 = u)

= P
(

sup
[0,t∗]
{St − ct} > u

)
.

In the multivariate case, the ruin may occur in many different ways as a result of various

concerns on the safety of the insurance company. To name a few, we list here some versions

of the finite-time ruin probability based on the corresponding ruin sets. One may see for

example [6, 9, 11,12] for more details.

• The probability that the sum of all line reserves becomes negative before t∗,

ψ+(u, t∗) = P
(

sup
[0,t∗]

{ n∑
j=1

(S
(j)
t − cjt)

}
> u

)
;

• The probability that at least one line’s reserve becomes negative before t∗,

ψ∨(u, t∗) = P
( n⋃
j=1

{
sup
[0,t∗]

(S
(j)
t − cjt) > aju

})
;

• The probability that different fraction of each positive line fail to cover the negative

position of other lines somewhere before t∗,

ψω(u, t∗) = P(Rt ∈ Γω for some t ∈ [0, t∗]),

where, for ω′ = (ω1, ω2, . . . , ωn) ∈ [0, 1]n,

Γω =
{
x :

n∑
k=1

ωk(xk)+ <
n∑
k=1

(−xk)+

}
.

Motivated by the well known k-out-of-n fault tolerant reliability system [13], we intro-

duce the ruin set

Γk =
{
x :

n∑
i=1

I(xi) 6 k
}
, for k = 0, 1, . . . , n− 1. (4)

where I(x) = 1 or 0 according to x > 0 or x < 0, respectively. Suppose the ruin occurs

for a multivariate risk process whenever the risk reserve Rt hits Γk at some time t 6 t∗,

a predetermined time point. Then, the ruin probability may be explicitly expressed as

φk(u, t
∗) = P(Rt ∈ Γk for some t ∈ [0, t∗]). (5)
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Evidently, the ruin set Γk corresponds to at most k lines’ nonnegative reserves. For

example, Γ0 means that all lines’ reserves are negative, Γn−1 means that at least one line’s

reserve is negative, and it holds that, for all t∗ and u,

ψ+(u, t∗) = ψ1(u, t∗) > φ0(u, t∗), ψ∨(u, t∗) = ψ0(u, t∗) = φn−1(u, t∗).

For ease of reference, we state one important proposition, which plays a key rule in

deriving the asymptotic ruin probability in Section 4.

Proposition 3 [6] For the risk process Rt in (3) with the claim amounts vector X ∈
MRα,µ for some α > 1, we have

lim
u→∞

φk(u, t
∗)

P(‖X‖ > u)
= λt∗µ(a− Γk), for t∗ > 0, (6)

where a− Γk = {x : x = a− y, y ∈ Γk}.

Actually, after assigning the dependence structure among claim amounts from all lines

of business, we can exhibit µ and then derive the asymptotic ruin probability. As fore-

mentioned in Section 1, the asymptotic tail independence especially plays an important

role in measuring the interdependence among risk claims. In literature, the upper tail

dependence of bivariate copulas has been discussed extensively ever since it was introduced

by Joe [14], and a multivariate version of tail dependence was introduced and studied by

Definition 7.1 of [15] and Definition 1.1 of [16]. Inspired by their work, we introduce

the r-th upper-orthant tail dependence as to further refine the tail dependence. Let

N = {1, 2, . . . , n} and |J | be the number of elements in the subset J ⊆ N .

Definition 4 (r-th upper-orthant tail dependence) A multivariate random vector

X ∈ Rn is said to be r-th upper-orthant tail dependent (1 6 r 6 n− 1), if there exists one

i ∈ N and some nonempty J ⊆ N with |J | = r such that, for all x > 0,

τr(xj |xi : j ∈ J) = lim
t→∞

P
( ⋂
j∈J,i/∈J

{Xj > txj} |Xi > txi

)
> 0,

and for all i ∈ N and J1 ⊆ N with |J1| = r + 1,

τr+1(xj |xi : j ∈ J1) = lim
t→∞

P
( ⋂
j∈J1,i/∈J1

{Xj > txj} |Xi > txi

)
= 0.

