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§1. Introduction

It is well known that the uniform integrability of a family of random variables plays

an important role in probability theory. As to the uniform integrability criterions, please

refer to [1; P. 96], [2], [3; P. 94], [4], [5; P. 138] and [6].

In [7], the authors introduced the notion of a sequence of random variables being

uniformly nonintegrable and gave some interesting characterizations of this uniform non-

integrability. In [8], a weak notion of a sequence of random variables being uniformly

nonintegrable was introduced and some equivalent characterizations were given. Motivat-

ed from [7] and [8], we will introduce two new notions of a sequence of random variables

being uniformly integrable in a probability space, and prove that they are equivalent to

the classic one.
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Let (Ω,F ,P) be a probability space. Suppose that all random variables under con-

sideration are defined on this probability space. Let X be a random variable and A ∈ F .

We denote E(XIA) by E(X : A).

Definition 1 A sequence of random variables {Xn, n > 1} is said to be uniformly

integrable (UI for short) if

lim
a→∞

sup
n>1

E(|Xn| : |Xn| > a) = 0. (1)

Definition 2 [7] A sequence of random variables {Xn, n > 1} is said to be uniformly

nonintegrable (UNI for short) if

lim
a→∞

inf
n>1

E(|Xn| : |Xn| 6 a) =∞.

Definition 3 [8] A sequence of random variables {Xn, n > 1} is said to be W-

uniformly nonintegrable (W-UNI for short) if

lim
a→∞

inf
n>1

E(|Xn| ∧ a) =∞.

Definition 4 [8] A sequence of random variables {Xn, n > 1} is said to be W*-

uniformly nonintegrable (W*-UNI for short) if

lim
m→∞

inf
k>1

m∑
n=0

P(|Xk| > n) =∞.

For any random variable X, by the monotone convergence theorem, we have

lim
a→∞

E(|X| ∧ a) = E(|X|).

It follows that if X is integrable, then

lim
a→∞

[E(|X|)− E(|X| ∧ a)] = 0, i.e. lim
a→∞

E(|X| − a : |X| > a) = 0. (2)

In virture of (2), we introduce the following notion.

Definition 5 A sequence of random variables {Xn, n > 1} is said to be W-uniformly

integrable (W-UI for short) if

lim
a→∞

sup
n>1

E(|Xn| − a : |Xn| > a) = 0, (3)

or equivalently,

inf
N>1

sup
n>1

E(|Xn| − a : |Xn| > N) = 0.
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For any random variable X, we have

∞∑
n=1

P(|X| > n) 6 E|X| 6 1 +
∞∑
n=1

P(|X| > n). (4)

In virtue of (4), we introduce the following notion.

Definition 6 A sequence of random variables {Xn, n > 1} is said to be W*-

uniformly integrable (W*-UI for short) if

lim
m→∞

sup
k>1

∞∑
n=m

P(|Xk| > n) = 0. (5)

Remark 7 Let {Xn, n > 1} be a sequence of random variables. It is easy to know

that it is UI if and only if

lim
a→∞

sup
n>1

E(|Xn| : |Xn| > a) = 0.

By E(|Xn| : |Xn| > a) = E|Xn| − E(|Xn| : |Xn| 6 a), we can say that UI corresponds

to UNI in some sense. Similarly, we can say that W-UI corresponds to W-UNI and W*-UI

corresponds to W*-UNI in some sense, respectively.

In Section 2, we will prove that UI, W-UI and W*-UI are equivalent in a probability

space.

Recently, motivated by the risk measures, superhedge pricing and modeling uncertain

in finance, Peng [9–15] initiated the notion of independent and identically distributed (IID)

random variables under sublinear expectations, proved the weak law of large numbers and

the central limit theorems, defined the G-expectations, G-Brownian motions and built

Itô’s type stochastic calculus. In Section 3, we discuss uniform integrability of random

variables in a sublinear expectation space, and present de La Vallée Poussin criterion for

the uniform integrability of random variables and make some other discussions.

§2. Uniform Integrability in a Probability Space

In [8], we prove that

UNI⇒W-UNI⇔W*-UNI,

and W-UNI is strictly weaker than UNI in general. While, as to UI, W-UI and W*-UI,

we have the following result.

Theorem 8

UI⇔W-UI⇔W*-UI. (6)
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Proof Let {Xn, n > 1} be a sequence of random variable in a probability space

(Ω,F ,P).

