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§1. Introduction

Spatial point patterns arise in a wide variety of applications including forestry, biology,

anatomy, ecology, seismology, epidemiology and geography. Methods for the analysis of

stationary point process data are now well established in many textbooks, see [1–3].

In recent years, inhomogeneous spatial point processes have been investigated by many

authors. A brief survey can be found in [4,5]. For further references about inhomogeneous

spatial point processes, see [6–11].

A key interest in inhomogeneous spatial point patterns is the first-order intensity func-

tion λ(s) (See Section 2 for its definition), s ∈ D and D is the observed domain of interest.

Let λ(s; θ) be the intensity function depending on a vector of unknown parameters θ. The

unknown parameters θ can be estimated by the composite likelihood approach [12]. The
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composite likelihood estimator is defined as the maximum of
∑

s∈N∩D
lnλ(s; θ)−

∫
D λ(s; θ)ds,

where N denote the spatial point process that is observed over a domain of interest D.

It is also referred to as the Poisson maximum likelihood estimator, since it coincides with

the true maximum likelihood when the underlying process is an inhomogeneous Poisson

process. Schoenberg [13] proved that composite likelihood estimator is consistent under

some mild conditions. Recently, Guan and Loh [14] proved the asymptotic normality of

the composite likelihood estimator in general cases. However, in practice, a parametric

model for λ(s) is not always forthcoming. Then the nonparametric approaches can be

considered. Diggle [15] proposed a kernel estimator for λ(s) with a single realization of the

underlying process, and the expression for the mean squared error of the kernel estimation

was derived. Unfortunately, the asymptotic properties of the nonparametric estimation

are difficult to be derived, where only one realization is available.

Since the previous application of spatial statistics was mainly in the fields of forestry

and plant biology, where only a single realization is available. Analysis for replicated

point patterns are still under development. However, with the relatively recent advances

in microscopy and technology, particularly in biological sciences, clinical neuroanatomy,

scientists are finding that their data may consist of replicated spatial point patterns. See

[16–21].

The propose of this paper is to investigate the nonparametric estimator of the intensity

function for replicated spatial point patterns. A kernel-type estimator is proposed. The

asymptotic expansion of the pointwise mean squared error (MSE) is given, then the mean

integrated square error (MISE) can be expressed and the optimal rate of convergence is

given, similarly as the classic result of the kernel density estimation. Furthermore, we also

study the rate of convergence of the integrated squared error (ISE), which is not always

investigated in the study of the kernel estimation. As in any nonparametric smoothing

applications, a key factor affecting the accuracy of the estimator is the choice of the

bandwidth. An inappropriate value of bandwidth may lead to an estimator with a large

bias or variance or both. Thus it is important to develop a data-driven procedure which can

be used to automatically and objectively select the bandwidth. In this article two methods

are proposed. One is a familiar least-squares cross-validation type of procedure, which

has been often applied for bandwidth selection in nonparametric smoothing estimator.

The other is the composite likelihood cross-validation, which recently was introduced to

select the bandwidth for the estimator of the pair correlation function. See [22]. The

efficacy of the two methods is studied by Monte Carlo simulation. The study suggests that

the composite likelihood cross-validation preforms better in the case of strong clustering,
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conversely, the least-squares cross-validation performs better in the case of weak clustering.

The rest of this paper is organized as follows. Section 2 gives the kernel-type non-

parametric estimator and studied its asymptotic properties. Section 3 introduces the

least-squares and composite likelihood cross-validation procedures to select the bandwidth.

Simulation study of the two procedures are presented in Section 4. Real data analysis is

given in Section 5, which suggests that our nonparametric estimation is consistent with

[16]’s and [3]’s conclusions. Proofs are given in Section 6. Section 7 gives the conclusion.

§2. The Estimator and Its Asymptotic Properties

Consider a d-dimensional spatial point process N . For any Borel set D ⊂ Rd, let |D|
denote the volume of D, and N(D) denote the number of events of N in D. Let ds be an

infinitesimal region containing s. Following [3], we define the first-order and second-order

intensity functions of N as

λ(s) = lim
|ds|→0

E[N(ds)]

|ds|
and λ2(s, t) = lim

|ds|,|dt|→0

E[N(ds)N(dt)]

|ds||dt|

respectively.