As r = 0, it holds that, for all j 6= i,

τ1(xj |xi) = lim
t→∞

P(Xj > txj |Xi > txi) = 0,

X is 0-th upper-orthant tail dependent, this is just the so-called asymptotic tail indepen-

dence in [17]. For more recent work about the upper-orthant tail dependence, readers may

also refer to [16] and references. Here we present some examples for the r-th upper-orthant

tail dependence.
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Example 5 (Farlie-Gumbel-Morgenstern copula) Suppose a random vector X with

the joint distribution function

G(x) =
(

1 + θ
n∏
i=1

F i(xi)
) n∏
i=1

Fi(xi), −1 6 θ 6 1.

After some routine calculus, we have

τ1(xj |xi) = lim
t→∞

P(Xj > txj |Xi > txi) = 0,

for all j 6= i and (xi, xj) > 0, then X is 0-th upper-orthant tail dependence.

Example 6 (Gumbel copula) Suppose that X = (X1, X2) has the joint distribution

function

G(x1, x2) = exp{−[(− lnF1(x1))1/β + (− lnF2(x2))1/β]β}, 0 < β < 1.

It is well known that Gumbel copula is an extreme value copula. Assume that F 2(tx2)/F 1(tx1)

has a positive limit as t→∞. By some standard calculus, we have

τ1(x2 |x1) > 0, for all (x1, x2) > 0.

Then X is 1-st upper-orthant tail dependent.

In a similar manner, for X = (X1, X2, . . . , Xn) with Gumbel-Hougaard copula

C(u1, u2, . . . , un) = exp
{
−
( n∑
i=1

(− lnui)
1/β
)β}

, 0 < β < 1,

where the parameter β, measuring the degree of dependence, ranges from comonotonicity

(β → 0+) to mutual independence (β → 1−). Also we can verify that X is (n−1)-th upper-

orthant tail dependent, in the context that F i(txi)/F 1(tx1) has positive limit as t→∞ for

i = 2, 3, . . . , n and all (x1, x2, . . . , xn) > 0.

Example 7 Suppose the nonnegative random vector X = (X1, X2, X3) has the joint

distribution function

G(x1, x2, x3) = F3(x3) exp{−[(− lnF1(x1))1/β + (− lnF2(x2))1/β]β},

for all (x1, x2, x3) > 0 and β ∈ (0, 1). In the context of F i(txi)/F 1(tx1) having positive

limit as t→∞ for i = 2, 3, by some routine calculous we have

τ1(x2 |x1) > 0, τ2(x2, x3 |x1) = 0,

τ2(x1, x3 |x2) = 0, τ2(x1, x2 |x3) = 0.

This implies that X has the 1-st upper-orthant tail dependence. In this case τ1(0 |x1) = 1.

Notice that if Xi and Xj are tail-equivalent (see (7)), then F i(txi)/F j(txj) having

positive limit as t→∞.
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§4. Approximate Finite-Time Ruin Probability

In this section work on the asymptotic ruin probability of the risk process in (3) in

the following context.

A1 Tail equivalence: There exists some L ∈ Rα with α > 1 such that

lim
t→∞

F i(t)

L(t)
= γαi > 0, i = 1, 2, . . . , n. (7)

In this case, F i ∈ Rα for every i = 1, 2, . . . , n, and F 1, F 2, . . . , Fn are said to be tail

equivalent. Readers may refer to [18] for more details.

A2 Asymptotic independence: For X1, X2, . . . , Xn,

lim
t→∞

P(Xi > t |Xj > t) = 0, i 6= j. (8)

A3 The 1st upper-orthant tail dependence: For X1, X2, . . . , Xn, the following conditions

are satisfied:

– τ1(xj |xi) exists for all i 6= j and τ1(xj |xi) > 0 for some i 6= j, and

– for all J ⊆ N with |J | = 2,

τ2(xk |xi : k ∈ J) = 0. (9)

Now we are ready to derive the approximate ruin probability of the k-out-of-n ruin

set for tail-equivalent claim amounts with upper-tail orthant tail dependence. Firstly, let

us present some propositions to be utilized in developing approximation.

