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Abstract: The definition of Brownian distance is presented and it’s proved that Brownian dis-

tance coincides with the energy distance with respect to Brownian motion. Energy distance for

dependent random vectors is also given and the asymptotic distribution is derived under null hy-
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§1. Introduction: Energy Distance

Székely [1] introduced a new concept named energy distance to measure the difference

between two independent probability distributions. If X and Y are independent random

vectors in Rp with cumulative distribution functions (cdf) F and G respectively, then the

energy distance between the distributions F and G is defined as

ε(F,G) = 2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖, (1)

where X ′ is an i.i.d. copy of X, and Y ′ is an iid copy of Y . E is the expected value, and

‖ · ‖ denotes the Euclidean norm. One can also write ε(F,G) as ε(X,Y ), and call it be

the energy distance of X and Y . Székely [1] proved that for real-valued random variables

this distance is exactly twice Harald Cramér’s distance, that is

2

∫ ∞
−∞

[F (t)−G(t)]2dt = 2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖.
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In higher dimensions, however, the two distances are different because the energy distance

is rotation invariant while Cramér’s distance is not. The equality becomes

2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖ =
1

cp

∫
Rp

|f̂(t)− ĝ(t)|2

‖t‖p+1
dt, (2)

where f̂ is X’s characteristic function and ĝ be Y ’s characteristic function, cp = π(p+1)/2/

Γ[(p+ 1)/2]. Thus ε(F,G) > 0 with equality to zero if and only if F = G. This property

makes it possible to use ε(F,G) for testing goodness-of-fit, homogeneity, etc. in a consistent

way. Rizzo [2] discussed the theoretical background of homogeneity test for two multivariate

populations based on energy distance. He considered the test

H0 : F1 = F2

versus alternative F1 6= F2. Suppose X = {X1, X2, . . . , Xm} be an i.i.d. sample from the

distribution of F1 in Rp, and Y = {Y1, Y2, . . . , Yn} be an i.i.d. sample from the distribution

of F2 in Rp. The sample version of ε(F1, F2) was defined as:

Vm,n :=
2

mn

m∑
i=1

n∑
j=1
‖Xi − Yj‖ −

1

m2

m∑
k,l=1

‖Xk −Xl‖ −
1

n2

n∑
u,v=1

‖Yu − Yv‖. (3)

If one denotes

h(x1, x2; y1, y2) := ‖x1 − y1‖+ ‖x2 − y2‖ − ‖x1 − x2‖ − ‖y1 − y2‖,

then, obviously Vm,n is a two-sample V -statistic with kernel h

Vm,n =
1

m2n2

m∑
i,k=1

n∑
j,l=1

h(Xi, Xk;Yj , Yl).

Under the hypothesis of F1 = F2, Vm,n is first-order degenerated, which leads [mn/(m +

n)]Vm,n to converges in distribution to a quadratic form of centered Gaussian random

variables [2]. So one can choose εm,n := [mn/(m + n)]Vm,n as the test statistic for H0,

and reject H0 for large values of εm,n. Rizzo [2] also presented the procedure for practical

implementation via bootstrap method.

For more applications of energy distance on the classical statistic problems such as

multivariate normality test, hierarchical clustering, dependence test and extension of anal-

ysis of variance, etc., see [3–6]. Székely and Rizzo summarized all those applications in

[7]. Contrary to the classical methods, these methods based on energy distance are sim-

ple to calculate, applicable for more widely distributed types of data and can deal with

multi-variables.



No. 5 CHEN M. Q.: Two Notes on Energy Distance 465

Rizzo [2] tells us that one can distinguish any two probability distributions on Eu-

clidean space in a very simple way, just by computing the difference of the “average

between sample distances” and “average within sample distances” of the two samples

X = {X1, X2, . . . , Xm} and Y = {Y1, Y2, . . . , Yn}. Here the distance only refers to the

Euclidean distance. Lyons [8] generalized the notion of energy distance to probability dis-

tributions on metric spaces. Let (M,d) be a metric space with its Borel sigma algebra

B(M), P(M) denotes the collection of all probability measures on the measurable space

(M,B(M)). If µ and ν are probability measures in P(M), then the energy distance of µ

and ν can be defined as

ε(µ, ν) = 2E[d(X,Y )]− E[d(X,X ′)]− E[d(Y, Y ′)],

provided that these expectations exist, where X,X ′
i.i.d.∼ µ and Y, Y ′

i.i.d.∼ ν. However the

result “ε(µ, ν) > 0 with equality to zero if and only if µ = ν” does not always hold.

