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§1. Introduction

In recent years, the multivalued stochastic differential equation (MSDE in short) has

attracted much attention. In [1, 2], Cépa established the existence and uniqueness of a

strong solution for the MSDE as followingb(Xt)dt+ σ(Xt)dWt ∈ dXt +A(Xt)dt, t > 0,

X0 = x0 ∈ D(A),
(1)

where A is a maximal monotone operator on Rd, b : Rd → Rd and σ : Rd → Rd ⊗ Rd

are Lipschitz continuous, (Wt)t>0 is a d-dimensional Brownian motion defined in a filtered
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probability space (Ω,F ,Ft,P), and D(A) := {x ∈ Rd : A(x) 6= ∅}. This has motivated

a series of works on MSDEs. Rascanu [3] and Zhang [4] considered SDEs with maximal

monotone operators in infinite dimensional spaces, Ren and Wu [5] and Maticiuc et al. [6]

studied MSDEs driven by discontinuous processes, and Liu and Xu [7] investigated the

average principle for MSDEs. For a systematic treatment of this subject we refer to the

recent monograph [8]. For the study related to the Markovian property, Cépa [9], Ren, Wu

and Zhang [5, 10] proved that the solutions for MSDEs are strong Feller, ergodic, and the

invariant measures have some regularity under certain conditions.

One of the significant problem in the theory of Markov processes is to characterize the

generator of the processes. Barbu and Da Prato [11] investigated the generator of transition

semigroup corresponding to the stochastic variational inequality (SVI in short)dX(t) + F (X(t))dt+ ∂1K(X(t))dt 3
√
QdW (t), t > 0,

X(0) = x,
(2)

where F : Rd → Rd is a monotone operator, Q is a d×d strictly positive symmetric matrix,

K is a closed, convex subset of Rd with non-empty interior K̊ and smooth boundary ∂K.

As we known, ∂1K is a specific maximal monotone operator on Rd. Denote by L its

infinitesimal generator. Then [11] claims that a core of L is D = {ϕ ∈ C2
b (Rd) : ∂ϕ/∂n = 0

on ∂K}. Nevertheless, their method depends on some special properties of ∂1K . If we

replace it by an arbitrary maximal monotone operator on Rd, the problem will become

much more complicated.

Motivated by the above works, the main aim of this paper is to study the infinites-

imal generator of the semigroup Pt associated to the solution of (1). (Pt)t>0 is a strong

continuous contraction semigroup on C0(D(A)). Denote by L and (Rλ)λ>0 respectively its

infinitesimal generator and resolvent. Thus, (λI −L)−1 = Rλ in D(L). We aim at finding

out a core of L. Taking into account of Proposition 3.1 in [12], a subset D of D(L) is a

core of L if and only if D is dense in C0(D(A)) and R(λI −L|D) is dense in C0(D(A)) for

some λ > 0. Hence the key to our problem is to find out such D. We treat this problem

by investigating the equation

−λu+
1

2
aij(x)

∂2u

∂xi∂xj
+ bi(x)

∂u

∂xi
+ g(x) ∈ 〈A(x), Du〉, x ∈ D(A), (3)

where a := σσ∗ and the Einstein summation convention is used here and throughout the

paper. However, this equation is different from the traditional partial differential equation

because it involves a maximal monotone operator A and it can be hardly expected to
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admit a classic solution, so that we have to look for weak solutions to it. Moreover, since

A is nonlinear and highly singular, it seems that the weak solution in viscosity sense rather

than in distribution sense is more appropriate for our purpose.

Given g ∈ C0(D(A)), we will prove that Rλg is a viscosity solution of (3) in D(A) by

Yosida approximation and some equivalent definitions of viscosity solution. More precisely,

using a similar method to [13] we prove a comparison principle for viscosity solutions of

(3), which implies that Rλg is the unique viscosity solution of (3) for all λ > 0. Denote by

Sλ the viscosity solution space of (3). It follows that Sλ = Rλ(C0(D(A))). Since Rλ(G)

is dense in C0(D(A)), it is a core of N for any λ > 0.

§2. Preliminaries

We present some notions and notations that will be used throughout the paper.

Given a multivalued operator A : Rd → 2R
d
, we define

Gr(A) := {(x, y) ∈ R2d : x ∈ D(A) and y ∈ A(x)}.