Proposition 8 [9] Under A1 and A2, the Radon measure µ in (1) satisfies µ([x,∞])

= 0 and for all x > 0,

µ
(

(xi,∞)×
n⋂

j=1,j 6=i
{xj = 0}

)
=
γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)
. (10)

Proposition 9 Under A1 and A3, for all x > 0, the Radon measure µ in (1) satisfies

µ([x,∞]) = 0 for n > 3,

µ
(

(xi,∞)×
n⋂

j=1,j 6=i
{xj = 0}

)
=


γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)
, n > 3;

0, n = 2,

(11)

and for i 6= j,

µ

(
(xi,∞)× (xj ,∞)×

n⋂
k=1,

k/∈{i,j}

{xk = 0}
)

= τ1(xj |xi)
γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)
. (12)
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Proof It’s obvious that τ1(0 |xi) = 1, i = 1, 2, . . . , n. For n = 2, by (1) and A3, we

have

µ((xi,∞)× (xj ,∞)) = lim
u→∞

P(Xi > uxi, Xj > uxj)

P(‖X‖ > u)

= lim
u→∞

P(Xj > uxj |Xi > uxi)P(Xi > uxi)

P(‖X‖ > u)

= τ1(xj |xi)
γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)
,

and

µ((xi,∞)× {xj = 0})

= µ((xi,∞)× {xj : xj ∈ [0,∞)})− lim
εj↓0

µ((xi,∞)× {xj : xj ∈ (εj ,∞)})

= lim
u→∞

P(Xi > uxi, Xj > 0)

P(‖X‖ > u)
− lim
εj↓0

τ1(εj |xi)
γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)

= lim
u→∞

F i(uxi)

P(‖X‖ > u)
− τ1(0 |xi)

γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)

= 0.

For n > 3, since P(X ∈ u[x,∞]) 6 P(X1 > ux1, X2 > ux2, X3 > ux3), by (1) and (9) we

have

0 6 µ([x,∞])

= lim
u→∞

P(X ∈ u[x,∞])

P(‖X‖ > u)
6 lim

u→∞

P(X1 > ux1, X2 > ux2, X3 > ux3)

P(X1 > u)

= 0,

µ
(

(xi,∞)×
n⋂

j=1,j 6=i
{xj = 0}

)
= µ

(
(xi,∞)×

n⋂
j=1,j 6=i

{xj ∈ [0,∞)}
)
− lim
εj↓0

µ
(

(xi,∞)×
n⋂

j=1,j 6=i
{xj ∈ (εj ,∞)}

)
= lim

u→∞
P
(
Xi > uxi,

n⋂
j=1,j 6=i

{Xj > 0}
)/

P(‖X‖ > u)− 0

= lim
u→∞

F i(uxi)

P(‖X‖ > u)

=
γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)
, i = 1, 2, . . . , n,

and for all (i, j) ∈ N,

µ

(
(xi,∞)× (xj ,∞)×

n⋂
l=1,

l/∈{i,j}

{xl = 0}
)
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= µ

(
(xi,∞)× (xj ,∞)×

n⋂
l=1,

l/∈{i,j}

{xl ∈ [0,∞)}
)

− lim
εl↓0

µ

(
(xi,∞)× (xj ,∞)×

n⋂
l=1,

l/∈{i,j}

{xl ∈ (εl,∞)}
)

= lim
u→∞

P

(
Xi > uxi, Xj > uxj ,

n⋂
l=1,

l/∈{i,j}

{Xl > 0}
)/

P(‖X‖ > u)− 0

= lim
u→∞

P(Xj > uxj |Xi > uxi)P(Xi > uxi)

P(‖X‖ > u)

= τ1(xj |xi)
γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)
.

Combining the above five equations directly yields (11) and (12). �

According to Proposition 8, under A1 and A2, the 0-th upper-orthant tail dependence

(asymptotic independence) means that the probability of two or more components being

simultaneously large when measured on suitable scales is negligible in comparison with

the probability of one component being large. In this case, the measure µ spreads mass

onto each axis but assigns no mass off the axes. Based on Proposition 9, under A1 and

A3 with n > 2, the 1-th upper-orthant tail dependence tells that the probability of two

components being simultaneously large when measured on suitable scales is significant.

And as for n > 3, the measure µ spreads mass onto each axis and each upper-orthant of

the 2-dimension subspace but assigns no mass on other parts of the space.

Let a− Γk be the subset of x’s such that at least n− k of all ai − xi’s are negative.

Then, it can be expressed as

a− Γk =
{
x :

n∑
i=1

I(ai − xi) 6 k
}

= ∆0 + ∆1 + · · ·+ ∆k,

where, for j = 0, 1, . . . , k,

∆j =
{
x :

n∑
i=1

I(ai − xi) = j
}

is the subset of x such that exactly j elements of a−x are nonnegative and n− j of them

are negative. The following two lemmas evaluate the Radon measure of a − Γk in our

context.