Lyons [8] indicated that it holds unless the metric space (M,d) is strong negative. We

describe this point more clearly as following proposition.

Proposition 1 If (M,d) is a metric space of negative type, then, one has ε(µ, ν) > 0.

Moreover, if (M,d) is strong negative, then ε(µ, ν) = 0 if and only if µ = ν.

We give a explicit proof of this proposition.

Proof If (M,d) is a metric space of negative type, then there exists a Hilbert space

H and a map φ : M → H such that ∀x, x′ ∈M , d(x, x′) = ‖φ(x)− φ(x′)‖2 holds [10], so

Ed(X,Y ) = E‖φ(X)− φ(Y )‖2

= E‖φ(X)− E[φ(X)] + E[φ(X)]− E[φ(Y )] + E[φ(Y )]− φ(Y )‖2

= E{‖φ(X)− E[φ(X)]‖2 + ‖E[φ(X)]− E[φ(Y )]‖2 + ‖φ(Y )− E[φ(Y )]‖2

+ 2〈φ(X)− E[φ(X)],E[φ(X)]− E[φ(Y )]〉

+ 2〈φ(X)− E[φ(X)],E[φ(Y )]− φ(Y )〉

+ 2〈E[φ(X)]− E[φ(Y )],E[φ(Y )]− φ(Y )〉}

= E‖φ(X)− E[φ(X)]‖2 + E‖E[φ(X)]− E[φ(Y )]‖2 + E‖φ(Y )− E[φ(Y )]‖2,

and obviously

E‖φ(X)− φ(X ′)‖2 = 2E‖φ(X)− E[φ(X)]‖2,

E‖φ(Y )− φ(Y ′)‖2 = 2E‖φ(Y )− E[φ(Y )]‖2.
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Thus, we have

2Ed(X,Y )− Ed(X,X ′)− Ed(Y, Y ′)

= 2E‖φ(X)− φ(Y )‖2 − E‖φ(X)− φ(X ′)‖2 − E‖φ(Y )− φ(Y ′)‖2

= 2E‖E[φ(X)]− E[φ(Y )]‖2,

which means ε(X,Y ) > 0.

Moreover, if (M,d) is strong negative, then, one can derive that the map βφ(µ) : µ 7→∫
φ(x)dµ(x) is injective [8], which implies E[φ(X)] = E[φ(Y )] if and only if µ = ν. �

Lyons [8] illustrated that all Euclidean spaces have strong negative type and proved

that every separable Hilbert space is of strong negative type. Thus even if the observations

are complex objects, like functions, texts, and graphs etc., one can use their real-valued

nonnegative distances for inference.

In this paper, we give the next two notes on energy distance: Brownian distance and

energy distance for dependent random vectors.

§2. Brownian Distance

The notion of covariance with respect to a stochastic process, named Brownian dis-

tance covariance, was introduced by Székely and Rizzo [9], and it was shown that the

population distance covariance coincides with Brownian covariance. Similarly, we will

present the notion of Brownian distance, and show the consistent of Brownian distance

and energy distance.

Definition 2 Let X and Y be two Rp-valued random variables, with distributions F

and G respectively. Suppose W be a Brownian motion with expectation zero and covariance

function

Cov (W (t),W (s)) = ‖s‖+ ‖t‖ − ‖s− t‖ (4)

on Rp, independent of X and Y . The Brownian distance between X and Y is the non-negative

number whose square is:

BD2
W (X,Y ) = E{[W (X)−W (Y )][W (X ′)−W (Y ′)]}, (5)

where X ′ is an iid copy of X, and Y ′ is an i.i.d. copy of Y .