UI ⇒ W-UI: Suppose that {Xn, n > 1} is UI. Then by Definition 1, Definition 5 and

the inequality

E(|Xn| − a : |Xn| > a) 6 E(|Xn| : |Xn| > a),

we know that {Xn, n > 1} is W-UI.

W-UI ⇒ UI: Suppose that {Xn, n > 1} is W-UI. For any set A ∈ F , any positive

constant C and any integer n, we have∫
A
|Xn|dP =

∫
A∩(|Xn|>C)

(|Xn| − C)dP + CP[A ∩ (|Xn| > C)] +

∫
A∩(|Xn|<C)

|Xn|dP

6
∫
|Xn|>C

(|Xn| − C)dP + 2CP(A)

6 sup
k>1

∫
|Xk|>C

(|Xk| − C)dP + 2CP(A). (7)

By the definition of W-UI, there exists a positive number C0 such that

sup
k>1

∫
|Xk|>C0

(|Xk| − C0)dP <
ε

2
. (8)

Let δ = ε/(4C0). Then for any A ∈ F with P(A) < δ, by (7) and (8), we obtain that∫
A
|Xn|dP < ε, ∀n > 1. (9)

Setting A = Ω in (7) and using the definition of W-UI, we get that

sup
n>1

E(|Xn|) <∞. (10)

By (9) and (10), we obtain that {Xn, n > 1} is UI.

W-UI ⇒ W*-UI: For any random variable X and any positive integer m, by Fubini’s

theorem, we have

∞∑
n=m

P(|X| > n) =
∞∑

n=m

∫ n+1

n
P(|X| > n)dx 6

∞∑
n=m

∫ n+1

n
P(|X| > x− 1)dx

=

∫ ∞
m

P(|X| > x− 1)dx =

∫ ∞
m−1

P(|X| > x)dx

=

∫
Ω

(∫ ∞
m−1

I{|X|>x}dx
)

dP

= E[|X| − (m− 1) : |X| > m− 1]

= E[|X| − (m− 1) : |X| > m− 1].
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It follows that W-UI ⇒ W*-UI.

W*-UI ⇒ W-UI: For any random variable X and any positive integer m, by Fubini’s

theorem, we have

∞∑
n=m

P(|X| > n) >
∞∑

n=m

∫ n+1

n
P(|X| > x)dx =

∫ ∞
m

P(|X| > x)dx

=

∫ ∞
m

(∫
Ω
I{|X|>x}dP

)
dx =

∫
Ω

(∫ ∞
m

I{|X|>x}dx
)

dP

= E(|X| −m : |X| > m)

= E(|X| −m : |X| > m).

It follows that W*-UI ⇒ W-UI.

Hence (6) holds, and the proof is complete. �

§3. Uniform Integrability in a Sublinear Expectation Space

In this section, we discuss the uniform integrability of random variables in a sublinear

expectation space. At first, we present some basic settings about sublinear expectations.

Please refer to [9–16] for more details.

Let (Ω,F ) be a given measurable space and H be a linear space of F -measurable

real functions defined on Ω such that for any constant number c, c ∈H ; if X ∈H , then

|X| ∈H and XIA ∈H for any A ∈ F .

Definition 9 A sublinear expectation E on H is a functional E : H → R satisfying

the following properties:

(a) Monotonicity: E (X) > E (Y ), if X > Y .

(b) Constant preserving: E (c) = c, ∀ c ∈ R.

(c) Sub-additivity: E (X + Y ) 6 E (X) + E (Y ).

(d) Positive homogeneity: E (λX) = λE (X), ∀λ > 0.

The triple (Ω,H ,E ) is called a sublinear expectation space.

Definition 10 ([16; Definition 3.1]) For p ∈ [1,∞), the map

‖ · ‖p : X 7→ [E (|X|p)]1/p

forms a seminorm on H . Define the space L p(F ) as the completion under ‖ · ‖p of the set

{X ∈ H : ‖X‖p < ∞} and then Lp(F ) as the equivalence classes of L p modulo equality

in ‖ · ‖p.
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Definition 11 ([16; Definition 3.2]) Consider K ⊂ L1. K is said to be uniformly

integrable if lim
c→∞

sup
X∈K

E (I{|X|>c}|X|) = 0.