Definition 1 1) A monotone operator on Rd is a multivalued operator A satisfying

〈y1 − y2, x1 − x2〉 > 0, ∀ (x1, y1), (x2, y2) ∈ Gr(A).

2) A maximum monotone operator on Rd is a monotone operator A satisfying

〈x1, y1〉 ∈ Gr(A)⇔ 〈y1 − y2, x1 − x2〉 > 0, ∀ (x2, y2) ∈ Gr(A).

Below, we list some properties of a maximal monotone operator A which can be found

in [14; Chapter 3].

(i) Int(D(A)) and D(A) are convex subsets of Rd with Int(D(A)) = Int(D(A)).

(ii) For any n ∈ N+, Jn = (I − A/n)−1 is a Lipschitz continuous function on Rd with

the Lipschitz constant equal to 1. An(x) := n[x−Jn(x)], x ∈ Rd is called the Yosida

approximation of A.

(iii) An ∈ A(Jn(x)).

(iv) lim
n→∞

An(x) = Ao(x), ∀x ∈ D(A), where Ao(x) := ProjA(x)(0).

We shall make the following Hypotheses:

(H1) b and σ are Lipschitz continuous: there exists an C > 0 such that

|b(x)− b(y)|+ |σ(x)− σ(y)| 6 C|x− y|.
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(H2) 0 ∈ D(A) and 0 ∈ A(0).

Under the above hypotheses, Cépa [1] proved the existence and uniqueness of a strong

solution to (1) by Yosida approximation. Denote by (Xt(x0),Kt)t>0 the strong solution

of (1) and (Xn
t (x0))t>0 the strong solution of the equationb(Xn

t )dt+ σ(Xn
t )dWt = dXn

t +An(Xn
t )dt, t > 0,

Xn
0 = x0 ∈ K.

(4)

Theorem 2 ([13; Proposition.6]) The sequence Xn
t (x) converges to Xt(x) in L2(Ω;

C([0, T ];Rd)) uniformly with respect to x ∈ K for every bounded subset K ⊆ D(A).

For any D ⊂ Rd, denote by C0(D) the space of continuous functions on D vanishing

at infinity with the norm ‖f‖ := sup
x∈D
|f(x)|. Meanwhile, {Xt(x0), x0 ∈ D(A)} is a Markov

family with transition probability Pt(x0, E) = P(Xt(x0) ∈ E), E ∈B(Rd). By [10], the

transition probability Pt(·, ·) is strong Feller. Hence it determines a Feller semigroup

(Pt)t>0 in C0(D(A)), i.e.,

Ptϕ(x) := E[ϕ(Xt(x))], ϕ ∈ C0(D(A)), x ∈ D(A), t > 0. (5)

The resolvent of {Pt} is given by

Rλϕ(x) :=

∫ ∞
0

e−λtPtϕ(x)dt, λ > 0.

§3. Main Results

Denoted by L the infinitesimal generator of (Pt)t>0. In order to find out a core of L,

we investigate the equation (3) where g ∈ C0(D(A)).

Set

A−(x, q) := lim inf
(x′,q′)→(x,q)

x∗∈A(x′)

〈x∗, q′〉, A+(x, q) := lim sup
(x′,q′)→(x,q)

x∗∈A(x′)

〈x∗, q′〉.

Then A+(x, q) = −A−(x,−q). We have

Lemma 3 ([13; Lemma 2]) If x ∈ Int(D(A)), q ∈ Rd, then A−(x; q) = inf
x∗∈A(x)

〈x∗, q〉

(respectively, A+(x; q) = sup
x∗∈A(x)

〈x∗, q〉). This equality still holds when x ∈ bd(D(A)), q ∈ Rd

and inf
n∈N

D(A)
(x)
〈n, q〉 > 0. N

D(A)
(x) is the set of unitarian normal vectors to D(A) in x ∈ Rd.

Now we introduce the notion of a viscosity solution for the equation (3).
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Definition 4 We say that u ∈ USC(D(A)) is a viscosity sub-solution of equation (3)

iff

−λu+
1

2
aij(x)

∂2ψ

∂xi∂xj
+ bi(x)

∂ψ

∂xi
+ g(x) > A−(x;Dψ) (6)

whenever ψ ∈ C2(D(A)) and x is the local maximum point of u− ψ.

