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Abstract: Homogeneity of variance and correlation coefficients is one of assumptions in the anal-

ysis of longitudinal data. However, the assumption can be challenged. In this paper, we mainly

propose and analyze nonlinear mixed effects models for longitudinal data with exponential correla-

tion covariance structure, intend to introduce Huber’s function in the log likelihood function and get

robust estimation (M-estimation) by Fisher scoring method. Score test statistics for homogeneity

of variance and correlation coefficient based on M-estimation are then studied. A simulation study

is carried to assess the performance of test statistics and the method we proposed in the paper is

illustrated by an actual data example.
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§1. Introduction

Mixed effects models offer a flexible framework by which to model the sources of vari-

ation and correlation that arise from grouped data. It can be used to model both linear

and nonlinear relationships between dependent and independent variables. Linear mixed

effects models can be used to express linear relationships between sets of variables, non-

linear models can model mechanistic relationships between independent and dependent

variables and can estimate more physically interpretable parameters [1]. Nonlinear mixed

effects models are important to the analysis of longitudinal data, multi-level data and

repeated survey data, which widely exist in the field of economics, bio-pharmaceuticals,
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agriculture and so on. Lin and Wei [2] and Lin [3] respectively studied testing for het-

eroscedasticity and autocorrelation in mixed effects nonlinear models with AR(1) errors

and varying dispersion in generalized nonlinear models for longitudinal data. Pinheiro and

Bates [1] considered linear models with random effects for longitudinal data and made some

statistical diagnosis under the assumption of homogeneity of variance. Sun [4] made score

test of correlation coefficients in uniform correlation mixed effects linear models based on

robust estimation. Diggle et al. [5] discussed longitudinal data models with exponential

correlation structure in detail, which is another correlation structure.

As is known to all, statistical inferences based on mixed models with normal ran-

dom effects and residual errors are vulnerable to outliers. While suppose that random

effects and errors follow distributions with heavy tails will enable the model to produce

more robust estimates against outliers [6, 7]. Pinheiro et al. [8], Lin and Lee [9] and Stau-

denmayer et al. [10] researched robust estimation of models which both random effects and

errors have multivariate Student-t distributions. In this work, normality is still assumed

for random effects and residual errors and we will improve the robustness of maximum

likelihood estimation (MLE) through robust maximum likelihood estimation (RMLE).

M-estimation is the most widely used robust estimation method, which was firstly in-

troduced by Huber [11] on regression. Some recent works can be found in the literature

involving robust estimation. Huggins [12] introduced a robust approach to the analysis of

repeated measures. Sinha [13] developed a robust quasi-likelihood method, which appears

to be useful for down-weighting any influential data points when estimating parameters

in generalized linear mixed models. Yeap and Davidian [14] introduced a robust two-stage

procedure for robust estimation in nonlinear mixed effects models. Gill [15] applied scoring

method to obtain robust estimations of linear mixed model for longitudinal data. Most of

the above researches focused on algorithms and robustness of the robust estimation while

statistical diagnosis have received limited attention in the robust estimation context.

The purpose of this paper is to propose score-type test statistics in order to assess

the homogeneity of variance and correlation coefficients in nonlinear mixed effects models

with exponential correlation covariance structure. The structure of this paper is as fol-

lows. Section 2 introduces the exponential correlation nonlinear mixed models and uses

Fisher scoring method to get M-estimation of parameters, which is called robust max-

imum likelihood estimation (RMLE). In Section 3, we derive score test statistics based

on M-estimation, the properties of test statistics are investigated in Section 4 through

Monte Carlo simulations. An example is analyzed in Section 5 to illustrate the proposed

methodology.
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§2. Model and Estimation

Suppose that response measurements are collected on m subjects and the ith subject

being observed on ni time points, thus N =
m∑
i=1

ni is the total number of measurements.

