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§1. Introduction and Main Result

Consider the following semilinear stochastic partial differential equations (abbr.

SPDEs) 
∂

∂t
u(t, x) = D(x,D)u(t, x) +

∂f

∂x
(t, x, u(t, x)) + ẆH(t, x);

u(0, x) = u0(x), x ∈ R
(1)

on the given domain [0, T ] × R with the initial condition u0(x) ∈ Lp(R), p > 2, where

D(x,D) denotes the Markovian generator of stable-like Feller process with variable order

α(x). The coefficient f : [0, T ]×R×R→ R is measurable and ẆH(t, x) is the fractional-

colored noise. There have been a considerable body of literatures devoted to the study of

stochastic partial differential equations (SPDEs), see [1–11] and etc.

In this paper, we are interested in equation (1) mainly because it involves a pseudo-

differential operator D(x,D) and an fractional-colored noise ẆH(t, x). These kinds of
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equations have been used to model a variety of anomalous diffusion in continuum me-

chanics, particularly in connection with the investigation in turbulence. On one hand,

the operator D(x,D) contains the fractional Laplacian operator (−∆)α/2 = (−∂2/∂x2)α/2

with a constant α ∈ (0, 2] as its special cases. The study of stable-like Markov generators

D(x,D) with variable order can be traced back to the seminal paper [12]. Further works

on the transition densities associated with stable-like processes can be found in [13–16] and

references therein. Thus it is natural to combine the SPDEs with the pseudo-differential

D(x,D). For example, Wu and Xie [11] studied a stochastic Burgers-type nonlinear equa-

tion with a pure jump Lévy time-space white noise in Rd which contained a d-dimensional

pseudo-differential operator with a variable order α(x) : Rd → (0, 2). On the other hand,

due to the various applications of the fractional Brownian motion, there are many works

concerning SPDEs with fractional noise, see [1] and [2] where they studied the stochastic

heat equation and stochastic wave equation with fractional noise respectively. Hu et al. [3]

studied the parabolic Anderson model with fractional white noise by using Feynman-Kac

formula and Mallaivin calculus. Liu and Yan [4] studied the existence and Hölder regularity

of the mild solution of equation (1).

Once the existence and sample properties for the solution of SPDEs are proved, one

usually would like to study the properties of the density for the solution. Especially, people

would like to study the existence, smoothness (in the sense of Malliavin calculus) of density,

Gaussian density estimates and etc. One can see [6] and [9] for the study of smoothness

of the law for a stochastic wave equation in dimension 2 and 3, respectively. Nualart

and Quer-Sardanyons [7] studied the smoothness of the density for spatially homogeneous

SPDEs and [8] for the Gaussian density estimates for solutions to quasi-linear SPDEs.

Inspired by the above results, we would like to use the tools of Malliavin calculus to

prove the smoothness of the density for the solution to equation (1) in this paper. That

is, for any fixed (t, x) ∈ [0, T ]×R, the law of the random variable u(t, x) has an infinitely

differentiable density with respect to the Lebesgue measure on R. It was already proved

by Liu and Yan [4] that the law of u(t, x) is absolutely continuous with respect to Lebesgue

measure, i.e. the law of u(t, x) admits a density for any fixed (t, x) ∈ [0, T ]×R. In addition,

they also established lower and upper Gaussian bounds for the probability density of the

mild solution.

According to [11], let us firstly make the following assumptions on some parameters

which appeared in the subsequent discussions concerning some estimates with the Green

function G introduced in Section 2:
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Assumption 1 We follow the assumptions on the parameters α, αL, α
U , β, γ ap-

pearing in Lemma 2.2 amd Lemma 2.3 in [11]

α ∈ [αL, α
U ] ∈ (1, 2), β ∈

(
0,

1

1 + α

)
, γ ∈ (0, 1− β(α+ 1)),

where

αL = inf
x∈R

α(x), αU = sup
x∈R

α(x),

and α(x) is a continuous function which will be introduced in Section 2.