Similarly, v ∈ LSC(D(A)) is a viscosity super-solution of equation (3) iff

−λv +
1

2
aij(x)

∂2ψ

∂xi∂xj
+ bi(x)

∂ψ

∂xi
+ g(x) 6 A+(x;Dψ) (7)

whenever ψ ∈ C2(D(A)) and x is the local minimum point of v − ψ.

A viscosity solution for (3) is both a viscosity super-solution and a sub-solution.

T (d) will stand for the set of symmetric matrices. For a subset K of Rd, a function

u : K → Rd and x̂ ∈ K, define J2,+
K u(x̂) to be the set of (p,X) ∈ Rd ×T (d) satisfying

u(x) 6 u(x̂) + 〈p, x− x̂〉+
1

2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2) as x→ x̂.

Similarly, J2,−
K u(x̂) is the set of (p,X) ∈ Rd ×T (d) satisfying

u(x) > u(x̂) + 〈p, x− x̂〉+
1

2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2) as x→ x̂.

Equivalently, J2,−
K u(x) := −J2,+

K (−u)(x). Besides, we set

J
2,+
K u(x) := {(p,X) ∈ Rd ×T (d) : ∃ (xn, pn, Xn) ∈ K ×Rd ×T (d) such that

(pn, Xn) ∈ J2,+
K u(xn) and (xn, u(xn), pn, Xn)→ (x, u(x), p,X)}, ∀x ∈ K.

J
2,−
K u(x) := {(p,X) ∈ Rd ×T (d) : ∃ (xn, pn, Xn) ∈ K ×Rd ×T (d) such that

(pn, Xn) ∈ J2,−
K u(xn) and (xn, u(xn), pn, Xn)→ (x, u(x), p,X)}, ∀x ∈ K.

Obviously, J
2,+
K u(x) = −J2,−

K (−u)(x).

The following proposition gives an equivalent definition of viscosity solution to (2).

Proposition 5 u ∈ USC(D(A)) is a viscosity sub-solution of (3) if and only if

−λu(x) +
1

2
tr[a(x)X] + 〈b(x), p〉+ g(x) > A−(x, p), ∀ (p,X) ∈ J2,+

D(A)
u(x). (8)

v ∈ LSC(D(A)) is a viscosity super-solution of (3) if and only if

−λv(y) +
1

2
tr[a(y)Y ] + 〈b(y), q〉+ g(y) 6 A+(y, q), ∀ (q, Y ) ∈ J2,−

D(A)
v(y). (9)
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Based on the continuity of F (x, r, p,X) := −λr + tr[a(x)X]/2 + 〈b(x), p〉 + g(x) on

Rd ×R×Rd ×T (d), we can replace J2,+

D(A)
u(x) (respectively, J2,+

D(A)
v(y)) with J

2,+

D(A)
u(x)

(respectively, J
2,−
D(A)

v(y)).

The following theorem implies the uniqueness of viscosity solution for (3) in the space

C0(D(A)).

Theorem 6 Let λ > 0 and u ∈ C0(D(A)) (respectively v ∈ C0(D(A))) be a viscosity

sub-solution (respectively super-solution) of (3). Then u 6 v.

Proof Suppose that the contrary is valid, then there exists θ > 0 and x0 ∈ D(A)

such that θ := u(x0)− v(x0) > 0. As both u and v are bounded, there exists N > 0 such

that ‖u‖ + ‖v‖ < N on D(A). For p ∈ [1,+∞), ε < θ/(2‖x0‖2p) and arbitrary α > 0,

define

vε(x) := v(x) +
ε

2
‖x‖2p, ∀x ∈ D(A);

uε(x) := u(x)− ε

2
‖x‖2p, ∀x ∈ D(A);

ψα(x, y) :=
α

2
‖x− y‖2, ∀x, y ∈ D(A);

φα,ε(x, y) := uε(x)− vε(y)− ψα(x, y), ∀x, y ∈ D(A).