For two independent real-valued random variables X,Y , the square of their mean’s

difference is

(EX − EY )2 = (EX − EY )(EX ′ − EY ′) = E(X − Y )E(X ′ − Y ′) = E(X − Y )(X ′ − Y ′).
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So, Brownian distance can be understood as the generalized definition of square of mean

difference by replacing identity process I(t) with Brownian motion W (t).

Theorem 3 If X and Y are two independent Rp-valued random variables, with E‖X‖
+ E‖Y ‖ <∞, then E{[W (X)−W (Y )][W (X ′)−W (Y ′)]} is nonnegative and finite, and

BD2
W (X,Y ) = 2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖.

Proof Observe that

BD2
W (X,Y ) = E{[W (X)−W (Y )][W (X ′)−W (Y ′)]}

= E{E{[W (X)−W (Y )][W (X ′)−W (Y ′)] |W}}

= E{E{[W (X)−W (Y )] |W}E{[W (X ′)−W (Y ′)] |W}}

= E{E[W (X) |W ]− E[W (Y ) |W ]}2,

where E[W (X) |W ] =
∫
Rd W (t)dF (t) and F (t) is the distribution function of X, and simi-

lar means for E[W (Y ) |W ]. So, E{[W (X)−W (Y )][W (X ′)−W (Y ′)]} is always nonnegative.

For finiteness, note that

E[W 2(X)] = E{E[W 2(X) |X]} = E(2‖X‖) = 2E‖X‖ <∞.

Therefore, we have

BD2
W (X,Y ) = E{E[W (X) |W ]− E[W (Y ) |W ]}2

6 2E{{E[W (X) |W ]}2 + E[W (Y ) |W ]2}

6 2E{E[W 2(X) |W ] + E[W 2(Y ) |W ]}

= 2{E[W 2(X)] + E[W 2(Y )]} = 4(E‖X‖+ E‖Y ‖) <∞.

On the other hand,

BD2
W (X,Y ) = E{[W (X)−W (Y )][W (X ′)−W (Y ′)]}

= E[W (X)W (X ′) +W (Y )W (Y ′)−W (X)W (Y ′)−W (Y )W (X ′)]

= E{E{[W (X)W (X ′) +W (Y )W (Y ′)−W (X)W (Y ′)−W (Y )W (X ′)] |X,X ′, Y, Y ′}}

= E[‖X‖+ ‖X ′‖ − ‖X −X ′‖+ ‖Y ‖+ ‖Y ′‖ − ‖Y − Y ′‖ − 2(‖X‖+ ‖Y ′‖ − ‖X − Y ′‖)]

= 2E‖X − Y ‖ − E‖X −X ′‖ − E‖Y − Y ′‖.

This completes the proof. �

Theorem 3 indicates that the properties of Brownian distance for random vectors X

and Y are therefore the same properties for energy distance. We have the result as follows.
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Remark 4 Let X and Y be two Rp-valued random variables, with distributions F

and G respectively, W be a Brownian motion with expectation zero and covariance function

(4) on Rp, independent of X and Y , then, one has:

BDW (X,Y ) = 0 if and only if X
D
= Y,

where X
D
= Y refers to X and Y are identically distributed.

§3. Energy Distance for Paired Variables

From the introduction in section one, we can see that although the concept of energy

distance is defined for independent variables, it’s also applicable for dependent variables.

In this section, we discuss the energy distance for paired variables which is a special case

of dependent variables.

Definition 5 Let X and Y be two Rp-valued random variables, suppose (X,Y ) has

joint distribution H, with marginal distribution F on X and G on Y respectively. Assume

that E‖X‖+ E‖Y ‖ <∞, the energy distance between X and Y is defined as

ε(X,Y ) := E‖X − Y ′‖+ E‖Y −X ′‖ − E‖X −X ′‖ − E‖Y − Y ′‖, (6)

where (X ′, Y ′) is an i.i.d. copy of (X,Y ).

Similar to equality (2) we have following result.

