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Abstract: Let f,, be a non-parametric kernel density estimator based on a kernel function K and
a sequence of independent and identically distributed random variables taking values in R%. In this
paper we prove two moderate deviation theorems in L;(R?) for {f,(z) — fu(—2), n > 1}.
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§1. Introduction and Main Results

Let {X;, 7 > 1} be a sequence of independent and identically distributed (i.i.d.)
random variables taking values in R? on probability space (Q,.7,P) with unknown density

function f. Let K be a measurable function such that

K(z) >0, K(x)dz = 1. (1)
R4

The kernel density estimator of f based on kernel function K is defined by

fn(x)zid 3 K(x_XZ), z € RY, (2)

an

where {a,, n > 1} is a bandsequence, that is, a sequence of positive numbers sastifying
an — 0, nal — oo, as n — 00. (3)

As usual, we denote by ||g|l, = [[ga [g(z)[Pdz]*/P, p > 1.
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He and Gaolll, Gao, Gitie and Guilloul!, Diallo and Louani®, Louani® studied

the limit properties for the kernel density estimator recently. The statistic sup |f,(z) —
zER?
fn(—z)| was used to test the hypothesis that the density function f(x) is symmetric

about 0. He and Gaol' studied moderate deviations and large deviations (cf. [6]) for

sup |fn(z) — fn(—2)| of the density f in case d = 1 by the empirical approach. Xu and
z€R4

Zhou "8 proved moderate deviations and large deviations for sup |f,(z) — fn(—2z)| in
z€eRd

case d > 1. Gaol® obtained moderate deviations and law of the iterated logarithm in
L1 (R%) for kernel density estimator. Motivated by Gaol?l, we also try to use a measure
transformation and Devroye partition method to deduce that moderate deviations hold
for {fn(z) — fu(—z), n > 1} in L;(R?%) here. Moderate deviations in [1], Xu and Zhou "]
do not imply that in Li(R%) for {f,(x) — fo(—x), n > 1}, moderate deviations in L1 (R%)

for {fn(z) — fn(—x), n > 1} also could not lead to that for sup |f,(z) — fn(—2)| in [1]
reR

and [7]. Moderate deviations in Li(R%) for {f,(x) — fu(—2), n > 1} complement the
results obtained by He and Gao!!l, Xu and Zhou!”. As in [9], we find the condition on
the bandsequence such that {||fn(-) — fn(—) — E[fn(-) — fu(—-)]||} satisfies the moderate
deviation principle.

Let b,, n > 1 be a sequence of positive real numbers satisfying

b£—>+oo and b—QAO as n — +00. (4)
n

We introduce the following conditions:
(A1) f is continuous and symmetric and lim f(z) = 0.
|x|—o00

(A2) [pa(1+|2PT)K?(2)dz < 00, [pa|z|Plf(2z)dz < oo, for some p > 1.

As in Remark 1.1 in [9], if (A2) holds, then

V f(z)dz < oo,
Rd

— K2 dyd .
-

and

1/Rd [M]Qf (w)dz  if g € Li(RY) and g(—x) = —g(x);

400 otherwise,
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and set
1/ h(z)72
- —=| flx)dx if heL ) and )dz = 0;
J(h) = { 2 Jra [f(w)} ) (R Jre 1 (6)
400 otherwise,
where 0/0 = 0.

Theorem 1  Suppose that (Al) and (A2) hold. If the width of windows {a,, n > 1}

satisfies

(BQO) BRI as n — 400,

2 od
bnan

then

(i) for any open subset G in (Li(RY), || - |l1),

hmmq)mp{ {Lfal) = Fal=)] = Elfa() = fu(=)} € G} > = inf I(g),  (7)

n— geG

(i) for any open and convex subset G in (Li(R%), | - 1),

Jim g nP{Uf() = fu(=)) ~Elfa() ~ fa(—)]} € G} =~ f I(g),  (8)

b2 geG

(i) for any compact subset C' in (L1(R?), ||-||1), for any § > 0, there exists an open subset
Gs D C such that

fim sap g 1P {1 (2~ fu(—)] ~ELf() ~ fu( )]} € Gy} < = nf 1(9)+5. ()

in particular,

1mme% {n() ~ Fa(= ) — EL() — Ja()} € O} < — il I(9). (10)

n—o0

As in Remark 1.2 in [9], by Fatou’s lemma, I(-) is lower-semicontinuous in (L1 (R%),
- 11)-