In this paper we shall prove the following result about the smoothness of the density

of the solution to equation (1).

Theorem 2 Under Assumption 1 and assume that the coefficient f is a C∞ function

with bounded derivatives of any order greater than or equal to one with respect to the third

variable (i.e. f(s, y, ·) ∈ C∞b ([0, T ] × R × R)). Then, for H1, H2 > 1/2 and for any fixed

(t, x) ∈ [0, T ]× R, the law of u(t, x) to equation (1) admits a smooth density.

Remark 3 In [4], the authors also studied equation (1) and proved the existence and

Hölder regularity of the solution. Moreover they proved the lower and upper Gaussian-type

bounds for the density by using the techniques of Malliavin calculus. In this note, we continue

studying the smoothness of the density of the solution to equation (1) which complements

the results obtained about the density in [4].

The rest of this paper is organized as follows. In the next Section 2, we recall some

known results on the operator D(x,D) and present some preliminaries on Malliavin calcu-

lus for fractional noise. Section 3 is devoted to proving the smoothness of the density for

solution to equation (1). We will firstly recall the main tools of the Malliavin calculus for

iterated Malliavin derivative needed along the paper. Then we give the proof of Theorem

2 step by step.

§2. Preliminaries

We should firstly recall some known facts about the operator D(x,D) (see [13] or [11]

for more details). Let α(·) : R 7→ (0, 2) be a continuous function and S0 = {−1, 1} and

B = P(S0) = {φ, {−1}, {1}, S0}. Given any finite symmetric Borelian measure µ̃ (the

so-callled spectral measure) on B(S0) depending smoothly on x ∈ R, we define s := z/|z|
for z ∈ R\{0}. Then, D(x,D) can be written as

(D(x,D)ϕ)(x) =

∫ +∞

0

∫
S0

[
ϕ(x+ z)− ϕ(x)− zϕ′(x)

1 + |z|2
] d|z|
|z|1+α(x)

µ̃(x,ds), (2)
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which is in the form of the Markovian generator of a stable-like Feller processes considered

in [13], where ϕ is a Schwartz test function in S (R). In this paper, we are only in interested

in dealing with the operator of a symmetric stable-like jump-diffusion process. We will

assume that µ̃ is symmetric, that is µ̃(x,A) = µ̃(x,−A) for any Borelian measurable subset

A ∈ B(S0). In particular, if further µ̃ is rotation invariant, then D(x,D) = −(−∆)α(x)/2.

Let G(t;x, y) be the fundamental solution of the following parabolic equation
∂

∂t
G(t;x, y) = D(x,D)G(t;x, y), (t, x) ∈ (0,+∞)× R;

lim
t↘0

G(t;x, y) = δx(y), x ∈ R.
(3)

According to Theorem 5.1 in [13], G(t;x, y) does exist under Assumption 1 and it is the

transition probability density for a stable-like jump diffusion.

In this paper, we will use some useful estimates for Green function Gα(t, x) which is

written for G(t;x, y) with α(x) = α proved in Lemma 2.2 and Lemma 2.3 in [11] (see also

[13], [16] and etc). Here we omit the details.

Suppose that WH = {WH(t, x), t ∈ [0, T ], x ∈ R} is a zero mean fractional Brownian

sheet with the covariance function

E[WH(t, x)WH(s, y)] = RH1(t, s)RH2(x, y), 1/2 < H1, H2 < 1,

where we denote by Rh(s, t), the covariance function of fractional Brownian motion with

Hurst parameter h, that is,

Rh(t, s) =
1

2
(|t|2h + |s|2h − |t− s|2h).

We will denote by H the canonical Hilbert space associated with the fractional Brow-

nian sheet which is defined as the closure of indicator functions E = {1[0,t]×[0,x], t ∈ [0, T ],

x ∈ R} with respect to the inner product

〈1[0,t]×[0,x], 1[0,s]×[0,y]〉H = RH1(t, s)RH2(x, y).

