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Abstract: For the variance parameter of the normal distribution with a normal-inverse-gamma

prior, we analytically calculate the Bayes posterior estimator with respect to a conjugate normal-

inverse-gamma prior distribution under Stein’s loss function. This estimator minimizes the Posterior

Expected Stein’s Loss (PESL). We also analytically calculate the Bayes posterior estimator and the

PESL under the squared error loss function. The numerical simulations exemplify our theoretical

studies that the PESLs do not depend on the sample, and that the Bayes posterior estimator and

the PESL under the squared error loss function are unanimously larger than those under Stein’s

loss function. Finally, we calculate the Bayes posterior estimators and the PESLs of the monthly

simple returns of the SSE Composite Index.

Keywords: Bayes posterior estimator; restricted parameter space (0,∞); Stein’s loss function;

posterior expected loss; the normal distribution with normal-inverse-gamma prior

2010 Mathematics Subject Classification: 62F10; 62F15; 62C10

Citation: XIE Y H, SONG W H, ZHOU M Q, et al. The Bayes posterior estimator of the

variance parameter of the normal distribution with a normal-inverse-gamma prior under Stein’s

loss [J]. Chinese J Appl Probab Statist, 2018, 34(6): 551–564.

§1. Introduction

Point estimation is an important class of statistical inference. The study of the

performance as well as the optimality of point estimators are usually evaluated through

the loss function. In Bayesian analysis, the Bayes risk is frequently computed to assess the

performance of an estimator with respect to a given loss function. See [1] for techniques

of finding Bayes posterior estimators.
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As pointed out by [2], the squared error loss function penalizes equally for overes-

timation and underestimation, which is appropriate for the location case. For the scale

or variance case (see [3]) where 0 is a natural lower bound and the estimation problem

is not symmetric, Stein’s loss function instead of the squared error loss function should

be chosen due to Stein’s loss function penalizes gross overestimation and gross underesti-

mation equally. Stein’s loss function also arises out of the log likelihood function for σ2

under a normal distribution, and thus ties together good decision theoretic and likelihood

properties. See the supplement for a discussion. See [4] for a detailed discussion of the

relationship between the log likelihood function and Stein’s loss function. Consequently,

Stein’s loss function is recommended to use for the positive restricted parameter space

Θ = (0,∞) by many authors (see for instance [5–12]). Moreover, for estimating a covari-

ance matrix which is assumed to be positive definite, many researchers exploit Stein’s loss

function (see for example [8, 13–21]. For the normal distribution with a normal-inverse-

gamma prior, our parameter of interest is θ = σ2 which is a variance parameter. Therefore,

we will choose Stein’s loss function.

Zhang [12] analytically calculates the Bayes posterior estimator of the normal distribu-

tion with a conjugate inverse-gamma prior distribution under Stein’s loss function where

the mean parameter is assumed known. In this paper, we analytically calculate the Bayes

posterior estimator of the normal distribution with a conjugate normal-inverse-gamma pri-

or distribution under Stein’s loss function, where the mean parameter is assumed unknown

which is a more realistic and more sophisticated situation.

The rest of the paper is organized as follows. In the next Section 2, the Bayes

posterior estimator, δπs (x), with respect to a joint conjugate normal-inverse-gamma prior

under Stein’s loss function, as well as the Bayes posterior estimator, δπ2 (x) = E(θ |x),

with respect to the same prior under the squared error loss function are both analytically

calculated. In addition, we analytically calculate the Posterior Expected Stein’s Loss

(PESL) at δπs (x) and δπ2 (x). Section 3 reports vast amount of numerical simulation results

to support the theoretical studies of (2) and (3), and that the PESLs depend only on v0

and n, but do not depend on µ0, κ0, σ0, and especially x. In Section 4, we calculate

the Bayes posterior estimators and the PESLs of the monthly simple returns of the SSE

Composite Index. Section 5 concludes.

§2. Bayes Posterior Estimator, PESL, IRSL, and BRSL

In this section, we will analytically calculate the Bayes posterior estimator δπs (x) of the

parameter θ ∈ Θ = (0,∞) under Stein’s loss function, the PESL at δπs (x), PESLs(π,x),
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and the Integrated Risk under Stein’s Loss (IRSL) at δπs (x), IRSLs(π,x) = BRSL(π,x),

which is also the Bayes Risk under Stein’s Loss (BRSL). See [22] for the definitions of the

posterior expected loss, the integrated risk, and the Bayes risk.