Theorem 12 ([16; Theorem 3.1]) Suppose K is a subset of L1. Then K is uniformly

integrable if and only if the following two conditions hold.

(i) {E (|X|)}X∈K is bounded.

(ii) For any ε < 0 there is a δ > 0 such that for all A ∈ F with E (IA) 6 δ, we have

E (IA|X|) < ε for all X ∈ K.

Now we present the following de La Vallée Poussin criterion for the uniform integra-

bility.

Theorem 13 Let K be a subset of L1. Then K is uniformly integrable if and

only if there is a nonnegative function ϕ defined on [0,∞) such that lim
t→∞

ϕ(t)/t = ∞ and

sup
X∈K

E (ϕ ◦ |X|) <∞.

Proof As to the sufficiency, refer to [16; Corollary 3.1.1]. In the following, we give

the proof of the necessity. The idea comes from the corresponding proof in a probability

space (see e.g. [17; Theorem 7.4.5]).

Suppose that K is uniformly integrable. For any constant a > 0, we have E [(|X| −
a)+] 6 E (|X|I{|X|>a}). It follows that there exists a sequence {nk} of integers such that

nk ↑ ∞ and

sup
X∈K

E [(|X| − nk)+] < 2−k, k > 1. (11)

Define a function

ϕ(t) =
∑
k>1

(n− nk)+, n 6 t < n+ 1, n = 0, 1, 2, . . . .

Then ϕ is a nonnegative, nondecreasing and right continuous function. What’s more, we

have

lim
n→∞

ϕ(n)

n
= lim

n→∞

∑
k>1

(
1− nk

n

)+
=∞,

which implies that lim
t→∞

ϕ(t)/t =∞.

By Fubini’s theorem, the monotone convergence theorem ([16; Theorem 2.2]), the

sublinear property of E and (11), we obtain that for any X ∈ K,

E (ϕ ◦ |X|) = E
[ ∞∑
n=0

∞∑
k=1

(n− nk)+I{n6|X|<n+1}

]
= E

[ ∞∑
k=1

∞∑
n=0

(n− nk)+I{n6|X|<n+1}

]
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= E
[

lim
m→∞

m∑
k=1

∞∑
n=0

(n− nk)+I{n6|X|<n+1}

]
= lim

m→∞
E
[ m∑
k=1

∞∑
n=0

(n− nk)+I{n6|X|<n+1}

]
6 lim

m→∞

m∑
k=1

E
[ ∞∑
n=0

(n− nk)+I{n6|X|<n+1}

]
=
∞∑
k=1

E [(|X| − nk)+] < 1. �

With respect to Definitions 5 and 6, we introduce the following two notions.

Definition 14 Consider K ⊂ L1. K is said to be W-uniformly integrable (W-UI for

short) if

lim
a→∞

sup
X∈K

E [I{|X|>a}(|X| − a)] = 0. (12)

Definition 15 Consider K ⊂ L1. K is said to be S-uniformly integrable (S-UI for

short) if

lim
m→∞

sup
X∈K

∞∑
n=m

E (I{|X|>n}) = 0. (13)

Proposition 16 Suppose that K is a family of random variables in a sublinear ex-

pectation (Ω,H ,E ). Then we have

UI⇔W-UI⇐ S-UI. (14)

Proof UI⇒W-UI: Suppose that K is UI. Then by Definition 11, Definition 14 and

the inequality

E [(|X| − a)I{|X|>a}] 6 E[|X|I{|X|>a}],

we know that K is W-UI.

W-UI ⇒ UI: Suppose that K is W-UI. For any set A ∈ F , any positive constant C

and any X ∈ K, we have

E (|X|IA) = E [(|X| − C)IA∩{|X|>C} + CIA∩{|X|>C} + |X|IA∩{|X|<C}]

6 E [(|X| − C)IA∩{|X|>C}] + E (CIA∩{|X|>C}) + E (|X|IA∩{|X|<C})

6 E [(|X| − C)I{|X|>C}] + 2CE (IA). (15)

By Definition 14 there exists a positive number C0 such that

sup
X∈K

E [(|X| − C0)I{|X|>C0}] <
ε

2
. (16)

Let δ = ε/(4C0). Then for any A ∈ F with E (IA) < δ, by (15) and (16), we obtain that

E (|X|IA) < ε, ∀X ∈ K. (17)
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Setting A = Ω in (15) and using Definition 14, we get that

sup
X∈K

E (|X|) <∞. (18)

By (17), (18) and Theorem 12, we obtain that K is UI.