Thus the mapping 1[0,t]×[0,x] 7→ WH(t, x) is an isometry between E and the linear space

span of {WH(t, x), (t, x) ∈ [0, T ] × R}. Moreover, the mapping can be extended to an

isometry from H to a Gaussian space associated with WH . This isometry will be denoted

by ϕ 7→WH(ϕ) for any ϕ ∈H . Therefore, we can regard WH(ϕ) as the stochastic integral

with respect to WH . In general, we use the notation

WH(ϕ) =

∫ T

0

∫
R
ϕ(s, y)WH(ds, dy), ϕ ∈H .
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Using the notation of stochastic integral with respect to WH , one can introduce the

following definition (i.e. [10]):

Definition 4 A real-valued stochastic process u = {u(t, x) : (t, x) ∈ [0, T ]× R} is a

mild solution of equation (1) if for any (t, x) ∈ [0, T ]× R,

u(t, x) =

∫
R
G(t;x, y)u0(y)dy +

∫ t

0

∫
R

∂G

∂y
(t− s;x, y)f(s, y, u(s, y))dyds

+

∫ t

0

∫
R
G(t− s;x, y)WH(ds, dy). (4)

Now we recall the existence and uniqueness result of the solution to equation (1)

which has already been proved by Liu and Yan [4].

Proposition 5 Suppose Assumption 1 is satisfied and f is Lipschitz continuous and

satisfies the linear growth condition. Then there exists a unique mild solution u(t, x) with

(t, x) ∈ [0, T ]× R, to equation (1) such that for all T > 0 and for some p > 2

sup
(t,x)∈[0,T ]×R

E|u(t, x)|p <∞.

§3. Proof of Theorem 2

The aim in this section is to prove Theorem 2. Firstly let us recall a useful result

(see, for example, [17]):

Proposition 6 Let F = (F 1, F 2, . . . , Fm) be a random vector satisfying the following

conditions:

(i) F i belongs to D∞ =
⋂
p>1

⋂
k>1

Dk,p for every i = 1, 2, . . . ,m.

(ii) The Malliavin matrix γF = (〈DF i, DF j〉H )16i,j6m satisfies (det γF )−1 ∈
⋂
p>1

Lp(Ω).

Then the random vector F = (F 1, F 2, . . . , Fm) has an infinitely differentiable density.

According to the above proposition, the proof of Theorem 2 will be achieved by

showing that u(t, x) belongs to the space D∞ =
⋂
p>1

⋂
k>1

Dk,p and the inverse of the Malliavin

matrix of u(t, x) has moments of all order. The following proposition came from in [4].

Proposition 7 Under the assumptions of Theorem 2, if we further assume that

f ∈ C1
b ([0, T ] × R × R), then, at any fixed point (t, x) ∈ [0, T ] × R, the random variable

u(t, x) ∈ D1,2 and the Malliavin derivative Du(t, x) satisfies

Dv,zu(t, x) =

∫ t

v

∫
R

∂G

∂y
(t− s;x, y)f ′(s, y, u(s, y))Dv,zu(s, y)dyds+G(t− v;x, z), (5)
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for all v 6 t and z ∈ R. Moreover, for any fixed (t, x) ∈ [0, T ] × R, the law of the solution

u(t, x) is absolutely continuous with respect to the Lebesgue measure.

Before giving the proof of Theorem 2, we firstly need to extend Proposition 7 to any

differentiability order. It is clear that a strengthening of the regularity of the coefficient

f is needed. Recall that for any differentiable (in the Malliavin sense) random variable X

and any N > 1, the iterated Malliavin derivative DNX defines an element of the Hilbert

space L2(Ω; H ⊗N ). We shall use the notation

DN
(ϕ1,ϕ2,...,ϕN )X = 〈DNX,ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕN 〉H ⊗N ,

for any ϕi ∈H , i = 1, 2, . . . , N . Thus, we have that

‖DNX‖2H ⊗N =
∑

j1,j2,...,jN

∣∣DN
(ej1 ,ej2 ,...,ejN )X

∣∣2, (6)

where {ej}j>0 is a complete orthonormal system of H .