Suppose that the observations X1, X2, . . . , Xn are from the normal distribution with

a normal-inverse-gamma prior:Xi | (µ, θ)
i.i.d.∼ N(µ, θ), i = 1, 2, . . . , n,

µ | θ ∼ N(µ0, θ/κ0), θ ∼ IG(v0/2, v0σ
2
0/2),

(1)

where −∞ < µ0 <∞, κ0 > 0, v0 > 0, and σ0 > 0 are known hyper-parameters, N(µ, θ) is a

normal distribution with an unknown mean µ and an unknown variance θ, the conditional

conjugate prior distribution of µ given θ is N(µ0, θ/κ0) which is a normal distribution

with a known mean µ0 and an unknown variance θ/κ0, the marginal conjugate prior

distribution of θ is IG(v0/2, v0σ
2
0/2) which is an inverse gamma distribution with a known

shape parameter v0/2 and a known rate parameter v0σ
2
0/2. Note that the problem of

finding the Bayes posterior estimator under a conjugate prior is a standard problem that

is treated in almost every text on Mathematical Statistics. Raiffa, and Schlaifer [23] put

forward the idea of selecting an appropriate prior from the conjugate family. Specifically,

the posterior distribution of θ with a joint conjugate prior π(µ, θ) ∼ N - IG(µ0, κ0, v0, σ
2
0)

which is the normal-inverse-gamma distribution, was studied in Example 1.5.1 (p. 20) of

[24] and Part I (pp. 69–70) of [25]. However, they did not provide any Bayes posterior

estimator of θ. Moreover, the normal distribution with a normal-inverse-gamma prior

which assumes that µ is unknown is more realistic than the normal distribution with an

inverse-gamma prior investigated by [12] which assumes that µ is known.

As pointed out by [12], the Bayes posterior estimator

δπs (x) =
1

E(1/θ |x)

minimizes the PESL, that is,

δπs (x) = arg min
a∈A

E[Ls(θ, a) |x],

where A ={a(x) : a(x) > 0} is an action space, a = a(x) > 0 is an action (estimator),

which is a function of x instead of θ,

Ls(θ, a) =
a

θ
− ln

a

θ
− 1

is Stein’s loss function, and θ > 0 is the unknown parameter of interest.
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The usual Bayes posterior estimator of θ is δπ2 (x) = E(θ |x) which minimizes the

Posterior Expected Squared Error Loss. It is interesting to note that

δπ2 (x) > δπs (x), (2)

whose proof exploits Jensen’s inequality and the proof can be found in [12]. As calculated

in [12], the PESL at δπs (x) = [E(θ−1 |x)]−1 is

PESLs(π,x) = E[Ls(θ, a) |x]
∣∣
a=1/E(1/θ|x) = lnE

(1

θ

∣∣∣x)+ E(ln θ |x),

and the PESL at δπ2 (x) = E(θ |x) is

PESL2(π,x) = E[Ls(θ, a) |x]
∣∣
a=E(θ|x)

= E(θ |x)E
(1

θ

∣∣∣x)− lnE(θ |x) + E(ln θ |x)− 1.

Note that

PESL2(π,x) > PESLs(π,x), (3)

which is a direct consequence of the general methodology for finding a Bayes posterior es-

timator or due to δπs (x) minimizes the PESL. The numerical simulations will exemplify (2)

and (3) later. Note that the calculations of δπs (x), δπ2 (x), PESLs(π,x), and PESL2(π,x)

depend only on E(θ |x), E(θ−1 |x), and E(ln θ |x).

Suppose that X ∼ G(α, β) and Y = 1/X ∼ IG(α, β). More specifically, the pdfs of

X and Y are respectively given by

fX(x |α, β) =
βα

Γ(α)
xα−1e−xβ, x > 0, α, β > 0,

fY (y |α, β) =
βα

Γ(α)

(1

y

)α+1
e−β/y, y > 0, α, β > 0.

We know that EX = α/β. It is easy to calculate

EY =
β

α− 1
, α > 1, β > 0.

The calculation of EY can be found in the supplement.