Let N1, N2, . . . , Nn be independent and identically distributed realizations of the un-

derlying process N . For a pattern Ni, there are Ni(D) events {si1, si2, . . . , siNi(D)} in a

fixed region D of finite volume |D|. A kernel-type estimator of λ(s) has been proposed in

[15], where there is only a single realization of N . When replicated spatial point patterns

are available, it is natural to consider the following kernel-type estimator:

λ̂nh(s) =
1

n

n∑
i=1

λ
(i)
nh(s), (1)

where

λ
(i)
nh =

∑
sij∈Ni∩D

kn(s− sij)
ωh(s)

. (2)

In (2), kh(s) = (1/hd)k(s/h) is a d-dimensional kernel function and ωh(s) is an edge

correction form, e.g., ωh(s) =
∫
D kh(s− t)dt, as in [15].

We now derive the asymptotic properties of the kernel-type estimator as n→∞. For

simplicity, let ωh(s) ≡ 1. Firstly, the pointwise mean square error admits the following

bias and variance decomposition:

MSE(s) = E[λ̂nh(s)− λ(s)]2 = [Eλ̂nh(s)− λ(s)]2 + Var [λ̂nh(s)].

An approximation of the MSE is given by the following theorem.
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Theorem 1 Suppose that k is a bounded kernel function with a bounded support

and
∫
xk(x)dx = 0. If λ has the continuous second derivation at an interior point s of the

domain D, and λ2(s, t) has the continuous first derivation at (s, s), then

Eλ̂nh(s)− λ(s) =
h2

2

∫
k(x)xT∇2λ(s)xdx+ o(h2) (3)

and

Var [λ̂nh(s)] =
λ(s)

nhd

∫
k2(x)dx+ o

( 1

nhd

)
. (4)

Furthermore, a global measure can be obtain by using a integrated square error

ISE =

∫
D′

[λ̂nh(s)− λ(s)]2ds,

where D′ is an arbitrary region we concerned and D′ ⊂ D. To avoid the edge effect, let

D′⊕ε = {s : s∈εB(s′), s′∈D′} ⊂ D for some ε > 0, where ⊕ denote the Minkowski addition

and B(s) is a unit ball in Rd centered at s. Similarly, the mean integrated square error

can be expressed by

MISE = E

∫
D′

[λ̂nh(s)− λ(s)]2ds

=
h4

4

∫
D′

[ ∫
k(x)xT∇2λ(s)xdx

]2
ds+

1

nhd

∫
D′
λ(s)ds

∫
k2(x)dx+ o

( 1

nhd
+ h4

)
.

By choosing h = O(n−1/(4+d)), the MISE can achieves the optimal rate of convergence

n−4/(4+d). Here we also investigate the rate of convergence of the ISE, which is given by

the following theorem.

Theorem 2 Suppose that k is a bounded kernel function with a bounded support

and
∫
xk(x)dx = 0. If λ has the continuous second derivation in D′, and λ2(s, t) has the

continuous first derivation in D′ ×D′. N(D) is bounded, i.e., P[N(D) > C] = 0 for some

constant C > 0, then

√
ISE =

√∫
D′

[λ̂nh(s)− λ(s)]2ds = O
(√ lnn

nhd

)
+O

( 1√
nhd

+ h2
)

a.s.

For h = O((lnn/n)1/(4+d)), ISE = (lnn/n)4/(4+d) a.s.

§3. Bandwidth Selection

It is well known that the choice of bandwidth affects the performance of the kernel

estimator greatly, and it is much more crucial than the choice of the kernel. The theo-

retical results in Section 2 confirm the intuition that increasing h implies increasing bias
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an decreasing variance while increasing number of observations implies smaller variance.

However the theoretical results are not helpful from a practical point of view when it comes

to selecting the bandwidth. There are quite a few methods for selecting the bandwidth

(e.g. [23]). Among these, an often used approach is the least-square cross validation. We

propose a familiar procedure to select h as the minimizer of the following criterion:

LSCV(h) =

∫
D
λ̂2nh(s)ds− 2

n

n∑
i=1

∑
sij∈Ni∩D

λ̂n\{i}h(sij), (5)

where λ̂n\{i}h(s) = (n−1)−1
∑
j 6=i

λ
(j)
nh(s), i.e., a kernel-type estimator based on the data with

Ni omitted. It is easy to verify that n−1
n∑
i=1

∑
sij∈Ni∩D

λ̂n\{i}h(sij) is an unbiased estimator

of
∫
D λ̂nh(s)λ(s)ds. In fact, we have

E

∫
D
λ̂nh(s)λ(s)ds =

∫
D

∫
D
kh(s− t)λ(s)λ(t)dsdt

and
1

n

n∑
i=1

∑
sij∈Ni∩D

λ̂n\{i}h(sij) =
1

n(n− 1)

∑
i 6=i′

∑
j,k

kh(sij − si′k).