We denote by DN,p the Sobolev-Watanabe space of random variable X such that

‖X‖N,p =
[
E(|X|p) +

N∑
j=1

E(‖DjX‖p
H ⊗j )

]1/p
.

Let N ∈ N, fix a set AN = {ϕi ∈ H , i = 1, 2, . . . , N} and ϕ = (ϕ1, ϕ2, . . . , ϕN ),

ϕ̂i = (ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕN ). Denote by Pm the set of partitions of AN consisting of

m disjoint subsets p1, p2, . . . , pm, m = 1, 2, . . . , N , and by |pi| the cardinal of pi. Let X be

a random variable belonging to DN,2, N > 1, and g be a real CN -function with bounded

derivatives up to order N . Leibniz’s rule for Malliavin’s derivatives yields

DN
ϕ (g(X)) =

N∑
m=1

∑
Pm

cmg
(m)(X)

m∏
i=1

D|pi|pi X, (7)

with positive coefficients cm, m = 2, 3, . . . , N and c1 = 1. Let

∆N
ϕ (g,X) := DN

ϕ g(X)− g′(X)DN
ϕ X.

Note that ∆N
ϕ (g,X) = 0 if N = 1 and it only depends on the Malliavin derivatives up to

the order N − 1 if N > 1. Now we can show that the solution to equation (1) is infinitely

differentiable in the Malliavin sense and also obtain the equation satisfied by the iterated

Malliavin derivative.

Theorem 8 Assume the coefficient f is a C∞ function with bounded derivatives

of any order greater than or equal to one. Then, for every (t, x) ∈ [0, T ] × R, the random
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variable u(t, x) belongs to the space D∞. Moreover, for any p > 1 and N > 1, the N -iterated

Malliavin derivative DNu(t, x) satisfies

DNu(t, x) =

∫ t

0
ds

∫
R

∂G

∂y
(t− s;x, y)∆N (f, u(s, y))dy

+

∫ t

0
ds

∫
R

∂G

∂y
(t− s;x, y)DNu(s, y)f ′(s, y, u(s, y))dy, (8)

and

sup
(t,x)∈[0,T ]×R

E
[
‖DNu(t, x)‖p

Lp(Ω;H ⊗N )

]
< +∞.

We will prove this theorem by applying the next lemma, which follows from the fact

that DN is a closed operator defined on Lp(Ω) with values in Lp(Ω; H ⊗N ).

Lemma 9 Let {Fn}n>1 be a sequence of random variables belonging to DN,p. Assume

that:

(i) there exists a random variable F such that Fn converges to F in Lp(Ω) as n tends to

∞;

(ii) the sequence {DNFn}n>1 converges in Lp(Ω; H ⊗N ).

Then F ∈ DN,p and DNF = lim
n→∞

DNFn in Lp(Ω; H ⊗N ).

Following the similar arguments in the proof of Theorem 1 in [4], we also consider the

sequence of processes {u(n)(t, x) : (t, x) ∈ [0, T ]× R} solving the equation (1)

u(0)(t, x) =

∫
R
G(t;x, y)u0(y)dy;

u(n)(t, x) = u(0)(t, x) +

∫ t

0

∫
R

∂G

∂y
(t− s;x, y)f(s, y, u(n−1)(s, y))dyds

+

∫ t

0

∫
R
G(t− s;x, y)WH(dy,ds).

(9)

A standard argument (see, for instance, [6]) yields that u(n)(t, x) ∈ D∞, for all n > 1.

Moreover, the derivative DNu(n)(t, x) satisfies the following integral equation

DN
σ u

(n)(t, x) =

∫ t

0
ds

∫
R

dy
∂G

∂y
(t− s;x, y)∆N

σ (f, u(n−1)(s, y))

+

∫ t

0
ds

∫
R

dy
∂G

∂y
(t− s;x, y)DN

σ u
(n−1)(s, y)f ′(s, y, u(n−1)(s, y)), (10)

where σ = (ϕ1, ϕ2, . . . , ϕN ) and ϕi ∈H with i = 1, 2, . . . , N .