In the matrix notation, the model for measurements from subject i is

yi = f(Xi,β) +Ciτi + ei, i = 1, 2, . . . ,m, (1)

where yi = (yi1, yi2, . . . , yini)
T is a vector of length ni containing observable response

variable from subject i and ti1, ti2, . . . , tini is the observation time. f(·, ·) is a known twice

differentiable nonlinear function of the regression vector β, which is a vector of p unknown

but fixed parameters with known design matrix Xk, and Xi = (xi1,xi2, . . . ,xini)
T; Ci

is the ni × r design matrix for the random effects of subject i, τi is an r × 1 vector of

unobservable random efforts assumed to be sampled from N(0, σ2Γi); the random error

vector ei ∼ N(0, σ2Vi), where Vi = (vjk)m×ni and vjk = Cov (yij , yik) = exp{−φi|tj − tk|}
characterizes the exponential correlation structure. And τi and ei are independent from

each other. Then

Cov (yi) = σ2Σi = σ2CiΓiC
T
i + σ2Vi.

Let α denote the vector of unknown parameters in Σi, and the log-likelihood for the

nonlinear mixed model is

l(β,α, σ2 |y) = constant− 1

2
N lnσ2 − 1

2

m∑
i=1

ln |Σi| −
m∑
i=1

1

2
εTi εi, (2)

where εi = σ−1Σ
−1/2
i (yi−f(Xi,β)). Note that the last term of (2) is a half sum of squares

and grows quickly. If it is replaced by a function that grows more slowly, the robustness

can be improved and then the influence of outliers on the estimate can be limited. The

algorithm for robust estimation based on the above idea is mostly M-estimation, it is the

most widely used robust estimation method.

In this paper, Huber’s ρ function is chosen to bound the influence of outlying obser-

vations on the estimation.

ρ(ε) =

ε2/2 if |ε| 6 c;

c|ε| − c2/2 if |ε| > c,

where c is some fixed constant and usually c ∈ [0.7, 2], here c = 1.345 [16]. For this function

ψ(ε) = ∂ρ(ε)/∂ε =

ε if |ε| 6 c;

c sign(ε) if |ε| > c.
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Therefore, robustified version of (2) is given by

η(β,α, σ2) = constant− 1

2
κ1N lnσ2 − 1

2
κ1

m∑
i=1

ln |Σi| −
m∑
i=1

ni∑
j=1

ρ(εji), (3)

where κ1 = E(εψ(ε)) = P(|ε| 6 c) is the consistency correction factor, the expectation

being taken over the distribution of ε [12].

We will obtain robust estimation of regression parameters and covariance parameters

through Fisher scoring method [15, 17] based on (3).

First, score equation and the expected Hessian matrix for estimating β are given by

∂η

∂β
= σ−1

m∑
i=1

ḟT
ikΣ
−1/2
i ψ[σ−1Σ

−1/2
i (yi − f(Xi,β))]

and

∂2η

∂β∂βT
= −σ−2

m∑
i=1

ḟT
ikΣ
−1/2
i ΛΣ

−1/2
i ḟil,

HββT = E
(
− ∂2η

∂β∂βT

)
= νσ−2

m∑
i=1

ḟT
ikΣ
−1
i ḟil,

where ḟik = ∂fi/∂βk, ḟil = ∂fi/∂βl. Λ is a diagonal matrix and if |ε| 6 c, Λjj =

∂ψ(ε)/∂ε = 1 otherwise, Λjj = 0. ν = E(Λjj) = P(|ε| 6 c) =
∫ c
−c(2π)−1/2e−1/2ε

2
dε = κ1.

With the current estimates β̂(h) at the hth iteration step, the next iteration of the

scoring procedure is

β̂(h+1) = β̂(h) +
(
Ĥ

(h)

ββT

)−1∂η(h)
∂β

.

Suppose the sequence converges to β̂ which is the robust maximum likelihood esti-

mation (RMLE) of β. Note that the robust estimator β̂ reduces to the classical ML form

when c = ∞. With the same procedure we can get the robust estimation of covariance

parameters. Domowitz and White [18] and Sinha [19] proved that the RMLE for parameters

shares the same property as MLE, such as consistency and asymptotic normality for large

sample sizes.