Remark 2 Gao ) proved that if (A2) and (BC) hold, then for any open subset G in
(L1 (RY), || - |l1), any compact subset C in (L1(R%), || - ||1),

%ggbhﬁ{ZUMJ—ﬂhOHGG}>—£gﬂm (11)
lim sup g 0 P{3"{ () — EL O]} € O < — inf J(h) (12)
We define F(h(-)) = h(-) — h(—) : (L1(RY), || - |l1) + (L1(RY), || - ||l1). F is continuous.

By contraction principle (cf. [6; p.126]), we could also obtain (7) and (10) from (11) and
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(12). Indeed, we only need to prove I(g) = F(I}Ibfsf J(h). For g € Li(R?) and g(—z) =
=g
—g(x), choose h = g/2 and h(—xz) = —h(x), then I(g) >F(i’111)f J(h). By Cauchy-Schwartz
=g

inequality and (Al), we see that

inf J(h) > inf 1/[}1@)_}1(_@]2]0@!:2 inf I(g)=I(g).

F(h)=g F(h)=g 2 f 4 F(h)=g
Theorem 3 (i) Assume that (A1), (A2), and (BC) hold. Then for any open subset
G C [0, +00).

2

imint 5 1nP{ ;104 () = (=] = Elfal) = S0l € G} > = jnt 55 (13)

and for any closed subset F' C [0, +00),
2

imsup g 10 P{ 7 [£,) = fu(=)] = ELH,() = ful= )l € F} < = jnf . (19

AEF
In particular, for any A > 0,

)\2

linsup 75 1 P{ G [/ () = fu =] = Elfa() = fu(=ll > Ap = = (15)

n—o0

(ii) Let K be a bounded function with compact support, and let f also have compact
support. Then (15) holds if and only if (BC) is valid.

§2. Proof of Theorem 1

The ideas of proof come from that of [9]. The lower bound is shown by a measure
transformation. The upper bound for an open convex subset follows from the Hahn-Banach
theorem and the Chebyshev inequality.

Proof of Theorem 1(i)  Let G be an open subset in (L;(R%), || - [|1). For any
g € G, choose 6 > 0 such that B(g,6) := {p € L1(R?); || — g|l1 <0} C G. Then

timint gy PP () — ()]~ ELfaC) — ful—))} € O}

> timinf g 0P| 510 = fu(=)] = L) = fal=)]} = o], <5}

Therefore, the following lemma implies Theorem 1(i). O
Lemma 4 Assume that (A1), (A2), and (BC) hold. Then for any g € Li(R%), and
for any § > 0,

hmmfb—an P{‘

g AU O) = () = ELa() = =) =g <3} > ~I(0).  (16)
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Proof Without restriction of generality, we assume that (Q,.%, P) = (R?, Z(R%), u)N
where p(dz) = f(x)dz and N = {1,2,...}. Let X;(w) =wj;, i = 1,2,... be the coordinate
variables on . If I(g) = oo, then (16) is trivial. Therefore, we need to prove (16) for
g with I(g) < oo. Moreover, if I(g) < oo, write gn(z) = g(z)[{N-1f(2)<|g(z)|<Nf(z)} and
gn(z) = gn(z z) [ gn(y)dy = gn(z), then [gy(z)dz = 0, [gn — gll1 — 0, and
I(gn) — I(g ) as N — 00. Hence, we may assume that g(z)/f(x) is a bounded function.
Then for n large enough,

bn

vp(dz) = [f(ﬂ:) + %g(as)] dz

is a probability measure on R?, which is equivalent to . Let
Qn(dzy,dxs, ..., dxy,) = vy (day)vp(des) - - - vy (day,).