The posterior distribution of the variance parameter θ of the normal distribution with

a normal-inverse-gamma prior is

π(θ |x) ∼ IG(α∗, β∗),

where

α∗ =
v0 + n

2
, β∗ =

1

2

[
v0σ

2
0 + (n− 1)s2 +

nκ0
n+ κ0

(x− µ0)2
]
,
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x is the sample mean, and s2 is the sample variance. The derivation of π(θ |x) can be

found in the supplement, where it is also shown that the posterior distribution of the

mean parameter µ is π(µ |x) ∼ tvn(µn, σ
2
n/κn), and the Bayes posterior estimator of µ is

δπ,µ2 (x) = E(µ |x) = µn. Therefore, we have

θ |x ∼ IG(α∗, β∗) and
1

θ

∣∣∣x ∼ G(α∗, β∗).

Consequently,

E(θ |x) =
β∗

α∗ − 1
, α∗ > 1 and E

(1

θ

∣∣∣x) =
α∗

β∗
.

It is easy to obtain that

δπ2 (x) = E(θ |x) =
β∗

α∗ − 1
>
β∗

α∗
=

1

E(1/θ |x)
= δπs (x),

which exemplifies (2). To calculate the PESL at δπs (x) and δπ2 (x), we have to calculate

E(ln θ |x). From [12], we have

E(ln θ |x) = lnβ∗ − ψ(α∗),

where ψ(z) = Γ′(z)/Γ(z) is the digamma function, and Γ(z) is the gamma function. In R

software [26], the function digamma(z) calculates ψ(z). Note that our forms of the pdfs of

the gamma as well as inverse gamma distributions are different from those in [12].

Consequently, the PESL at δπs (x) and δπ2 (x) are respectively given by

PESLs(π,x) = ln
(α∗
β∗

)
+ lnβ∗ − ψ(α∗) = lnα∗ − ψ(α∗)

and

PESL2(π,x) =
β∗

α∗ − 1

α∗

β∗
− ln

β∗

α∗ − 1
+ lnβ∗ − ψ(α∗)− 1

=
1

α∗ − 1
+ ln(α∗ − 1)− ψ(α∗), for α∗ > 1.

It is straightforward to check that

PESL2(π,x) =
1

α∗ − 1
+ ln(α∗ − 1)− ψ(α∗) > lnα∗ − ψ(α∗) = PESLs(π,x),

which exemplifies (3). Note that PESLs(π,x) and PESL2(π,x) of the current paper are

the same as those in [12], which is not surprising since the posterior distributions of θ are

the same. We also note that PESLs(π,x) and PESL2(π,x) depend only on α∗ = (v0+n)/2,

and thus on v0 and n. However, they do not depend on µ0, κ0, σ0, and especially x, which

is quite interesting. The numerical simulations will exemplify this result later.
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The IRSL at δπs (x), which is the smallest IRSL, or the BRSL is

IRSLs(π,x) = BRSL(π,x) = rs(π,x) =

∫
X

PESL(π, a |x)m(x)dx
∣∣
a=δπs (x)

=

∫
X

[
aE
(1

θ

∣∣∣x)− ln a+ E(ln θ |x)− 1
]
m(x)dx

∣∣∣
a=δπs (x)

=

∫
X

[
a
α∗

β∗
−ln a+lnβ∗−ψ(α∗)−1

]∣∣∣α∗=(v0+n)/2
β∗=[v0σ2

0+(n−1)s2+nκ0(x−µ0)2/(n+κ0)]/2
m(x)dx

∣∣∣
a=δπs (x)

6=
∫

X
PESL(π, a |x)

∣∣
a=δπs (x)

m(x)dx , I,

since we cannot take the evaluation of a = δπs (x) into the integral of x. The BRSL is such

complicated that we do not intend to calculate it. To be honest, we do not know how

to analytically calculate the smallest IRSL, or the BRSL. We also do not know how to

numerically compute it. We find that

I =

∫
X

PESLs(π,x)m(x)dx =

∫
X

[lnα∗ − ψ(α∗)]
∣∣
α∗=(v0+n)/2

m(x)dx

= [lnα∗ − ψ(α∗)]
∣∣
α∗=(v0+n)/2

∫
X
m(x)dx = [lnα∗ − ψ(α∗)]

∣∣
α∗=(v0+n)/2

.

However, the BRSL is not equal to I.

§3. Numerical Simulations

In this section, we will numerically exemplify the theoretical studies of (2) and (3),

and that PESLs(π,x) and PESL2(π,x) depend only on v0 and n, but do not depend on

µ0, κ0, σ0, and especially x. Firstly, we fix µ0 = 0, κ0 = 1, σ0 = 2, v0 = 2, and n = 10.