We take Mα,ε := sup
(x,y)∈D(A)

2

φα,ε(x, y) < 2N . As lim
‖x‖,‖y‖→+∞

φα,ε = −∞, there exists (xα,ε,

yα,ε) ∈ D(A) × D(A) such that φ(xα,ε, yα,ε) = Mα,ε. Since ε < θ/(2‖x0‖2p), we have

Mα,ε > u(x0) − v(x0) − ε‖x0‖2p > θ/2. Since u and v vanish at infinity, there exists

N ′ ∈ N+ such that ‖u(x)‖ ∨ ‖v(x)‖ 6 θ/8 whenever ‖x‖ > N ′. Thus, we conclude that

‖xα,ε‖ ∨ ‖yα,ε‖ 6 N ′.
As α→Mα,ε is decreasing, lim

α→+∞
Mα,ε exists and is finite. Moreover, by [15; Lemma

3.1], we can conclude that lim
α→+∞

α‖xα,ε−yα,ε‖ = 0 and lim
α→+∞

Mα,ε = sup
x∈D(A)

[uε(x)−vε(x)].

Using Theorem 3.2 in [15], we obtain that there exists X,Y ∈ T (d) such that

(α(xα,ε − yα,ε), X) ∈ J2,+

D(A)
uε(xα,ε) (10)

and

(−α(xα,ε − yα,ε),−Y ) ∈ J2,+

D(A)
(−vε)(yα,ε). (11)

(11) is equivalent to (α(xα,ε − yα,ε), Y ) ∈ J2,−
D(A)

vε(yα,ε). Meanwhile,

−3α

(
I −I
−I I

)
6

(
X 0

0 −Y

)
6 3α

(
I −I
−I I

)
. (12)
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From now on, we rewrite (xα,ε, yα,ε) as (x̂, ŷ) for simplicity. (α(x̂ − ŷ), X) ∈ J2,+

D(A)
uε(x̂)

is equivalent to the fact that there exists (xn, pn, Xn) ∈ D(A) × Rd × T (d) such that

(pn, Xn) ∈ J2,+

D(A)
uε(xn) and lim

n→∞
(xn, uε(xn), pn, Xn) = (x̂, uε(x̂), α(x̂, ŷ), X).

Therefore,

u(x)− ε

2
‖x‖2p 6 u(xn)− ε

2
‖xn‖2p + 〈pn, x− xn〉

+
1

2
〈Xn(x− xn), x− xn〉+ o(‖x− xn‖2) as x→ xn. (13)

Thus,

u(x) 6 u(xn) +
( ε

2
‖x‖2p − ε

2
‖xn‖2p

)
+ 〈pn, x− xn〉

+
1

2
〈Xn(x− xn), x− xn〉+ o(‖x− xn‖2) as xn → x. (14)

Using the Taylor formula,

ε

2
‖x‖2p =

ε

2
‖xn‖2p + pε‖xn‖2p−2

d∑
i=1

xin(xi − xin)

+ εp(p− 1)‖xn‖2p−4
d∑

i,j=1
xinx

j
n(xi − xin)(xj − xjn)

+
ε

2
p‖xn‖2p−2

d∑
i=1

(xi − xin)2 + o‖x− xn‖2 as xn → x.

Combining this with (14), we obtain that

u(x) 6 u(xn) + 〈pn + εβ(xn), x− xn〉

+
1

2
〈[Xn + εB(xn)](x− xn), x− xn〉+ o(‖x− xn‖2), (15)

where β(x) = p‖x‖2p−2x, B(x) = p(2p− 2)‖x‖2p−4x⊗ x+ p‖x‖2p−2I.

Since

(xn, u(xn), pn + εβ(xn), Xn + εB(xn))
n→+∞−→ (x̂, u(x̂), α(x̂− ŷ) + εβ(x̂), X + εB(x̂)),

we have (α(x̂− ŷ) + εβ(x̂), X + εB(x̂)) ∈ J2,+

D(A)
u(x̂).

Similarly, (α(x̂− ŷ)− εβ(ŷ), Y − εB(ŷ)) ∈ J2,−
D(A)

v(ŷ).

Due to the definition of viscosity sub-solution (respectively, super-solution) for equa-

tion (3), we obtain that

−λu(x̂) +
1

2
tr{a(x̂)[X̂ + εB(x̂)]}+ 〈b(x̂), α(x̂− ŷ) + εβ(x̂)〉+ g(x̂)

> A−(x̂;α(x̂− ŷ) + εβ(x̂)),

−λv(ŷ) +
1

2
tr{a(ŷ)[Ŷ − εB(ŷ)]}+ 〈b(ŷ), α(x̂− ŷ)− εβ(ŷ)〉+ g(ŷ)