§3. Test of Homogeneity of Exponential Correlation

Coefficients and Variance

3.1 Test of Homogeneity of Exponential Correlation Coefficients

In this subsection, we discuss test of homogeneity of exponential correlation coeffi-

cients φi under the assumption of homogeneity of variance, i.e. Γi = Γ for all i. Parame-
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terize φi as the form according to [20],

φi = φωi = φω(υi,γ),

where υi is a covariate and the range is [−1, 1] for φi, i = 1, 2, . . . ,m. Furthermore, we

assume that there exists a γ0 such that ω(υi,γ0) = c 6= 0 for all i, where c is a constant

that is independent of i. Test of homogeneity of exponential correlation coefficients reduce

to the test of hypothesis

H0 : γ = γ0 H1 : γ 6= γ0. (4)

Denote θ1 = (γT,βT, φ, σ2, δT)T, where γT is the parameter of interest and δ = (δ1, δ2, . . .,

δr′)
T = (d11, d12, . . . , d1r, d22, . . . , drr)

T is an r′ = r(r+1)/2 vector, dij is the (i, j)th element

of Γ. The robustified version of the log-likelihood function of θ1 can be expressed in the

form of (3), next we will study the score test statistic of hypothesis problem (4) based on

(3). By some tedious calculations, the Fisher information matrix of the parameters in θ1

under the null hypothesis in block partitioned form is found to be

I(θ1) =



Iγγ 0 Iγφ Iγσ2 Iγδ

0 Iββ 0 0 0

Iφγ 0 Iφφ Iφσ2 Iφδ

Iσ2γ 0 Iσ2φ Iσ2σ2 Iσ2δ

Iδγ 0 Iδφ Iδσ2 Iδδ


,

nonzero subblocks in Fisher information matrix I(θ1) are described in the Appendix.

Cox and Hinkley [21] considered the score test in the likelihood setting and Rotnitzky

and Jewell [22] introduced a score-type statistic to testing hypothesis in the context of

inference functions. Under some regular conditions, the score test statistic for the test of

hypothesis H0 : γ = γ0 is as follows

SC1 =
{( ∂η

∂γ

)T

(mIγγ(Jγγm )−1Iγγ)
( ∂η
∂γ

)}
θ̂10
,

where ∂η/∂γ is the score function for null hypothesis and

∂η

∂γ
=

1

2

{ m∑
i=1

ψ(ε̂i)
TΣ̂−1i

∂Vi
∂γk

ε̂i − κ1
m∑
i=1

tr
(

Σ̂−1i
∂Vi
∂γk

)}
q×1

.

And Iγγ denotes the subblock in the inverse of I(θ1) corresponding to Iγγ . By the asymp-

totic normal properties of the RMLE of parameters under some regularity conditions [23],

we can calculate that

Jm(θ1) = m−1I(θ1).

Then Jγγm can be calculated by the same procedure as Iγγ . And θ̂10 denotes the RMLE

of θ1 under H0.
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3.2 Test of Homogeneity of Variance

Longitudinal data are usually complexity and the assumption that homogeneity of

variance is not necessarily appropriate. Therefore, testing of heteroscedasticity in mixed

model with exponential correlation is very necessary. We will consider test of heteroscedas-

ticity under the assumption of homogeneity of exponential correlation coefficients, i.e.

φi = φ for all i and Vi is denoted by Vi0 here. And

Σi = Vi0 + CiΓiC
T
i , Γi =

(
Γ11i Γ12

Γ21 Γ22

)
,

where Γ11i = hiΓ11, hi = h(ςi,γ), and there is a unique value γ0 of γ such that h(ςi,γ0) =

1, for all i = 1, 2, . . . ,m. Then the test of homogeneity of variance also reduce to the

test of hypothesis H0 : γ = γ0. Correspondingly, we partition Ci =
(
C

(1)
i C

(2)
i

)
. Denote

θ2 = (γT,βT, φ, σ2, δT)T. Fisher information matrix of the parameters in θ2 under the null

hypothesis in block partitioned form is found to be

I(θ2) =



Iγγ 0 Iγφ Iγσ2 Iγδ

0 Iββ 0 0 0

Iφγ 0 Iφφ Iφσ2 Iφδ

Iσ2γ 0 Iσ2φ Iσ2σ2 Iσ2δ

Iδγ 0 Iδφ Iδσ2 Iδδ


.

Nonzero subblocks in Fisher information matrix I(θ2) are given in the Appendix.