Lemma 10 Under A1 and A2, suppose that X > 0. For the risk process Rt in (3),

µ(a− Γk)

lim
u→∞

L(u)/P(‖X‖ > u)
=


n∑
i=1

γαi
xαi
, k = n− 1;

0, 0 6 k 6 n− 2,

(13)

where a1 + a2 + · · ·+ an = 1 with ai ∈ (0, 1) for i = 1, 2, . . . , n.
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Proof For 0 6 k 6 n− 2,

a− Γk =
{
x :

n∑
i=1

I(ai − xi) 6 k
}
.

This means that at least two or more components are simultaneously large. By (10), we

have µ(a− Γk) = 0.

When k = n− 1, it holds that

a− Γn−1 =
{
x :

n∑
i=1

I(ai − xi) 6 n− 1
}

= ∆0 + ∆1 + · · ·+ ∆n−1,

where

∆n−1 =
{
x :

n⋃
i=1

[ ⋂
j 6=i
{xj : 0 6 xj 6 aj} ∩ {xi : xi > ai}

]}
.

By (10), we also have µ(∆i) = 0 for i = 0, 1, . . . , n− 2 and

µ(∆n−1) =
n∑
i=1

γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)
.

This invokes

µ(a− Γk) =
n∑
i=1

γαi
xαi

lim
u→∞

L(u)

P(‖X‖ > u)
. �

Lemma 11 Under A1 and A3 with nonnegative X and for the risk process Rt in (3),

µ(a− Γk)

lim
u→∞

L(u)/P(‖X‖ > u)
=



τ1(a2 | a1)
γα1
aα1
, n = 2, k = 0;

γα1
aα1

+ [1− τ1(a1 | a2)]
γα2
aα2
, n = 2, k = 1;

∑
16i<j6n

τ1(aj | ai)
γαi
aαi
, n > 3, k = n− 2;

n∑
i=1

γαi
aαi

+
∑

16i<j6n
τ1(aj | ai)

γαi
aαi
, n > 3, k = n− 1;

0, n > 3, 0 6 k 6 n− 3,

(14)

where a1 + a2 + · · ·+ an = 1 with ai ∈ (0, 1) for i = 1, 2, . . . , n.

Proof For n = 2, note that

a− Γ0 = {(x1, x2) : I(a1 − x1) + I(a2 − x2)) 6 0}

= {(x1, x2) : x1 > a1, x2 > a2},

a− Γ1 = {(x1, x2) : I(a1 − x1) + I(a2 − x2)) 6 1}

= {(x1, x2) : x1 > a1, x2 > a2} ∪ {(x1, x2) : x1 > a1, 0 6 x2 6 a2}

∪ {(x1, x2) : 0 6 x1 6 a1, x2 > a2}.
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By (12), we have

µ(a− Γ0) = τ1(a2 | a1)
γα1
aα1

lim
u→∞

L(u)

P(‖X‖ > u)
,

µ(a− Γ1) =
[γα1
aα1

+ (1− τ1(a1 | a2))
γα2
aα2

]
lim
u→∞

L(u)

P(‖X‖ > u)
.

For n > 3 and k = n− 2, it holds that

a− Γn−2 =
{
x :

n∑
i=1

I(ai − xi) 6 n− 2
}

= ∆0 + ∆1 + · · ·+ ∆n−2,

where

∆n−2 =
{
x :

⋃
i 6=j

[ ⋂
l /∈{i,j}

{xl : 0 6 xl 6 al} ∩ {xi : xi > ai} ∩ {xj : xj > aj}
]}
.

Also due to (11) and (12), we have

µ(∆i) = 0, i = 0, 1, . . . , n− 3,

and

µ(∆n−2) =
∑

16i<j6n
τ1(aj | ai)

γαi
aαi

lim
u→∞

L(u)

P(‖X‖ > u)
.

Therefore, we conclude that

µ(a− Γn−2) =
∑

16i<j6n
τ1(aj | ai)

γαi
aαi

lim
u→∞

L(u)

P(‖X‖ > u)
.