Another simple approach is the likelihood cross validation [24]. Recently, Guan [22]

modified this approach to select the bandwidth for the estimator of the pair correlation

function. Here a full likelihood function is not available, a natural alternative is to use

the composite likelihood, i.e.,
∑

s∈N∩D
lnλ(s)−

∫
D λ(s)ds. Thus composite likelihood cross

validation defines the bandwidth as the maximum of

CLCV(h) =
1

n

n∑
i=1

∑
sij∈Ni∩D

ln λ̂n\{i}h(sij)−
∫
D
λ̂nh(s)ds. (6)

§4. Simulation Study

The proposed bandwidth selection methods are applied to simulation data generat-

ed by a non-homogeneous Poisson process (NHPP) and a inhomogeneous Neyman-Scott

process (see [25]). For the NHPP, the intensity function λ(s1, s2) = α exp(−s1 − s2),

we considered α = 20, 40, 60. For the inhomogeneous Neyman-Scott process, the par-

ents points form a HPP with intensity β > 0. The clusters are independent NHPP with

intensity functions

λ(s1, s2;σ) = 4kσ(s1 − c1, s2 − c2) exp(−s1 − s2),



No. 5 ZHAO J., ZHOU X. Q.: Asymptotic Properties of Nonparametric Intensity Estimation 455

where kσ(s1, s2) = (2πσ2)−1 exp[−(s21 + s22)/(2σ
2)], and (c1, c2) is the location of parents.

Let β = 10, 20, 40, for each value of β we consider σ = 0.1, 0.4, which correspond to

respectively strong and weak clustering. In each case, we simulated n = 100, 200, 400, 800

replicated realizations on a unit square.

To employ the kernel-type nonparametric estimator, one needs to choose the ker-

nel function and the bandwidth. It is well known that the choice of kernel function-

s is not very important. Here we use the uniform kernel function, i.e., k(s1, s2) =

(1/4)I[−1,1]×[−1,1](s1, s2), where IA(·) denotes the indicator function of the set A. The

bandwidth were selected by minimizing (5) and maximizing (6). We compare the two

methods by two criterions: l2 distance and l∞ distance, i.e., l2 =
√∫

D[λ̂nh(s)− λ(s)]2ds

and l∞ = sup
D
|λ̂nh(s)− λ(s)|, where D is the observation region.

Tables 1 – 3 list the simulation results for the inhomogeneous Poisson processes, while

Tables 4 – 6 show the results for the inhomogeneous Neyman-Scott processes. In all cases,

the l2 and l∞ distances decrease as the sample size increases. From Tables 1 – 3, the

least-square cross validation has smaller l2 distances, but the l∞ distances are larger. For

the cluster process case in Tables 4 – 6, the composite likelihood cross validation performs

better when σ = 0.1, which correspond to strong clustering. However, in case of σ = 0.4,

it performs worse than least-square cross validation. As a result, we recommend the use

of composite likelihood cross validation in case of strong clustering and use least-square

cross validation in case of weak clustering.

Table 1 Cross-validation procedures in NHPP case (α = 20)

Least-square Composite likelihood

n l2 l∞ l2 l∞

100 2.369 4.400 2.266 4.041

200 2.090 3.754 2.116 3.726

400 1.809 3.448 1.973 3.288

800 1.708 2.807 1.854 2.580

Table 2 Cross-validation procedures in NHPP case (α = 40)

Least-square Composite likelihood

n l2 l∞ l2 l∞

100 2.519 5.589 2.746 4.949

200 2.077 4.475 2.529 4.537

400 1.951 3.488 2.200 3.316

800 1.808 2.930 2.104 2.621
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Table 3 Cross-validation procedures in NHPP case (α = 60)

Least-square Composite likelihood

n l2 l∞ l2 l∞

100 4.066 10.766 4.351 7.867

200 3.197 6.356 3.364 6.087

400 2.785 5.610 2.976 5.414

800 2.534 4.980 2.640 4.655

Table 4 Cross-validation procedures in the Poisson cluster case (β = 10)

Least-square Composite likelihood

n σ l2 l∞ l2 l∞

100 0.1 2.767 5.073 2.417 4.140

0.4 3.091 7.783 3.540 10.863

200 0.1 2.353 3.633 2.023 3.566

0.4 2.821 6.949 2.987 9.006

400 0.1 1.969 2.748 1.923 2.587

0.4 2.551 5.501 2.625 6.176

800 0.1 1.742 1.994 1.634 1.790

0.4 1.995 3.951 2.106 4.252

Table 5 Cross-validation procedures in the Poisson cluster case (β = 20)