Similar to the above subsection,

Jm(θ2) = m−1I(θ2).

Then we obtain Iγγ and Jγγm from I(θ2) and Jm(θ2). Under some regular conditions, the

score test statistic of homogeneity of variance, denotes by SC2 is as follows

SC2 =
{( ∂η

∂γ

)T

(mIγγ(Jγγm )−1Iγγ)
( ∂η
∂γ

)}
θ̂20

with score function for the null hypothesis

∂η

∂γ
=

1

2

( m∑
i=1

ψ(ε̂i)
TΣ̂−1i ḣikC

(1)
i Γ̂11C

(1)T
i ε̂i − κ1

m∑
i=1

tr
(
Σ̂−1i ḣikC

(1)
i Γ̂11C

(1)T
i

))
q×1

and Σ̂i = CiΓ̂C
T
i + Vi0, ḣik = ∂hi/∂γk.

By the above results, we can calculate the score test statistic for homogeneity of

variance, denotes by SC2.
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3.3 Joint Test of Homogeneity of Correlation Coefficient and

Variance

In this case, we assume that both the exponential correlation coefficient and vari-

ance may be variable, and γ is the common parameter of heteroscedasticity and non-

homogeneity correlation coefficients for uniformity. And Σi = Vi + CiΓiC
T
i . The test for

homogeneity of correlation coefficient and variance reduce to the test of hypothesis (4).

Let θ3 = (γT,βT, φ, σ2, δT)T. The score function under the null hypothesis is given by

∂η

∂γ
=

1

2

( m∑
i=1

ψ(ε̂i)
TΣ̂−1i

(
ḣikC

(1)
i Γ̂11C

(1)T
i + ˙Vik

)
ε̂i

− κ1
m∑
i=1

tr
(
Σ̂−1i

(
ḣikC

(1)
i Γ̂11C

(1)T
i + ˙Vik

)))
q×1

,

where ˙Vik = ∂Vi/∂γk.

Fisher information matrix of parameters in θ3 under H0 has the same form as I(θ2)

and different subblocks are as follows

Iγγ =
(1

2
κ1

m∑
i=1

tr
(
Σ̂−1i

(
ḣikC

(1)
i Γ̂11C

(1)T
i + ˙Vik

))2
+ Σ̂−1i

(
ḣikḣilC

(1)
i Γ̂11C

(1)T
i + ˙VikV̇il)

)
q×q

,

Iγφ =
(1

2
κ1

m∑
i=1

tr
(
Σ̂−1i V̇i0Σ̂

−1
k

(
ḣikC

(1)
i Γ̂11C

(1)T
i + ˙Vik

)
+ Σ̂−1k

˙V T
i0

))
q×1

,

Iγσ2 =
(1

4
κ1(1 + κ2)σ̂

−2
m∑
i=1

tr
(
Σ̂−1i

(
ḣikC

(1)
i Γ̂11C

(1)T
i + ˙Vik

)))
q×1

,

Iγδ =
(1

2
κ1

m∑
i=1

tr
(
Σ̂−1i CiE

i
abC

T
i Σ−1i

(
ḣikC

(1)
i Γ̂11C

(1)T
i + ˙Vik

)))
q×r′

.

The score test statistic for homogeneity of correlation coefficient and variance has the

same form as SC2 and can be obtained by the same procedure as SC2, written as SC3.

Now consider the asymptotic properties of the proposed score test statistics. Here

“asymptotic” refers to the number of clusters m→∞ with cluster sizes ni bounded. Under

some regularity conditions, the asymptotic distribution of the above score test statistic is

χ2(q) when H0 is true [23].

§4. Simulation Studies

In this section, the performance of the proposed test statistics is examined by Monte

Carlo simulations. The model considered here is

yij = β1 exp(β2xij) + τi + eij , i = 1, 2, . . . ,m; j = 1, 2, . . . , n,
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where ei ∼ N(0, σ2Vi), τi ∼ N(0, σ2Γi) and Vi = (vjk)m×n and vjk = exp{−φi|tj − tk|}.
Suppose Γi = Γ exp(ziγ) and φi = φ exp(ziγ)/[1 + exp(ziγ)]. Assume that the observation

time intervals are 1, 2, 3, . . .