Theorem 6 Denote f̂ as X’s characteristic function and ĝ as Y ’s characteristic

function, then, one has the equality

E‖X − Y ′‖+ E‖Y −X ′‖ − E‖X −X ′‖ − E‖Y − Y ′‖ =
1

cp

∫
Rp

|f̂(t)− ĝ(t)|2

‖t‖p+1
dt, (7)

where cp = π(p+1)/2/Γ[(p + 1)/2]. Thus ε(X,Y ) > 0 with equality to zero if and only if X

and Y are identically distributed.

Proof Note that f̂(t) = Eeit
′X , ĝ = Eeit

′Y , so

|f̂(t)− ĝ(t)|2 = [f̂(t)− ĝ(t)][f̂(t)− ĝ(t)]

= f̂(t)f̂(t) + ĝ(t)ĝ(t)− f̂(t)ĝ(t)− f̂(t)ĝ(t)

= Eeit
′XEe−it

′X′ + Eeit
′Y Ee−it

′Y ′ − Eeit
′XEe−it

′Y ′ − Ee−it
′X′Eeit

′Y

= Eeit
′(X−X′) + Eeit

′(Y−Y ′) − Eeit
′(X−Y ′) − Eeit

′(Y−X′)

= 1− Eeit
′(X−Y ′) + 1− Eeit

′(X′−Y ) − (1− Eeit
′(X−X′))− (1− Eeit

′(Y−Y ′)).
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Therefore, by integral on both sides, we get

1

cp

∫
Rp

|f̂(t)− ĝ(t)|2

‖t‖p+1
dt = E‖X − Y ′‖+ E‖Y −X ′‖ − E‖X −X ′‖ − E‖Y − Y ′‖,

via the integral equation [7] ∫
Rp

1− cos〈t, x〉
‖t‖p+1

dt = cp‖x‖.

Thus, we have ε(X,Y ) > 0 with equality to zero if and only if X and Y are identically

distributed. �

Remark 7 Let X be a Rp-valued random variable, with distribution F , suppose

E‖X‖ <∞, then E‖X +X ′‖ > E‖X −X ′‖, where X ′ is an i.i.d. copy of X, E‖X +X ′‖ =

E‖X −X ′‖ if and only if X is diagonally symmetric.

Proof Wang et al. [12] gives the proof of this result for X be univariate. Generally,

we can put Y = −X to get

ε(X,Y ) = ε(X,−X)

= E‖X − (−X ′)‖+ E‖X ′ − (−X)‖ − E‖X −X ′‖ − E‖ −X − (−X ′)‖

= 2(E‖X +X ′‖ − E‖X −X ′‖).

Thus, according to Theorem 6 we have E‖X + X ′‖ − E‖X −X ′‖ > 0 and E‖X + X ′‖ −
E‖X −X ′‖ = 0 if and only if X and −X are identically distributed, which means that X

is diagonally symmetric. �

We now give the empirical energy distance for paired variables.

Definition 8 Let Wi = (Xi, Yi), i = 1, 2, . . . , n be a sample from the distribution

of (X,Y ), and denote W = (X,Y ) = {W1,W2, . . . ,Wn}, the sample energy distance of

(X,Y ) is given as

εn(X,Y ) :=
1

C2
n

∑
i<j

(‖Xi − Yj‖+ ‖Yi −Xj‖ − ‖Xi −Xj‖ − ‖Yi − Yj‖).

If we denote

h(w1, w2) := h((x1, y1), (x2, y2)) = ‖x1 − y2‖+ ‖y1 − x2‖ − ‖x1 − x2‖ − ‖y1 − y2‖,

then εn(X,Y ) has the form of an U-statistic, with kernel h

εn(X,Y ) =
1

C2
n

∑
i<j

h(Wi,Wj).

Obviously, εn(X,Y ) is an unbiased estimator of ε(X,Y ).
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Proposition 9 The empirical energy distance εn(X,Y ) almost surely converges to

the energy distance ε(X,Y ). That is, εn(X,Y )
a.s.−−−→
n→∞

ε(X,Y ).