Lemma 10 Under the same hypothesis in Theorem 2, for p > 1 and every N > 1,

we have

sup
n>1

sup
(t,x)∈[0,T ]×R

E
[
‖DNu(n)(t, x)‖p

H ⊗N

]
< +∞. (11)
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Proof We will use an induction argument with respect to N with p > 2. For N = 1,

(11) has been proved in [4]. Next let us assume that

sup
n>1

sup
(t,x)∈[0,T ]×R

E
[
‖Dku(n)(t, x)‖p

H ⊗k

]
< +∞,

for any k = 1, 2, . . . , N − 1. Let σ = (ej1 , ej2 , . . . , ejN ). Then, by (6), we have that

E
[
‖DNu(n)(t, x)‖p

H ⊗N

]
= E

[ ∑
j1,j2,...,jN

|DN
σ u

(n)(t, x)|2
]p/2
6 C

2∑
i=1

Ni,

where

N1 = E
[ ∑
j1,j2,...,jN

∣∣∣ ∫ t

0
ds

∫
R

dy
∂G

∂y
(t− s;x, y)∆N

σ (f, u(n−1)(s, y))
∣∣∣2]p/2,

N2 = E
[ ∑
j1,j2,...,jN

∣∣∣ ∫ t

0
ds

∫
R

dy
∂G

∂y
(t− s;x, y)DN

σ u
(n−1)(s, y)f ′(s, y, u(n−1)(s, y))

∣∣∣2]p/2.
Using similar arguments (this time for deterministic integration), Hölder inequality

and the estimates on ∂G/∂y, we obtain

N1 6 C
∫ t

0
ds

∫
R

dy
∂G

∂y
(t− s;x, y)E

[
‖∆N (f, u(n−1)(s, y))‖p

H ⊗N

]
6 C sup

(s,y)∈[0,T ]×R
E
[
‖∆N (f, u(n−1)(s, y))‖p

H ⊗N

]
,

which again by the induction hypothesis, then N1 is uniformly bounded in n, t and x.

Finally, as for N2,

N2 6 C
∫ t

0
ds sup

(r,y)∈[0,s]×R
E
[
‖DNu(n−1)(r, y)‖p

H ⊗N

]
.

Summarizing the above estimates obtained for N1 and N2, we obtain

sup
(s,y)∈[0,t]×R

E
[
‖DNu(n)(s, y)‖p

H ⊗N

]
6 C

{
1 +

∫ t

0
ds sup

(r,y)∈[0,s]×R
E
[
‖DNu(n−1)(r, y)‖p

H ⊗N

]}
.

We can complete the proof of this lemma by using the Gronwall’s lemma. �

For N > 1, we introduce the assumption that the sequence {Dju(n)(t, x), n > 1}
converges in Lp(Ω; H ⊗j), j = 1, 2, . . . , N − 1, with the convention that Lp(Ω; H ⊗0) =

Lp(Ω). We denote this assumption by (HN−1). For N > 1, (HN−1) implies that u(t, x) ∈
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Dj,p and the sequences Dju(n)(t, x), n > 1 converge in Lp(Ω; H ⊗j) to Dju(t, x) with

j = 1, 2, . . . , N − 1. In addition, by Lemma 10,

sup
(t,x)∈[0,T ]×R

E
[
‖DjX‖p

Lp(Ω;H ⊗j)

]
< +∞, (12)

for all j = 1, 2, . . . , N − 1.

Proof of Theorem 8 Fix (t, x) ∈ [0, T ] × R, p > 2. We apply Lemma 9 to

Fn = u(n)(t, x) and F = u(t, x). We know that the assumption (i) of Lemma 9 is satisfied.

One can see the proof of Theorem 1 in [4].