Then for n large enough, for any € > 0,
n

PG U0 = Fu(=0] — ELFa() = (=]} — o, < 6}

_ / < [ bng(zi)

{lInbi {[fn ()= fr (=) =ELfn ()= fu (=)} —gll1 <6} i=1 2nf(zi)

RISl

—1
] Qn(dml,dxg,... ,da:n)

/{Ilnbn1{[fn(')—fn(—')]—E[fn(')—fn(—')]}—gH1<5}
X Qp(dzy,dzs, ..., dzy,)

bng(Xl)] bye }}

> —nlE™] [1 n®
ep{ —n{E"n oyl T

n2

< Quf Ane 0 {2410~ 1)~ B — 1) — o <5}
where
n - n Z n2 Un, n
o e e < S
Since
no5 ng\Ai noog(X; n o g2(X; N
7 ol [1 + Snifii?)] - bi Py 29f()§(3) - 81n; fcgg)) + 0(% :
n Un B " " 2 B .
e [FE] v o(%). e [faa] - o+ o(%),

and

e[ ] =0+ o(),

by the Chebyshev inequality, for each > 0, for n large enough, we get
n

(X))
%[5 2 ) -

o] >o) <l £ o~ 5= [ | > 3}

1
8n




146 Chinese Journa 1 of Applied Probability and Statistics Vol. 35

STl
o 51685 2> o] <l £ (55 = [ - 3
<t o) & L))

On the other hand, since

£ (£u() ~ (=) = Elf() = Sl + 2 [ [K(FY) = K (FEY) oty

2n | ad an an
/‘ /ad o J;n_ y)]g(y)dy—g(x)’dx%() as n — 0o,
we obtain
tim sup E% {|| F{[f() = fu(=)] = ELa) = Fal=)} — 9| }
< timsup E || 410 0) = =]~ E¥ (a0 = DY -

Now, applying the Cauchy-Schwartz inequality to

EQ"{ % [fn() = fu(=)] = E® [ fu(-) — f”(*')]})}’
we see that for any n > 0,
EQ"{ E [fa() = fu(=)] = E® () — _')]}H1}

n

/ EQ"{*HH) fa(=)] — EX [fn()—fn(—')]}‘}dm

‘/bgag/Rd\/Ey (= X1 x;lxl)r}/a%dx.
(i
Qn{ %

And so
[Fal) = Fal=)] = E¥[fu) = ful =)} } = 0

and

[Fa) = S =) = ElfaO) = ful =)} — | <0} =1




No. 2 XU M. Z., et al.: MD in L;(R?) for a Test of Symmetry Based on Kernel Density Estimator 147

Therefore, for any € > 0,

tmint 2 1P | 417,0) — (=]~ EL0) — =0} = ], <)

n—
n?(_, bng(X1) bie
_llﬁsogp o {E In [ +72nf(X1)} F}——I(g)—i—&?.
Letting € — 0, we have (16). O

Proof of Theorem 1(ii) It is sufficient for (8) to prove that for any open convex
subset G,

lmme% {n() — Fa(=)] ~ELfa() — ful—)} € G} <~ nf 1) (17)

n—o0

Now let G be an open convex subset. Since (17) is trivial if ing I(g) = 0, we can assume
g€

ian( ) > 0. ForanyN>Oand0<5< ian( ), put U = {¢ € L1(RY); I(p) < tn}

Where ty = min{N, 1nf I(g) — €}. Then U N G = (), and thus by the Habh-Banach

theorem, there exist h elL ( 4) and ¢ € R such that HNU = () and G C H, where
H = {p € L1(RY); [ h(z)p(z)dz > c}. Hence, by the Chebyshev inequality, we deduce
that for any o > 0,

Mw%gw{{mo fa(=)] = ELfa() = fu(=)]} € G}

n—o0

< limsup 02 In P{bn /h(w){[fn(x) — fo(=2)] — E[fn(z) — fu(—2)]}dz > c}

n—oo

< — ac+ limsup b%ln E{ exp {abn/h(az){[fn(m) — fo(—2)] — E[fu(x) — fn(—:v)]}dx}}

n—oo Up

By a Taylor series expansion, we get

n—oo

= %{ /[h(:c) — h(—z)]* f(z)dz — {/[h(m) — h(—x)]f(x)dx}Q}.