6 A+(ŷ;α(x̂− ŷ)− εβ(ŷ)).

(16)
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For any x∗ ∈ A(x̂) and y∗ ∈ A(ŷ), 〈x, x∗〉 > 0 and 〈y, y∗〉 > 0. Therefore,

〈x∗, α(x̂− ŷ) + εp‖x̂‖2p−2x̂〉 > 〈x∗, α(x̂− ŷ)〉 > 〈y∗, α(x̂− ŷ)〉

> 〈y∗, α(x̂− ŷ)− εp‖ŷ‖2p−2ŷ〉. (17)

Lemma 3 implies that

A−(x̂;α(x̂− ŷ) + εβ(x̂)) = inf
x∗∈A(x̂)

〈x∗, α(x̂− ŷ) + εp‖x̂‖2p−2x̂〉,

A+(ŷ;α(x̂− ŷ)− εβ(ŷ)) = sup
y∗∈A(ŷ)

〈y∗, α(x̂− ŷ)− εp‖ŷ‖2p−2ŷ〉.

Hence, we have

− λu(x̂) +
1

2
tr{a(x̂)[X̂ + εB(x̂)]}+ 〈b(x̂), α(x̂− ŷ) + εβ(x̂)〉 − g(x̂)

> − λv(ŷ) +
1

2
tr{a(ŷ)[Ŷ − εB(ŷ)]}+ 〈b(ŷ), α(x̂− ŷ)− εβ(ŷ)〉 − g(ŷ).

Equivalently,

λ[u(x̂)− v(ŷ)]− 1

2
tr[a(x̂)X̂ − a(ŷ)Ŷ ]− 〈b(x̂)− b(ŷ), α(x̂− ŷ)〉+ g(x̂)− g(ŷ)

6
ε

2
tr[a(x̂)B(x̂) + a(ŷ)B(ŷ)] + ε[〈b(x̂), β(x̂)〉+ 〈b(ŷ), β(ŷ)〉]. (18)

Since Mα,ε > θ/2, we have

u(x̂)− u(ŷ) >
θ

2
+ ε(‖x‖2p + ‖y‖2p). (19)

By (12) we obtain

tr[a(x̂)X̂ − a(ŷ)Ŷ ] 6 3α tr[a(x̂)− a(ŷ)] 6 3αC2‖x̂− ŷ‖2. (20)

Considering the definition of B(x) and β(x), we conclude that there exists a constant C ′

such that

λ
θ

2
+ λε(‖x̂‖2p + ‖ŷ‖2p)

6 C ′ε(1 + ‖x̂‖2p + ‖ŷ‖2p) +
3

2
αC2‖x̂− ŷ‖2 + Cα‖x̂− ŷ‖2 + |g(x̂)− g(ŷ)|. (21)

Recalling that lim
α→+∞

α‖x̂ − ŷ‖ = 0 and ‖x̂‖ ∨ ‖ŷ‖ < N ′, there exists a constant C ′′ such

that

λ
θ

2
6 C ′′ε, ∀ ε > 0.

Therefore, we get a contradiction and the theorem has been proved. �

Let g ∈ C0(D(A)), we are able to show that the unique viscosity solution of (3) is

u(x) = Rλg(x) by Yosida approximation. For any n ∈ N+, denote by Xn
t (x) the strong

solution of equation (4).
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Lemma 7 For fixed λ > 0, un(x) :=
∫ +∞
0 e−λtE[g(Xn

t (x))]dt converges to u(x) :=∫ +∞
0 e−λtE[g(Xt(x))]dt uniformly in M as n → +∞, whenever M is a bounded subset of

D(A).

Proof Set

FnT (x) :=

∫ T

0
e−λtE|g(Xn

t (x))− g(Xt(x))|dt,

Fn(x) :=

∫ +∞

0
e−λtE|g(Xn

t (x))− g(Xt(x))|dt.

Obviously,

|un(x)− u(x)| 6 Fn(x). (22)

Since g is bounded in D(A), it yields that for any ε > 0, there exists T ′ > 0, such that for

every T > T ′,

|FnT (x)− Fn(x)| 6 ε

4
, ∀x ∈M and n ∈ N+. (23)

There exists r > 0 such that ‖x‖ 6 r for x ∈ M. We take ξ satisfying |g(x)| 6 ξ,

∀x ∈ D(A). Let

ω(δ,K) := sup
‖x‖,‖y‖6K,‖x−y‖6δ

|g(x)− g(y)|.