The covariates xij , zi are, respectively, generated from discrete uniform distribution

[0, 20] and [1, 15]. The true parameter values are β1 = 1, β2 = 1.5, σ2 = 0.05, Γ = 0.1,

φ = 0.05. For the given γ, together with xij , zi, we get eij and τi. Furthermore, yij is

obtained. The simulations are performed for different sample sizes (m,n) and different

values of γ, each simulated case is replicated 2 000 times. Then the proportion of times

which rejected the null hypothesis is just the simulated value of power. The nominal sizes

of the tests are set to be 0.05.

(1) Testing for homogeneity of exponential correlation coefficients. Assume that the

variances are homogeneous, the power for score test statistic is shown in Table 1.

Table 1 Simulation results of the test of homogeneity of exponential

correlation coefficients

(m,n) γ = −0.3 γ = −0.2 γ = −0.1 γ = 0 γ = 0.1 γ = 0.2 γ = 0.3

(10,20) 0.841 0.692 0.415 0.041 0.382 0.583 0.837

(0.892) (0.710) (0.509) (0.043) (0.440) (0.602) (0.912)

(0.964) (0.781) (0.567) (0.044) (0.512) (0.699) (0.947)

(20,20) 0.925 0.765 0.573 0.040 0.508 0.692 0.914

(0.947) (0.801) (0.654) (0.048) (0.631) (0.834) (0.965)

(0.987) (0.841) (0.694) (0.045) (0.701) (0.897) (0.979)

(30,25) 1.000 0.901 0.712 0.044 0.695 0.799 0.987

(1.000) (0.973) (0.806) (0.047) (0.726) (0.984) (1.000)

(1.000) (0.990) (0.878) (0.046) (0.843) (1.000) (1.000)

(2) Testing for homogeneity of variance. The powers for score test statistic are shown

in Table 2.

Table 2 Simulation results of the test of homogeneity of variance

(m,n) γ = 0 γ = 0.01 γ = 0.02 γ = 0.03 γ = 0.04 γ = 0.05 γ = 0.06

(20,15) 0.042 0.274 0.426 0.597 0.789 0.891 0.930

(0.041) (0.305) (0.597) (0.735) (0.826) (0.963) (1.000)

(0.043) (0.482) (0.704) (0.901) (0.972) (0.990) (1.000)

(30,20) 0.041 0.281 0.512 0.683 0.833 0.972 1.000

(0.041) (0.326) (0.643) (0.798) (0.915) (1.000) (1.000)

(0.042) (0.479) (0.818) (0.885) (0.998) (1.000) (1.000)

(40,30) 0.043 0.311 0.609 0.857 0.964 1.000 1.000

(0.045) (0.446) (0.842) (0.947) (0.991) (1.000) (1.000)

(0.045) (0.624) (0.899) (0.997) (1.000) (1.000) (1.000)
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(3) Joint testing for homogeneity of correlation coefficient and variance. The powers

for score test statistic are shown in Table 3.

Table 3 Simulation results of the test for homogeneity of correlation

coefficient and variance

(m,n) γ = 0 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

(20,20) 0.040 0.214 0.407 0.634 0.797 0.895 0.969

(0.043) (0.269) (0.484) (0.759) (0.884) (0.937) (0.989)

(0.044) (0.417) (0.698) (0.907) (0.972) (0.991) (1.000)

(20,30) 0.043 0.265 0.479 0.630 0.841 0.911 0.989

(0.043) (0.349) (0.662) (0.848) (0.921) (0.989) (1.000)

(0.045) (0.438) (0.827) (0.908) (0.992) (1.000) (1.000)

(30,30) 0.042 0.312 0.716 0.882 0.994 1.000 1.000

(0.044) (0.495) (0.826) (0.972) (0.998) (1.000) (1.000)

(0.053) (0.634) (0.902) (0.997) (1.000) (1.000) (1.000)

The results in Tables 1 – 3 show that the empirical sizes of the tests are very close

to 0.05 under γ = 0. The power of the test increases and approaches 1 as γ or sample

size increases. In the above three tables, figures in brackets represent the simulated values

when c = 2 and c = ∞ (i.e. nonrobust situation) in Huber’s function respectively, which

are bigger than that discussed in this paper. These findings are consistent with theoretical

results.