Let us check the sequence {DNu(n)(t, x)}n>1 converges in the space Lp(Ω; H ⊗N ), for

every N > 1 and p > 2, which implies that the random variables DNu(t, x) exists, belongs

to Lp(Ω; H ⊗N ) and by Lemma 10 satisfies

sup
(s,y)∈[0,T ]×R

E
[
‖DNu(s, y)‖p

H ⊗N

]
< +∞.

Owing to Lemma 10, it suffices to check the assertion p = 2. We will use an induction

argument N . For N = 1, the proof is given in [4]. Assume the induction hypothesis

(HN−1) holds. Let Bp,N be the class of H ⊗N -valued processes {Γ(t, x); (t, x) ∈ [0, T ]×R}
and satisfy

sup
(s,y)∈[0,T ]×R

E
[
‖Γ(s, y)‖p

H ⊗N

]
< +∞.

We consider the stochastic integral equation in Bp,N ,

U(t, x) =

∫ t

0
ds

∫
R

dz
∂G

∂z
(t− s;x, z)[∆(f, u(s, z)) + U(s, z)f ′(s, z, u(s, z))].

There exists a unique solution to the equation. Then under the Hypothesis (HN−1) one

obtains that

U(t, x) = lim
n→∞

DNu(n)(t, x), in L2(Ω; H ⊗N ),

by following the similar arguments in the proof of Theorem 2 in [9]. Moreover the limit is

uniform in (t, x). Then by uniqueness of the solution U = DNu and the process DNu(t, x)

satisfies equation (8). �

Next let us prove the Lp-integrability of the inverse of of the Malliavin derivative of

u(t, x) for any fixed (t, x) ∈ [0, T ]× R.

Theorem 11 Assume that the coefficient f is C1-function with bounded Lipschitz

continuous derivatives. Then, for any q > 2

E
[
‖Du(t, x)‖−qH

]
< +∞. (13)
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This result, together with Theorem 8 applied to equation (1), yields the main result

Theorem 2 in this paper.

Proof of Theorem 11 We need to show that the inverse of the Malliavin derivative

of u(t, x) has moments of order q > 2, that is, for all q > 2

E
[
‖Du(t, x)‖−qH

]
< +∞.

It turns out (see, for instance, Lemma 2.3.1 in [17]) that it suffices to check that for any

q > 2, there exists an ε0(q) > 0 such that for all 0 < ε 6 ε0

P
[
‖Du(t, x)‖2H < ε

]
6 Cεq. (14)

Let H ([0, t] × R) denote the Hilbert space over the rectangle [0, t] × R. Note that the

positivity of the Green function G guarantees that the solution of equation (4) is nonneg-

ative. Then proceeding as in the proof of Theorem 5.1 in [4], fix δ ∈ (0, 1], denote by

ΨH(r1, r2; z1, z2) = 4H1H2(2H1 − 1)(2H2 − 1)|r1 − r2|2H1−2|z1 − z2|2H2−2, then we obtain

that

‖Du(t, x)‖2H

=

∫ t

0

∫ t

0

∫
R2

Dr1,z1u(t, x)Dr2,z2u(t, x)ΨH(r1, r2; z1, z2)dz1dz2dr1dr2

>
∫ t

[(1−δ)t,t]

∫ t

[(1−δ)t,t]

∫
R2

Dr1,z1u(t, x)Dr2,z2u(t, x)ΨH(r1, r2; z1, z2)dz1dz2dr1dr2

= ‖G(t− ·;x, ∗)‖2H ([(1−δ)t,t]×R)

+ 2
〈
G(t− ·;x, ∗),

∫ t

(1−δ)t

∫
R

∂G

∂y
(t− s;x, y)f ′(s, y, u(s, y))Du(s, y)dyds

〉
H ([(1−δ)t,t]×R)

+
∥∥∥∫ t

(1−δ)t

∫
R

∂G

∂y
(t− s;x, y)f ′(s, y, u(s, y))Du(s, y)dyds

∥∥∥2

H ([(1−δ)t,t]×R)

> ‖G(t− ·;x, ∗)‖2H ([(1−δ)t,t]×R) − 2‖G(t− ·;x, ∗)‖H ([(1−δ)t,t]×R)