Proof As to h(W1,W2), we have

E|h(W1,W2)| 6 4 ∗ (E‖X1‖+ E‖Y1‖) <∞,

due to the suppose E‖X‖ + E‖Y ‖ < ∞ and E[h(W1,W2)] = ε(X,Y ). According to [11],

we can obtain that

εn(X,Y )
a.s.−−−→
n→∞

ε(X,Y ).

Hence, the result follows. �

Theorem 10 Let X and Y be two Rp-valued random variables, with E‖X‖+E‖Y ‖ <
∞, then

(i) If X and Y are identically distributed, then

nεn(X,Y )
D−−−−→

n−→∞

∞∑
v=1

λv(Z
2
v − 1),

where Zv are independent standard normal random variables,λv are nonnegative con-

stants that depend on the distribution of (X,Y ).

(ii) If X and Y are not identically distributed, then

nεn(X,Y )
a.s.−−−−→

n−→∞
∞.

Proof (i) When X and Y are identically distributed, we have

Eh(W1,W2) = E‖X1 − Y2‖+ E‖X2 − Y1‖ − E‖X1 −X2‖ − E‖Y1 − Y2‖ = 0,

and

h1(w1) := Eh(w1,W2) = Eh((x1, y1), (X2, Y2))

= E‖x1 − Y2‖+ E‖X2 − y1‖ − E‖x1 −X2‖ − E‖y1 − Y2‖ = 0,

h1(w2) := Eh(W1, w2) = 0,

h2(w1, w2) = ‖x1 − y2‖+ ‖x2 − y1‖ − ‖x1 − x2‖ − ‖y1 − y2‖,

which means that εn(X,Y ) is a degenerate U-statistic of order 1, therefore, it converges

in distribution to a quadratic form:

nεn(X,Y )
D−−−−→

n−→∞

∞∑
v=1

λv(Z
2
v − 1),
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where Zv are independent standard normal random variables, λv are the eigenvalues of

the equation
∫
h2(w1, w2)f(w2)dH(w2) = λf(w1).

(ii) The result is obviously because εn(X,Y )
a.s.−−−→
n→∞

ε(X,Y ) > 0 when X and Y are

not identically distributed. �

Theorem 10 implies that we can reject the null hypothesis of X and Y are identically

distributed when nεn(X,Y ) is too large.

§4. Paired-Sample Test Based on Energy Distance

In this section, we consider the the problem of testing the equality of distributions

for paired variables based on the results we discussed in Section 3. For example, if we give

two different treatments A,B to the same research object, denote X = (X1, X2, . . . , Xp)

as the records of p features under A treatment, and Y = (Y1, Y2, . . . , Yp) as the records

under B treatment. If we want to compare the effect of this two different treatment, then,

we have to test the equality of distributions of X and Y . In another case, if we give a

treatment to a research object, also denote X the records before treatment, and Y the

records after treatment. Again, to test whether the treatment is effective or not, we need

to test the equality of distributions of X and Y .

The classical methods for testing equality of distributions for paired-sample include

univariate t-test, Hotelling T2 test, sign test, and Wilcoxcon signed rank test, etc. U-

nivariate t-test and Hotelling T2 test are applicable to (X,Y ) with joint distribution of

two-dimensional or multidimensional normal distributions, and in fact are testing the e-

quality of means for X, Y . When (X,Y ) does not meet the joint normal distribution

assumption, one can use nonparametric methods such as sign test and Wilcoxon signed

rank test. As we all know, the sign test is actually to test whether the distribution of

X − Y is with zero as median or not, while Wilcoxon signed rank test, is to test the

symmetry of distribution of X − Y . So they are not consistent tests. Moreover, sign test

and Wilcoxcon signed rank test are only applicable for X,Y be both univariate.

The statistic

εn(X,Y ) =
1

C2
n

∑
i<j

h(Wi,Wj)

presented in Section 3 gives a new idea to test the equality of distributions for paired-

sample of arbitrary dimensions. Theorem 10 shows that nεn(X,Y ) converges in distribu-

tion to a quadratic form quadratic form
∞∑
v=1

λv(Z
2
v − 1) under null hypothesis of X and

Y are identically distributed. But the λs depend on the distribution of (X,Y ), so it’s
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difficult to compute the p-values by this result. Moreover, we need to be cautious of its

serious limitations in practice, because the sample size in practice may be too small.