For n > 3 and k = n− 1,

a− Γn−1 =
{
x :

n∑
i=1

I(ai − xi) 6 n− 1
}

= ∆0 + ∆1 + · · ·+ ∆n−2 + ∆n−1,

where

∆n−1 =
{
x :

n⋃
i=1

[ ⋂
j 6=i
{xj : 0 6 xj 6 aj} ∩ {xi : xi > ai}

]}
.

Similarly, from (11) and (12) it follows that

µ(∆i) = 0, i = 0, 1, . . . , n− 3,

µ(∆n−2) =
∑

16i<j6n
τ1(aj | ai)

γαi
aαi

lim
u→∞

L(u)

P(‖X‖ > u)
,

and

µ(∆n−1) =
n∑
i=1

γαi
aαi

lim
u→∞

L(u)

P(‖X‖ > u)
.
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Thus, we have

µ(a− Γn−1) =
[ n∑
i=1

γαi
aαi

+
∑

16i<j6n
τ1(aj | ai)

γαi
aαi

]
lim
u→∞

L(u)

P(‖X‖ > u)
.

As for n > 3 and k = 0, 1, . . . , n− 3, it holds that µ(a− Γk) = 0. �

Now, we are ready to present the two main results.

Proposition 12 Under A1 and A2, for the risk process Rt in (3) with X > 0, t∗ > 0

and large u, it holds that

lim
u→∞

φk(u, t
∗)

λt∗L(u)
=


n∑
i=1

γαi
aαi
, k = n− 1;

0, k = 0, 1, . . . , n− 2,

(15)

where ai ∈ (0, 1) for i = 1, 2, . . . , n and a1 + a2 + · · ·+ an = 1.

Proof By Proposition 3, we have, for any t∗ > 0 and u > 0,

lim
u→∞

φk(u, t
∗)

P(‖X‖ > u)
= λt∗µ(a− Γk).

Also from Lemma 10 it follows that

µ(a− Γk) =


n∑
i=1

γαi
aαi

lim
u→∞

L(u)

P(‖X‖ > u)
, k = n− 1;

0, 0 6 k 6 n− 2.

Consequently, we have (15) and this completes the proof. �

Proposition 13 Under A1 and A3, for the risk process Rt in (3) with X > 0, t∗ > 0

and large u, we have

lim
u→∞

φk(u, t
∗)

λt∗L(u)
=



τ1(a2 | a1)
γα1
aα1
, n = 2, k = 0;

γα1
aα1

+ [1− τ1(a1 | a2)]
γα2
aα2
, n = 2, k = 1;

∑
16i<j6n

τ1(aj | ai)
γαi
aαi
, n > 3, k = n− 2;

n∑
i=1

γαi
aαi

+
∑

16i<j6n
τ1(aj | ai)

γαi
aαi
, n > 3, k = n− 1;

0, n > 3, k = 0, 1, . . . , n− 3,

(16)

where ai ∈ (0, 1) for i = 1, 2, . . . , n and a1 + a2 + · · ·+ an = 1.
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Proof From Lemma 11, it follows that

µ(a− Γk)

=



τ1(a2 | a1)
γα1
aα1

lim
u→∞

L(u)

P(‖X‖ > u)
, n = 2, k = 0;[γα1

aα1
+ (1− τ1(a1 | a2))

γα2
aα2

]
limu→∞

L(u)

P(‖X‖ > u)
, n = 2, k = 1;

∑
16i<j6n

τ1(aj | ai)
γαi
aαi

limu→∞
L(u)

P(‖X‖ > u)
, n > 3, k = n− 2;[ n∑

i=1

γαi
aαi

+
∑

16i<j6n
τ1(aj | ai)

γαi
aαi

]
lim
u→∞

L(u)

P(‖X‖ > u)
, n > 3, k = n− 1;

0, n > 3, k = 0, 1, . . . , n− 3.

On the other hand, by Proposition 3 we also have, for any t∗ > 0 and u > 0,

lim
u→∞

φk(u, t
∗)

P(‖X‖ > u)
= λt∗µ(a− Γk).

This invokes (16) and hence completes the proof. �

§5. One Numerical Example

To close this note, we present one example as an illustration of the asymptotic ruin

probability we developed in previous section.

For the tail equivalent claim vector (X1, X2) with the Gumbel copula discussed in

Example 6, there is some L ∈ Rα with α > 1 such that Xi’s survival function F i satisfies

lim
t→∞

F i(t)

L(t)
= γαi , γi > 0, i = 1, 2.