·
∫ t

(1−δ)t

∫
R

∣∣∣∂G
∂y

(t− s;x, y)f ′(s, y, u(s, y))
∣∣∣‖Du(s, y)‖H ([(1−δ)t,t]×R)dyds

−
∫ t

(1−δ)t

∫
R

∣∣∣∂G
∂y

(t− s;x, y)f ′(s, y, u(s, y))
∣∣∣‖Du(s, y)‖2H ([(1−δ)t,t]×R)dyds

=
1

2
‖G(t− ·;x, ∗)‖2H ([(1−δ)t,t]×R) − I(t, x, δ), (15)

where we denote by

I(t, x, δ) = 2‖G(t− ·;x, ∗)‖H ([(1−δ)t,t]×R)
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·
∫ t

(1−δ)t

∫
R

∣∣∣∂G
∂y

(t− s;x, y)f ′(s, y, u(s, y))
∣∣∣‖Du(s, y)‖H ([(1−δ)t,t]×R)dyds

+

∫ t

(1−δ)t

∫
R

∣∣∣∂G
∂y

(t− s;x, y)f ′(s, y, u(s, y))
∣∣∣‖Du(s, y)‖2H ([(1−δ)t,t]×R)dyds

:= I1(t, x, δ) + I2(t, x, δ). (16)

The lower bound for ‖G(t − ·;x, ∗)‖2H ([(1−δ)t,t]×R) has been proved by Liu and Yan [4] as

follows

‖G(t− ·;x, ∗)‖2H ([(1−δ)t,t]×R) > C(δt)2H1+4γ . (17)

We have already decomposed the term I(t, x, δ) into two terms, so that we need to find

the upper bounds for E|Ii(t, x, δ)|p, i = 1, 2. On one hand, owing to Hölder inequality and

(4.11) in [4], we get

E|I1(t, x, δ)|p

6 2pE(‖G(t− ·;x, ∗)‖H ([(1−δ)t,t]×R)

·
∫ t

0

∫
R

∣∣∣∂G
∂y

(t− s;x, y)
∣∣∣|f ′(s, y, u(s, y))|‖Du(s, y)‖H ([(1−δ)t,t]×R)dyds

)p
6 C(δt)p(αH1+H2−1)/α · (δt)p(αH1+H2−1)/α+p−p/α

= C(δt)p[2(αH1+H2−1)/α+1−1/α].

On the other hand, using the similar arguments, one proves that E|I2(t, x, δ)|p may

be bounded, up to some positive constant, by (δt)p[2(αH1+H2−1)/α+1−1/α]. So

P
[
‖Du(t, x)‖2H < ε

]
6 P

[
I(t, x, δ) >

1

2
‖G(t− ·;x, ∗)‖2H ([(1−δ)t,t]×R) − ε

]
6
[1

2
‖G(t− ·;x, ∗)‖2H ([(1−δ)t,t]×R) − ε

]−p
E[|I(t, x, δ)|p],

for any p > 2, where I(t, x, δ) is defined by (16). Thus, we have proved that

P
[
‖Du(t, x)‖2H < ε

]
6
[1

2
‖G(t− ·;x, ∗)‖2H ([(1−δ)t,t]×R) − ε

]−p
(δt)p[2(αH1+H2−1)/α+1−1/α].

At this point, we choose δ = δ(ε, t) in such a way that

‖G(t− ·;x, ∗)‖2H ([(1−δ)t,t]×R)

= 4ε > C(δt)2H1+4γ = C(δt)[2(αH1+H2−1)/α+4γ+(2−2H2)/α]
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= C(δt)2(αH1+H2−1)/α,

that implies (δt) 6 Cεα/[2(αH1+H2−1)]. Hence, one gets

P
[
‖Du(t, x)‖2H < ε

]
6 Cεp(α−1)/[2(αH1+H2−1)].

Finally, and it suffices to take p sufficiently large such that p(α−1)/[2(αH1 +H2−1)] > q.

�
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