§5. An Illustrative Example

In this section, plasma drug penetration data is used to illustrate the application of

the method. The data of the the example are taken form the following experiment: six

volunteers were injected the same dose of a drug through veins. Then the drug concen-

tration in their plasma was measured at eleven times within eight hours. The following

double exponential model [24] was applied to describe the data:

yij = eβ1 exp(−eβ2xij) + eβ3 exp(−eβ4xij) + τi + eij , i = 1, 2, . . . , 6; j = 1, 2, . . . , 11,

where yij denotes the drug concentration of the i-th volunteer at the j-th time; xij is

the time interval of the i-th volunteer measure the j-th time drug concentration; τi is the

drug effect of the i-th volunteer and τi ∼ N(0, σ2δi); the random error eij is the element

of the vector ei and ei ∼ N(0, σ2Vi), where Vi = (vjk)6×11 and vjk = Cov (yij , yik) =

exp{−φi|tj − tk|} characterizes the exponential correlation structure. Design matrix Xi =
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(0.25, 0.50, 0.75, 1.00, 1.25, 2.00, 3.00, 4.00, 5.00, 6.00, 8.00)T. Let hi = exp(υiγ) and ωi

= exp(υiγ)/[1 + exp(υiγ)], where υi is the attribute variable for the i-th volunteer. Here

hi = 1 and ωi = 1/2 when γ = 0, both have no correlation with i.

First, we get M-estimation according to the algorithm proposed in Section 2.

β̂ = (1.6450, 0.8384, −0.4697, −1.0392)T,

σ̂2 = 0.07831, δ̂ = 0.4608, φ̂ = 0.638.

Now, we study the following cases. (a) Test for homogeneity of exponential correlation

coefficients. (b) Test for homogeneity of variance. (c) Joint test for homogeneity of

correlation coefficient and variance. All the tests reduce to test H0 : γ = 0.

Compute out the score test statistic and the results are listed in Table 4.

Table 4 Score test for cases (a) – (c)

c (a) (b) (c)

1.345 22.3646 27.3448 19.2701

(0.00) (0.00) (0.00)

0.7 18.6270 25.1392 15.1810

(0.00) (0.00) (0.00)

∞ 25.5291 30.8604 21.7691

(0.00) (0.00) (0.00)

The table lists score test statistics calculated when c = 1.345 (the situation considered

in this work), c = 0.7 and c =∞ (i.e. nonrobust situation) of Huber’s function respectively.

And the corresponding p-values are listing in the parenthesis. The small p-values of the

test statistics suggest strongly rejecting the null hypothesis of γ = 0. The results indicates

that there may exits nonhomogeneity of variance and exponential correlation coefficients

at the same time for plasma drug penetration data. Moreover, we find from the results

that because of the restriction of Huber’s function, score test statistics is smaller than that

in nonrobust situation. And the smaller c is, the smaller of the statistics.

§6. Conclusion

In this article, Fisher scoring method is applied to get M-estimation of parameters in

exponential correlation nonlinear mixed models for longitudinal data. Then we propose

several score test statistics for heterogeneity of exponential correlation coefficient and

variance. We have used Huber’s ρ function to bound the influence of outlying observations.
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In fact, there are alternative choices such as Hampel function, Tukey’s bisquare function

and so on. Making some kind of comparison of theoretical or empirical efficiency of

various choices would be worthwhile. In addition, when the measured time interval is

equal, the exponential correlation model discussed in the paper is equivalent to AR(1)

model according to [5], which is another correlation structure.

Appendix

Nonzero subblocks of Fisher information matrix I(θ1) are as follows
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where Eiab is a ni × ni matrix with the elements 1 at (a, b) and (b, a) and 0 otherwise,

κ2 =
∫ c
−c(2π)−1/2ε2e−1/2ε

2
dε.

The nonzero subblocks in Fisher information matrix I(θ2) are given
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where ḣik = ∂hi/∂γk and ḣil has the same meaning.
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