Secondly, we set seed(1) and draw one θ from IG(v0/2, v0σ
2
0/2), and then we draw one µ

from N(µ0, θ/κ0). After that, we draw a random sample x from N(µ, θ). The generated

sample x is

x = (13.21, 8.86, −1.07, 2.04, 5.26, 6.72, 18.96, 10.63, 2.70, 0.92)′.

For simplicity, all the numerical results in this section are rounded to 2 or 3 decimal places.

Figure 1 shows the histogram of θ |x and the density estimation curve of π(θ |x). We then

find δπs (x) to minimize the PESL under π(θ |x). Numerical results show that

δπ2 (x) = 39.66 > 33.05 = δπs (x)

and

PESL2(π,x) = 0.10 > 0.09 = PESLs(π,x),
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which exemplify the theoretical studies of (2) and (3).
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Figure 1 The histogram of θ |x and the density estimation curve of π(θ |x)

In Figure 2, we fix µ0 = 0, κ0 = 1, σ0 = 2, v0 = 2, and n = 10. However, we allow

the random seed number to change from 1 to 10 (i.e., x is changed). From Figure 2 we

see that the estimators are functions of x. Specifically, the left plot of Figure 2 illustrates

that the estimators depend on x, as well as δπ2 (x) are unanimously larger than δπs (x).

The right plot of Figure 2 exhibits that the PESLs do not depend on x, and PESL2(π,x)

are unanimously larger than PESLs(π,x). The numerical values of the Bayes posterior

estimators and the PESLs of Figure 2 are summarized in Table 1. The results of Figure 2

and Table 1 exemplify the theoretical studies of (2) and (3), and that the PESLs do not

depend on x.
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Figure 2 The estimators are functions of x (left) and the PESLs are functions

of x (right)
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Table 1 The numerical values of the Bayes posterior estimators and the PESLs

of Figure 2

seed 1 2 3 4 5 6 7 8 9 10

δπ2 (x) 39.66 64.20 65.80 6.06 32.81 7.23 2.58 7.90 87.94 6.99

δπs (x) 33.05 53.50 54.83 5.05 27.34 6.03 2.15 6.58 73.29 5.82

PESL2(π,x) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

PESLs(π,x) 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Now we allow one of the five parameters µ0, κ0, σ0, v0, and n to change, holding

other parameters fixed. Figures 3 and 4 show the estimators and the PESLs as functions

of µ0, κ0, σ0, v0, and n. We see from the left plots of Figures 3 and 4 that the estimators

depend on µ0, κ0, σ0, v0, and n, and δπ2 (x) are unanimously larger than δπs (x). The right

plots of Figures 3 and 4 exhibit that the PESLs do not depend on µ0, κ0, and σ0, only

depend on v0 and n. In addition, PESL2(π,x) are unanimously larger than PESLs(π,x).

The numerical values of the Bayes posterior estimators and the PESLs of Figures 3 and 4

are summarized in Tables 2 and 3 respectively. The results of Figures 3 and 4 and Tables

2 and 3 exemplify the theoretical studies of (2) and (3), and that the PESLs depend only

on v0 and n, but do not depend on µ0, κ0, and σ0.

Table 2 The numerical values of the Bayes posterior estimators and the PESLs

of Figure 3

µ0 −4 −3 −2 −1 0 1 2 3 4 5

δπ2 (x) 39.66 17.58 27.22 8.32 17.85 25.46 14.97 18.42 17.99 40.87

δπs (x) 33.05 14.65 22.69 6.93 14.88 21.21 12.48 15.35 14.99 34.06

PESL2(π, x) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

PESLs(π, x) 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

κ0 1 2 3 4 5 6 7 8 9 10

δπ2 (x) 39.66 18.34 27.22 8.31 17.77 27.84 14.28 17.96 18.42 44.13

δπs (x) 33.05 15.28 22.68 6.92 14.81 23.20 11.90 14.97 15.35 36.77

PESL2(π, x) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

PESLs(π, x) 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

σ0 1 2 3 4 5 6 7 8 9 10

δπ2 (x) 9.92 37.68 17.33 13.07 39.80 2 389.82 61.06 220.40 77.84 7 974.80

δπs (x) 8.26 31.40 14.44 10.89 33.17 1 991.52 50.88 183.67 64.87 6 645.66

PESL2(π, x) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

PESLs(π, x) 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
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Figure 3 Left: The estimators as functions of µ0, κ0, and σ0