AwﬁzMn%hﬁ{wpﬁy/mmﬂhm»—n«wn—ah@yamemnm}}

Therefore for any a > 0,

i sup g 10 P{G1,) = ful=)] = Elfa() = fu(—)]} € G} < —ac +a?Alh),

n—oo

and so

lﬂgm%m% {fn() - n@ﬂ—anm—nFﬂﬂﬂ4<—Mwy
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Noting that ¢ € U implies that ¢(—) = —p(:) € U, we have U C {¢; | [ h(z)p(z)dz| <
lc|}. Therefore,

20() = [ {nla) = h-2) ~ [Ihw) = h-)} )y} F()da

2
= sup /@mo—m—mwwmd
( )<1
S ‘/ 2)] (x)dx‘2<02
8tn <p€1:U)' 4 T2ty
Hence,
timsup g5 1 P{ 3 {[fa() = ful =] = Elfa() = ful =]} € G}
n—oo
€ it — i . _
< —tin min {N, guelgl(g) z—:}.
Now, first letting N — oo, and then letting ¢ — 0, we get (17). O

Proof of Theorem 1(iii) Let C be a compact subset. For any 6 > 0, and for any
g € C, there exists an open ball U, > g such that iné I(p) = I(g) — 0, since I(-) is lower-
pely

m m
semicontinuous. Choose finite g1, g2, . .., gm such that C C |J U, and write G5 = |J Uy,.

i=1 i=1
Then

lm sup g 1nP{ F{170() = ()] ~ EL() = fu(—)]} € G}

n—oo
< max{— inf I(p )}g—infl(g)—{—&. O
1<i<m peUyg, geC

83. Proof of Theorem 3

The ideas of the proof come also from that in [9]. The lower bound is a consequence
of Theorem 1. Here are two basic steps in proving the upper bound. As in [9], the upper
bound follows by Devroye’s proof in [10]. The Devroye partition plays an important role
in proof of the upper bound, here it requires precise estimates to get the MDP.

Proof of Theorem 3(i)  Denote W : (Li(R%), || - [|1) + [0,00) by ¥(¢) = ||¢|1.

Then ¥ is continuous from W : (L (R%), | - ||1) to [0,00) and
)\2
inf I(g) = —. 18
it 9) =3 (18)

By Cauchy-Schwarz inequality,

inf I(g) = inf 1/(9)2dx/(\/?)2dx > inf:)\ é\P(g)Q > /;2;

W(g)=A U(g)= 8
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on the other hand, if one takes g(x) = A\[I4(z) — Ip(x)]f(z) where ANB =0, A=—-B
AUB=R?and [, f(z)dz = 1/2, then ||g|: = A and I(g) = A?/8. Therefore (18) holds.
Lower bound: Let G be an open subset in [0,00). Then ¥~!(G) is an open subset in
(L1 (R, || - |l1); hence by Theorem 1,

hmmfalnP{ 1 () = fal=)] = E[fu() = fu(=)]ll1 € G}

= liminf 5 1nP{3 () = fu(=)] — ELfa() = fu(=)]} € 274G |

)\2
> — inf I f —.
o T(9) = — Inf 2

Upper bound: Let F be a closed subset in [0,00), and let A = inf{z; z € F'}. Without loss

of generality, we can assume A > 0. Then for any 0 < & < A,

P{%H[fn() — fu(=)] = Elfn(-) = fr(=)]|I1 € F}
P{%H[fn() — fa(=)] = E[fn() = fu(=)]l1 > A — 5}.