S-UI ⇒ W-UI: Suppose that K is S-UI. For any X ∈ K and any integer m, by the

monotone convergence theorem ([16; Theorem 2.2]) and the sublinear property of E , we

get

E [(|X| −m)I{|X|>m}] = E [(|X| −m)I{|X|>m}]

= E
(∫ ∞

m
I{|X|>x}dx

)
= E

( ∞∑
n=m

∫ n+1

n
I{|X|>x}dx

)
= E

(
lim
l→∞

l∑
n=m

∫ n+1

n
I{|X|>x}dx

)
= lim

l→∞
E
( l∑

n=m

∫ n+1

n
I{|X|>x}dx

)
6 lim

l→∞

l∑
n=m

E
(∫ n+1

n
I{|X|>x}dx

)
6
∞∑

n=m
E (I{|X|>n}),

which together with Definitions 14 and 15 implies that K is W-UI. �

Remark 17 The part “W-UI ⇒ W*-UI” of the proof of Theorem 8 tell us that in

general we don’t have that W-UI ⇒ S-UI in a sublinear expectation space. In the following,

we will give a counterexample.

Let Ω = {0, 1, 2, . . .}. For any n = 2, 3, . . ., define a probability measure Pn on Ω as

follows:

Pn(n) =
1

n lnn
, Pn(0) = 1− 1

n lnn
.

Denote by En the expectation with respect to the probability measure Pn. Define the sublinear

expectation E by

E [ · ] := sup
n>2

En[ · ].

Let X be a random variable defined on Ω by

X(n) = n, n = 0, 1, 2, . . . .

We have

lim
m→∞

E (|X|I{|X|>m}) = lim
m→∞

sup
n>2

En(|X|I{|X|>m}) = lim
m→∞

sup
n>m

n× 1

n lnn

= lim
m→∞

1

lnm
= 0,
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which implies that {X} is UI and thus {X} is W-UI by Proposition 16.

We also have

lim
m→∞

∞∑
n=m

E (I{|X|>n}) = lim
m→∞

∞∑
n=m

sup
k>2

Ek(I{|X|>n}) = lim
m→∞

∞∑
n=m

sup
k>n+1

1

k ln k

= lim
m→∞

∞∑
n=m

1

(n+ 1) ln(n+ 1)
= +∞,

which implies that {X} is not S-UI.

Acknowledgments The authors thank the anonymous referee for providing helpful

comments to improve the manuscript.

References

[1] CHUNG K L. A Course in Probability Theory [M]. 2nd ed. New York: Academic Press, 1974.

[2] CHONG K M. On a theorem concerning uniform integrability [J]. Publ Inst Math (Beograd) (NS).

1979, 25(39): 8–10.

[3] CHOW Y S, TEICHER H. Probability Theory: Independence, Interchangeability, Martingales [M].

3rd ed. New York: Springer-Verlag, 1997.

[4] HU T C, ROSALSKY A. A note on the de La Vallée Poussin criterion for uniform integrability [J].

Statist Probab Lett, 2011, 81(1): 169–174.

[5] KLENKE A. Probability Theory: A Comprehensive Course [M]. 2nd ed. London: Springer-Verlag,

2014.

[6] CHANDRA T K. de La Vallée Poussin’s theorem, uniform integrability, tightness and moments [J].

Statist Probab Lett, 2015, 107: 136–141.

[7] CHANDRA T K, HU T C, ROSALSKY A. On uniform nonintegrability for a sequence of random

variables [J]. Statist Probab Lett, 2016, 116: 27–37.

[8] HU Z C, PENG X. Uniform nonintegrability of random variables [J]. Front Math China, 2018, 13(1):

41–53.

[9] PENG S G. Filtration consistent nonlinear expectations and evaluations of contingent claims [J]. Acta

Math Appl Sin Engl Ser, 2004, 20(2): 191–214.

[10] PENG S G. Nonlinear expectations and nonlinear Markov chains [J]. Chinese Ann Math Ser B, 2005,

26(2): 159–184.

[11] PENG S G. G-expectation, G-Brownian motion and related stochastic calculus of Itô type [M] //
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