Right: The PESLs as functions of µ0, κ0, and σ0
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Figure 4 Left: The estimators as functions of v0 and n

Right: The PESLs as functions of v0 and n

Table 3 The numerical values of the Bayes posterior estimators and the PESLs

of Figure 4

v0 1 2 3 4 5 6 7 8 9 10

δπ2 (x) 15.289 845.088 4.029 31.491 16.357 10.349 68.704 2 995.897 31.336 11.566

δπs (x) 12.509 704.240 3.409 26.992 14.176 9.056 60.621 2 663.020 28.037 10.409

PESL2(π, x) 0.115 0.103 0.094 0.086 0.079 0.073 0.068 0.064 0.060 0.057

PESLs(π, x) 0.094 0.086 0.079 0.073 0.068 0.064 0.060 0.057 0.054 0.051

n 10 20 30 40 50 60 70 80 90 100

δπ2 (x) 39.660 21.073 17.028 23.998 24.322 36.071 18.520 24.063 30.565 27.598

δπs (x) 33.050 19.157 15.964 22.855 23.386 34.907 18.005 23.476 29.900 27.057

PESL2(π, x) 0.103 0.051 0.034 0.025 0.020 0.017 0.014 0.013 0.011 0.010

PESLs(π, x) 0.086 0.046 0.032 0.024 0.019 0.016 0.014 0.012 0.011 0.010
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§4. Real Data Example

Many real world samples are from normal distributions with unknown mean and

variance. In this section, we use a sample from finance. We exploit an R package

quantmod [27] to download the data 000001.SS (the SSE Composite Index) during 2007-

01-08 and 2017-01-13 from “finance.yahoo.com”. It is commonly believed that the monthly

simple returns of the stock data or the index data are normally distributed. The simple

return is calculated as

r =
S1 − S0
S0

,

where S0 and S1 are the close prices of some month and the next month of the data

000001.SS. The monthly simple returns of the data 000001.SS pass the normality test by

the function shapiro.test( ) in R. The histogram of the SSE monthly simple returns are

given in Figure 5. From the figure we see that the density estimation curve and the normal

approximation curve are very close, which further exemplifies that the SSE monthly simple

returns are normally distributed.

SSE monthly simple return

D
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n
s
it
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4
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Normal approximation

Figure 5 The histogram of the SSE monthly simple returns

Therefore, it is reasonable to assume that the SSE monthly simple returns follow the

normal model (1). For simplicity, we assume that

µ0 = 0, κ0 = 1, v0 = 10, σ0 = 1.

Alternatively, one could calculate the empirical Bayes estimators of the hyper-parameters
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of model (1) by the moment method or the MLE method. Numerical results show that

δπ2 (x) = 0.08485648 > 0.083551 = δπs (x)

and

PESL2(π,x) = 0.007832845 > 0.007712031 = PESLs(π,x),

which exemplify the theoretical studies of (2) and (3). Note that we believe that δπs (x) is

better than δπ2 (x), not because δπs (x) is larger or smaller than δπ2 (x), but because Stein’s

loss function is more appropriate than the squared error loss function for the variance

parameter case.

§5. Conclusion

For the variance parameter θ of the normal distribution with a normal-inverse-gamma

prior, we recommend and analytically calculate the Bayes posterior estimator, δπs (x), with

respect to a conjugate prior µ | θ ∼ N(µ0, θ/κ0) and θ ∼ IG(v0/2, v0σ
2
0/2) under Stein’s

loss function which penalizes gross overestimation and gross underestimation equally. This

estimator minimizes the PESL. As comparisons, the Bayes posterior estimator, δπ2 (x) =

E(θ |x), with respect to the same conjugate prior under the squared error loss function,

and the PESL at δπ2 (x) are calculated. The calculations of δπs (x), δπ2 (x), PESLs(π,x), and

PESL2(π,x) depend only on E(θ |x), E(θ−1 |x), and E(ln θ |x). The numerical simulations

exemplify our theoretical studies that the PESLs depend only on v0 and n, but do not

depend on µ0, κ0, σ0, and especially x. The estimators δπ2 (x) are unanimously larger than

the estimators δπs (x), as well as PESL2(π,x) are unanimously larger than PESLs(π,x).

Finally, we calculate the Bayes posterior estimators and the PESLs of the monthly simple

returns of the SSE Composite Index, which also exemplify the theoretical studies of (2)

and (3).
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