Thus, it is sufficient for the upper bound to prove for any A > 0,

tinsup 1 I P71 () = fol=)) = ELal) = fu(=l > A} < =

n—oo 8

By (A2) and (BC) and Lemma A.1 in [9], without loss of restricition we can assume that
there exists a constant 1 < L < oo such that {K # 0}U{f #0} C [-L +1,L —1]¢, and

m m
K(ZC) = z:lchAj(x)> E%CJ|AJ| =1, |AJ| > 0,
Jj= Jj=
where 0 < ¢j < 00, j = 1,2,...,m are constants, and A; C [-L,L]% j =1,2,...,m are

disjoint rectangles, and |A| = [, dz (see Lemmas A.5 - A.7 in Appendix in [9] with K[(z —
Xi)/an] — K[(—2 — X;)/a,] in place of K[(z — X;)/an]). Write Kj(x) = (|A;]) 11, (2)

and

Qn

1 r—X;
o= g S0 (52).
" nag ;= !

Then by f, = Z ¢j|Aj| fny; and Z cj|lA4;] = 1, we deduce that for any A > 0,
7j=1

G () = £l = ELfa() = Fa(=)ll > A}
C U { ||[fnj( ) fn;j(*')] - E[fn;j(') - fn;j(*‘)]Hl > )‘}'
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Therefore, we only prove the upper bound for K (x) = (|A|)~'I4(z), where A is a rectangle.
There is no loss of generality in assuming that A = [0,1]%, i.e., K(z) = g 1ja(2). In this

case,

= id |t (z + anA) — pn(—x + anA) — [u(x + anA) — p(—z + a,A)]|dz,

ap, JRA

where p(B) = [ f(z)dz and p,(B) = n~t Y 6x,(B) is the empirical measure for X;,
i=1

i =1,2,...,n. Define the partition ¥ of R? as follows (see [9] and [10]):

d r(i; —Day, ijan
m::{n[ J Y );z’EZ,j:l,2,...,d},
i N N /Y

where N is a constant to be chosen as in [9]. Set

D, = (x+a,A) — U B.
BeV, BCz+an A, BN[—L,L]4#0

Then
1
ad /d [ (T + anA) — pin(—2 + anA) — [u(z + anA) — p(—r + a, A)]|dw
n JR
< 21d/ |pn(z + anA) — p(x + anA)|dx
(In RA

1
<2 ¥ WAB»—MBM+2(,/ (D) — (D),
Be¥, BN[—L,L]4#£0 apn JRd

2% [5cora,adz < 1. And the rest of the proof is the
same as that of upper bound of Theorem 1.2(1) in [9] with A\/2 and §/2 in place of A and

where the last inequality is due to a

& respectively, so we omitted the proof. ]

Proof of Theorem 3(ii)  Similarly as in [9], we only need to prove necessity. Let
K be a bounded function with compact support, and let f have also compact support. If
(15) holds, then

%mnm—neﬂ—ahm—meﬂmia (19)
Now we take B = Li(R%), and

o= (R (2 - (22 e (52) - ()

n

in Lemma A.1 in [9], then by (19) and Lemma A.1 in [9], we have

5 EULC) = fu(=)] = ELAn() = fal= )} = 0. (20)
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Since K is bounded, K and f have compact support, hence we have

alE(|&1nl?)
li BN Ay <
l,iii%p/ E(En?) %

where 0/0 = 0. By Lemma A.2 in [9], we have

’\/ﬁEan(x) — fa(=2)] — E[fn(z) — )]l = \f\/‘fT’ VnE |€1n!))

Hence

LB = 1)~ B~ ol =20 [t
AalE 3

< bsstem .

Finally, by (20) and nli_)rgof\/agE(lanP)d:c = ¢1 [ /f(z)dz, we see that (21) implies

(BC). O
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