Least-square Composite likelihood

n σ l2 l∞ l2 l∞

100 0.1 4.574 7.098 4.353 6.887

0.4 5.158 9.409 5.454 9.497

200 0.1 4.214 6.102 4.014 6.011

0.4 4.878 8.016 5.132 8.085

400 0.1 3.790 4.890 3.435 4.677

0.4 4.241 6.487 4.488 6.753

800 0.1 2.764 3.538 2.430 3.329

0.4 3.246 5.015 3.486 5.348

§5. Application

As an example, we consider the data shown in Figure 1, which was originally analyzed

by Diggle et al. [16] These data consist of 12 point patterns, each of which concerns the

locations of pyramidal neurons in the cingulate cortex of human brains. Post-morterm
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Table 6 Cross-validation procedures in the Poisson cluster case (β = 40)

Least-square Composite likelihood

n σ l2 l∞ l2 l∞

100 0.1 6.367 8.932 6.128 8.704

0.4 6.890 10.933 7.109 11.135

200 0.1 5.879 7.360 5.540 7.186

0.4 6.341 9.131 6.602 9.670

400 0.1 5.220 6.144 4.976 5.882

0.4 5.764 7.878 5.903 8.010

800 0.1 4.182 5.094 3.958 4.857

0.4 4.534 6.281 4.808 6.397

slices of the same area in each of the subject’s brains were obtained. The locations of

the neurons were identified through digitization and scaled to the unit square. The 12

point patterns are presumed to be normal control cases. Diggle [3] used the estimated K-

function to show that the normal group was not distinguishable from the complete spatial

randomness (CSR).
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Figure 1 Locations of pyramidal neurons from 12 normal subjects

We use the kernel-type method to estimate the intensity function of the 12 replicated

point patterns. We choose the Gaussian kernel function, i.e., k(s1, s2) = (2π)−1e−(s
2
1+s

2
2)/2.

The bandwidth selection approach is the least-square cross validation. Figure 2 shows the

surface of the kernel estimator λ̂(s1, s2). The fluctuation of the function surface is mild.
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In fact,

sup
s1∈(0,1),s2∈(0,1)

|λ̂(s1, s2)− λ̃| = 4.490, where λ̃ =

∑
Ni(D)

12
≈ 54.4,

which is the maximum likelihood estimator of the intensity when the underlying process is

a HPP. The value is small relative to the intensity. This suggests that we have no reason

to reject the CSR of the 12 normal subjects. Again, our result is consistent with [16]’s

and [3]’s conclusions.
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Figure 2 Function surface of the kernel estimator

§6. Proofs

Proof of Theorem 1 By the Campbell theorem, we have

Eλ̂nh(s)− λ(s) = Eλ
(1)
nh (s)− λ(s) =

∫
D
kh(s− x)λ(s)ds− λ(s).

Using the assumption that k has a bounded support and s is an interior point of D, we

have for h small enough,

Eλ̂nh(s)− λ(s) =

∫
k(x)[λ(s− hx)− λ(s)]ds =

h2

2

∫
k(x)xT∇2λ(s− ξ)xdx,

where ξ lies between 0 and hx. By the Lebesgue convergence theorem, we have

Eλ̂nh(s)− λ(s) =
h2

2

∫
k(x)xT∇2λ(s)xdx+ o(h2).
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Next,

Var [λ̂nh(s)] =
1

n
Var [λ

(1)
nh (s)].

Note that Eλ
(1)
nh (s) = O(1), we have

Var [λ̂nh(s)]

=
1

n
E
[ ∑
s1j∈N1∩D

kh(s− s1j)
]2

+O
( 1

n

)
=

1

n

[ ∫
D

∫
D
kh(s− x)kh(s− y)λ2(x, y)dxdy +

∫
D
k2h(s− x)λ(x)dx

]
+O

( 1

n

)
=

1

n

[ ∫ ∫
k(x)k(y)λ2(s− hx, s− hy)dxdy +

1

hd

∫
k2(x)λ(s− hx)dx

]
+O

( 1

n

)
.

Using the assumption on λ(s) and λ2(s, t), we have∫ ∫
k(x)k(y)λ2(s− hx, s− hy)dxdy = λ2(s, s) + o(1)

and ∫
k2(x)λ(s− hx)dx = λ(s)

∫
k2(x)dx+ o(1),

provided that h→ 0. Hence equation (4) follows and this completes the proof. �

To prove Theorem 2, we need the following [26] exponential inequality.