In this example, we suppose that L(t) is only depend on t. Also, a1 + a2 + · · · + an = 1

and ai > 0 is the element of the initial capital allocation vector, i = 1, 2, . . . , n.

By standard calculus, we have, for x1, x2 > 0,

lim
t→∞

F 2(tx2)

F 1(tx1)
=
xα1 γ

α
2

xα2 γ
α
1

,

and

0 < τ1(x2 |x1) = 1 +
xα1 γ

α
2

xα2 γ
α
1

−
[
1 +

(xα1 γα2
xα2 γ

α
1

)1/β]β
< 1.

That is, (X1, X2) is 1-st upper-orthant tail dependent.
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By (16) in Proposition 13, we have, for Rt in (3) with (X1, X2) > 0 and t∗ > 0,

g(a1, a2, α, β, γ1, γ2) = lim
u→∞

φk(u, t
∗)

λt∗L(u)

=


τ1(a2 | a1)

γα1
aα1
, k = 0;

γα1
aα1

+ [1− τ1(a1 | a2)]
γα2
aα2
, k = 1

=


γα1
aα1

+
γα2

(1− a1)α
−
[(γ1

a1

)α/β
+
( γ2

1− a1

)α/β]β
, k = 0;[(γ1

a1

)α/β
+
( γ2

1− a1

)α/β]β
, k = 1.

Obviously [(γ1/a1)α/β + (γ2/(1− a1))α/β]β is monotonically increasing in β ∈ (0, 1) and it

holds that

[(γ1

a1

)α/β
+
( γ2

1− a1

)α/β]β
−→


γα1
aα1

+
γα2

(1− a1)α
, β → 1−;

max
{γα1
aα1
,

γα2
(1− a1)α

}
, β → 0 + .

Note that the dependence is weakened as β increases from β = 0+ (comonotonicity)

to β = 1− (independence), we come up with the following facts: as the initial capital u is

large,

• the probability for both lines’ reserves to be negative φ0(u, t∗) decreases as the

interdependence between the two lines is weakened. This means that comparing

to 0-th upper-orthant tail dependent, 1-th upper-orthant tail dependent increases

the ruin probability φ0(u, t∗).

• the probability for at least one line’s reserve to be negative φ1(u, t∗) decreases as the

interdependence between the two lines is intensified. This means that comparing to

0-th upper-orthant tail dependent, 1-th upper-orthant tail dependent decreases the

ruin probability φ1(u, t∗).

• for fixed γ1 > 0, γ2 > 0, α > 1 and 0 < β < 1, it holds that

g
(1

2
,
1

2
, α, β, γ1, γ2

)
=

2α
[
γα1 + γα2 −

(
γ
α/β
1 + γ

α/β
2

)β]
, k = 0;

2α
(
γ
α/β
1 + γ

α/β
2

)β
, k = 1,

g
( γ1

γ1 + γ2
,

γ2

γ1 + γ2
, α, β, γ1, γ2

)
=

(2− 2β)(γ1 + γ2)α, k = 0;

2β(γ1 + γ2)α, k = 1.
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By routine algebras, we have

g
(1

2
,
1

2
, α, β, γ1, γ2

)
> g
( γ1

γ1 + γ2
,

γ2

γ1 + γ2
, α, β, γ1, γ2

)
.

That is, the uniform allocation of initial capital is not a better way to reduce the

ruin probability because the proportional allocation based on their tails performs

much better.

Appendix

Proof of Proposition 3 Since our ruin set Γk is a special case in [6], we only to

prove that µ(∂(a− Γk)) = 0. Similarly to the proof of Lemma 7 in [6], notice that

a− Γk =
{
x :

n∑
i=1

I(ai − xi) 6 k
}
,

then

∂(a− Γk) ⊂
⋃
i
{x : xi = ai} =

⋃
i
Hi.

Let Wi = {x : xi > ai}, we find that

µ(Wi) > µ
( ⋃
q∈Q∩(1,+∞)

qHi

)
=

∑
q∈Q∩(1,+∞)

µ(qHi) = µ(Hi)
∑

q∈Q∩(1,+∞)

q−α.

Since µ(Wi) ∈ (0,+∞) and
∑

q∈Q∩(1,+∞)

q−α =∞, we must have µ(Hi) = 0. Hence,

∂(a− Γk) 6
∑
i
µ(Hi) = 0. �
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