By [16; Proposition 2.2], for fixed T̂ := T ′ + 1 and every p > 1, there exists Cp > 0 such

that

E
[

sup
t∈[0,T̂ ]

|Xn
t (x)|p

]
6 Cp(1+‖x‖p), ∀n ∈ N+ and E

[
sup
t∈[0,T̂ ]

|Xt(x)|p
]
6 Cp(1+‖x‖p). (24)

Meanwhile, there exists K > 0 such that

C2

(1− e−λT̂

λ

)
(1 + r2)

ξ

K2
6

ε

16
.

What’s more, there exists δ > 0 such that

1− e−λT̂

λ
ω(δ,K) 6

ε

4
.

Applying Theorem 2, there exists there exists N > 0 such that for n > N ,

sup
x∈M

E
[

sup
06t6T̂

|Xn
t (x)−Xt(x)|2

]
6
εδ2

4
.

Therefore, for arbitrary n > N and x ∈M,

Fn
T̂

(x) =

∫ T̂

0
e−λtE|g(Xn

t (x))− g(Xt(x))|dt
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6
∫ T̂

0
e−λtω(δ,K)P(‖Xn

t (x)−Xt(x)‖ 6 δ)dt

+

∫ T̂

0
e−λt2ξP(‖Xn

t (x)−Xt(x)‖ > δ)dt

+

∫ T̂

0
e−λt2ξP(‖Xn

t (x)‖ ∨ ‖Xt(x)‖ > K)dt

6
(1− e−λT̂

λ

){
ω(δ,K) + E

[
sup

06t6T̂

|Xn
t (x)−Xt(x)|2

]/
δ2

+ 2ξ
{
E
[

sup
06t6T̂

|Xn
t (x)|2

]
+ E

[
sup

06t6T̂

|Xt(x)|2
]}/

K2
}

6
ε

2
+ 4C2(1 + r2)

(1− e−λT̂

λ

) ξ

K2

6
3ε

4
.

Combining the above inequality with (22) and (23), the lemma is proved. �

Theorem 8 Under the hypotheses, u(x) = Rλg(x) is the viscosity solution of (3).

Proof Let ψ ∈ C2(D(A)) such that u − ψ reaches local maximum in x ∈ D(A).

Let M be a bounded neighborhood of x in D(A), and hence {un(x)}+∞n=1 converges to u

uniformly in M by Lemma 7. Thus, there exists xn → x such that un − ψ attains local

maximum in xn. Meanwhile, un is the viscosity solution of

−λun +
1

2
aij(x)

∂2un
∂xi∂xj

+ bi(x)
∂un
∂xi

+ g(x) = 〈An(x), Dun〉. (25)

It yields that

−λun(xn) +
1

2
aij(xn)

∂2ψ

∂xi∂xj
(xn) + bi(xn)

∂ψ

∂xi
(xn) + g(xn) > 〈An(xn), Dψ(xn)〉.

Notice that Jn(xn) → x and An(xn) ∈ A(Jnxn). Taking the limit as n → +∞ in above,

we obtain that

−λu(x) +
1

2
aij(x)

∂2ψ

∂xi∂xj
(x) + bi(x)

∂ψ

∂xi
(x) + g(x) > A−(x;Dψ(x)).

We conclude that u is the viscosity sub-solution of (3). In the same way, u is the viscosity

super-solution of (3) as well. �

Theorem 9 Denote by

Sλ :=
{
u ∈ C0(D(A)) | ∃ g ∈ C0(D(A)) such that u is the viscosity solution of



No. 6 XU S. Y., ZHENG M. Q.: English Title Abbreviation 575

− λu+
1

2
aij(x)

∂2u

∂xi∂xj
+ bi(x)

∂u

∂xi
+ g(x) ∈ 〈A(x), Du〉, in D(A)

}
.

For any λ > 0, Sλ is a core of L.

Proof Actually, Sλ = Rλ(C0(D(A))). Meanwhile, for any f ∈ D(L), We take

g := (λI −L)f ∈ C0(D(A)). Thus, f = Rλg and D(L) = Sλ. Noticing that D(L) is dense

in C0(D(A)), we conclude that Sλ is dense in C0(D(A)). Therefore, Sλ is a core of L for

any λ > 0. �
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