Lemma 3 Let {Sn}n>1 be a martingale based on the independent r.v. X1, X2, . . .

Suppose that exist r.v. Tn = ψn(X1, X2, . . . , Xn) and constant To and cn, such that

Tn−1 6 Sn 6 Tn−1 + cn, n = 1, 2, . . .

Then for all n > 1,

P(|Sn − ES1| > t) 6 2 exp
(
− 2t2

/ n∑
i=1

c2i

)
.

Proof of Theorem 2 By the triangle and Jensen’s inequality, we have

E

√∫
D′

[λ̂nh(s)− λ(s)]2ds 6 E

√∫
D′

[λ̂nh(s)− Eλ̂nh(s)]2ds+

√∫
D′

[Eλ̂nh(s)− λ(s)]2ds

6

√∫
D′

Var λ̂nh(s)ds+

√∫
D′

[Eλ̂nh(s)− λ(s)]2ds

= O
( 1√

nhd
+ h2

)
.

Thus, we need only to show that√∫
D′

[λ̂nh(s)− λ(s)]2ds− E

√∫
D′

[λ̂nh(s)− λ(s)]2ds = O
(√ lnn

nhd

)
a.s.
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Define ψn(N1, N2, . . . , Nn) =
√∫

D′ [λ̂nh(s)− λ(s)]2ds, then, ψn is a symmetric function of

N1, N2, · · · , Nn. Let Sk = E(ψn |N1, N2, . . . , Nk), k = 1, 2, . . . , n − 1 and Sn = ψn. Thus

S1, S2, . . . , Sn is a martingale. Since

inf
Nk

Sk 6 Sk 6 inf
Nk

Sk + γk,

where γk = sup
Nk

Sk − inf
Nk

Sk. We now give a bound on γk. It is convenient to denote Nk in

the supremum as N and in the infimum as N ′, where N and N ′ are i.i.d. realizations of

the underlying process. We have

γk = sup
N,N ′

E(ψn |N1, N2, . . . , Nk−1, N)− E(ψn |N1, N2, . . . , Nk−1, N
′)

= sup
N,N ′

∫
[ψn(N1, N2, . . . , Nk−1, N,Nk+1, Nk+2, . . . , Nn)

− ψn(N1, N2, . . . , Nk−1, N
′, Nk+1, Nk+2, . . . , Nn)]dP(Nk+1, Nk+2, . . . , Nn)

6 sup
N1,N2,...,Nk−1,N,N ′,Nk+1,Nk+2,...,Nn

|ψn(N1, N2, . . . , Nk−1, N,Nk+1, Nk+2, . . . , Nn)

− ψn(N1, N2, . . . , Nk−1, N
′, Nk+1, Nk+2, . . . , Nn)|

= sup
N,N ′,N2,N3,...,Nn

|ψ(N,N2, N3, . . . , Nn)− ψ(N ′, N2, N3, . . . , Nn)|.

The last equality is follows by the symmetry of ψn. From the triangle inequality,

γk 6
1

n
sup
N,N ′

{∫
D′

[ ∑
xj∈N∩D

kh(s− xj)−
∑

x′j∈N∩D
kh(s− x′j)

]2
ds
}1/2

6
C ′

nhd/2
,

where C ′ is a constant. Using Lemma 3, we have

P(|Sn − ES1| > t) < 2 exp
(
− 2t2

/ n∑
k=1

C ′2

n2hd

)
= 2 exp

(
− 2nhdt2

C ′2

)
.

By the Borel-Cantelli lemma, the theorem is proved. �

§7. Conclusions

Intensity function is an important characteristic for inhomogeneous spatial point pro-

cesses. Recently, data of replicated spatial point patterns are given in the fields of biolog-

ical sciences and clinical neuroanatomy. In this paper we investigate the nonparametric

estimator of the intensity function for replicated spatial point patterns. A kernel-type

estimator is proposed. The asymptotic expansion of the pointwise MSE and the MISE are
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given, which are similar as the classic results of the kernel density estimation. Further-

more, we also study the rate of convergence of the ISE, which is not always presented in

the study of the kernel estimation.

As a key factor in any nonparametric smoothing applications, we proposed two meth-

ods for the choice of the bandwidth, which are the familiar least-squares cross-validation

type of procedure and composite likelihood cross-validation. The efficacy of the two meth-

ods is studied by Monte Carlo simulation. The study suggests that the composite likeli-

hood cross-validation preforms better in the case of strong clustering and the least-square

cross-validation performs better in case of weak clustering. Real data analysis also shows

that our nonparametric estimator is useful.
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