In practice, we consider the bootstrap method as an alternative approximation to the

null distribution of nεn(X,Y ). Noticing that under H0, (X,Y ) has the same distribution

as (Y,X), so we resample from the sample Dn :={(X1, Y1), (X2, Y2), . . . , (Xn, Yn), (Y1, X1),

(Y2, X2), . . . , (Yn, Xn)}. Denote W ∗
n = {(X∗i , Y ∗i )}ni=1 the bootstrap sample obtained by

sampling with replacement from Dn, and the bootstrap statistic is nε∗n. Repeat this

procedure for B times to obtain nε∗nk, k = 1, 2, . . . , B, then the p-value of the test is given

by

p =
[
1 +

B∑
k=1

I(|nε∗nk| > |nεn|)
]/

(B + 1).

We conduct a simple Monte Carlo simulation to demonstrate the performance of the

method we proposed here in comparison to t-test and Wilcoxcon signed rank test for

paired sample. Consider the following 6 examples:

Example 1: (X,Y ) ∼ N2(µ,Σ), with µ = (0, 0)′, Σ =

(
1 0.2

0.2 1

)
;

Example 2: X ∼ U(0, 6), Y = 6−X;

Example 3: X ∼ B(10, 0.5), Y = 10−X;

Example 4: (X,Y ) ∼ N2(µ,Σ), with µ = (1, 1)′, Σ =

(
1 0.8

0.8 4

)
;

Example 5: X ∼ Exp(4), Y = 0.5e−4X ;

Example 6: X ∼ U(0, 1), Z ∼ N(0, 1), Y = X − Z.

Examples 1 – 3 consider the cases that X and Y are identically distributed. Examples

4 – 6 are the cases that X and Y are not identically distributed, with Example 4 be the case

that X and Y have the same expectation, and Example 6 be the case X−Y are symmetric

distributed. We conduct the simulation with sample sizes n = 30, 50, 100, 200, 400, and

the number of bootstrap resamples is 199. Each experiment is based on 500 replications,

and we use the significance level of 0.05. Simulation results are summarized in Table 1,

where ptest refers to the method we proposed in this paper.

The numerical simulation results of Examples 1 – 3 show that ptest can control the

Type I error very well when X and Y are identically distributed, while Examples 4 – 6

illustrate that ptest can identify the distribution differences of the paired variables more

effectively than the classical t-test and Wilcoxon signed rank test.
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Table 1 Proportion of rejections for Examples 1 – 6 at 5% level

model method n = 30 n = 50 n = 100 n = 200 n = 400

t.test 0.054 0.030 0.052 0.030 0.040

Example 1 Wilcox.test 0.058 0.036 0.050 0.038 0.044

ptest 0.048 0.030 0.046 0.022 0.050

t.test 0.072 0.074 0.060 0.048 0.058

Example 2 Wilcox.test 0.072 0.068 0.060 0.048 0.062

ptest 0.062 0.066 0.052 0.044 0.058

t.test 0.080 0.068 0.070 0.048 0.050

Example 3 Wilcox.test 0.072 0.068 0.062 0.044 0.044

ptest 0.062 0.078 0.054 0.042 0.052

t.test 0.060 0.048 0.040 0.040 0.050

Example 4 Wilcox.test 0.048 0.038 0.050 0.034 0.042

ptest 0.574 0.884 1.000 1.000 1.000

t.test 0.046 0.050 0.038 0.042 0.042

Example 5 Wilcox.test 0.072 0.092 0.132 0.234 0.406

ptest 0.098 0.176 0.390 0.916 1.000

t.test 0.034 0.044 0.030 0.038 0.050

Example 6 Wilcox.test 0.032 0.040 0.022 0.038 0.056

ptest 0.994 1.000 1.000 1.000 1.000
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