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Abstract: Most regression modeling is based on traditional mean regression which results in

non-robust estimation results for non-normal errors. Compared to conventional mean regression,

composite quantile regression (CQR) may produce more robust parameters estimation. Based on

a composite asymmetric Laplace distribution (CALD), we build a Bayesian hierarchical model for

the weighted CQR (WCQR). The Gibbs sampler algorithm of Bayesian WCQR is developed to

implement posterior inference. Finally, the proposed method are illustrated by some simulation

studies and a real data analysis.
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§1. Introduction

The linear regression models are common in statistical analysis for establishing the

relationship between a response variable and covariates, and have been frequently applied

to a variety of scientific fields such as medicine, finance, economics and environmental

science. A general linear regression model can be specified as

yi = xT
i β + εi, i = 1, 2, . . . , n. (1)
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where yi is the i-th observation, xi is a p× 1 dimensional covariate, εi is the error term.

Model (1) is commonly estimated using the least square estimation (LSE) or maxi-

mum likelihood estimation (MLE). For linear regression models with non-normal errors or

outliers, however, estimation results of the LSE or MLE are expected to be sensitive and

estimation efficiency may be significantly decreased. As an alternative, median regression

is expected to produce more robust estimation results. However, median regression may

not be the best choice in some cases, especially for some non-normal error distributions.

Zou and Yuan [1] pointed out that quantile regression may result in an arbitrarily small

relative efficiency compared to the LSE. They proposed the CQR estimation which can

pull information of multiple quantiles together to achieve estimation efficiency gain over

a single quantile regression including median regression. Many authors have conducted a

large number of studies work on the CQR. For instance, Kai et al. [2] studied local poly-

nomial CQR for nonparametric regression models. They showed that the CQR performed

better over both the LSE and median regression. Kai et al. [3] implemented the CQR

estimation for semiparametric varying coefficients partially linear models. Jiang et al. [4]

investigated CQR nonlinear models. Tang et al. [5] considered the CQR and variable se-

lection procedures for random censored models. Recently, Zhao and Xiao [6] argued that

the equal-weighted CQR is not a best way of using distributional information of quan-

tile regressions. They developed a WCQR model by forcing different weight on different

component of quantile regressions. Additionally, Jiang and Li [7] presented the penalized

WCQR for the linear regression model under heavy-tailed autocorrelated errors. Tian et

al. [8] studied the WCQR of linear regression models using the EM algorithm. Although a

lot of work has been done to study the CQR, there are still limited literatures to conduct

CQR from a Bayesian viewpoint. Bayesian CQR is an interesting issue in CQR literstures.

For example, Huang and Chen [9] discussed Bayesian CQR based on a mixture asymmet-

ric Laplace distribution, Alhamzawi [10] considered Bayesian CQR via a skewed Laplace

distribution. In this paper, we develop the Bayesian WCQR based on the CALD which

can address a weighted version of Bayesian CQR.

The remainder of this paper is organized as follows. In Section 2, we review Bayesian

quantile regression. In Section 3, we discuss Bayesian WCQR and derive the full condi-

tional posterior distributions of all parameters via Gibbs sampling algorithm. In Section

4, some simulations are conducted to illustrate the sample performance of the developed

method. In Section 5, a data analysis is provided to illustrate the proposed procedure. In

Section 6, some conclusions are drawn.
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§2. Reviews

As to model (1), suppose that the τ -th quantile of εi is zero. Then, the τ -th conditional

quantile of the response yi can be specified as Qτ (yi |xi) = xT
i βτ , 0 < τ < 1. From Koenker

and Bassett [11], we can obtain the τ -th quantile estimator β̂τ of regression coefficient by

minimizing the following objective loss function

1

n

n∑
i=1

ρτ (yi − xT
i βτ ), (2)

where ρτ (u) = u[τ − I(u < 0)] is the check function. For quantile regression estimation,

Yu and Moyeed [12] proposed an equivalent Bayesian estimator based on the asymmetric

Laplace error distribution. The asymmetric Laplace distribution ALD(µ, σ, τ) has its

probability density function as follows

f(y |µ, σ, τ) =
τ(1− τ)

σ
exp

[
− ρτ

(y − µ
σ

)]
, (3)

where µ is the location, σ is the scale, and 0 < τ < 1 is the skewness. Yu and Moyeed [12]

argued that their empirical results are robust by forcing the ALD on errors even if it

is a misspecification of the true errors. Recently, Sriram et al. [13] provided a justifi-

cation for this usage by proving posterior consistency under the ALD misspecification.

Bayesian quantile regression has attracted a lot of attention. For instance, Kottas and

Gelfand [14] studied Bayesian semi-parametric median regression modeling by employing

mixture model errors, Dunson and Taylor [15] considered approximate Bayesian inference

of quantile regression, Kottas and Krnjajić [16] discussed Bayesian semiparametric quan-

tile regression, Reich et al. [17] considered Bayesian quantile regression for independent and

clustered data. Kozumi and Kobayashi [18] presented an efficient Gibbs sampling algorithm

by utilizing a hierarchical representation of the ALD. This representation can be displayed

as follows. Suppose y ∼ ALD(µ, σ, τ), y can be decomposed as the mixture representation:

y = µ+ θ1υ+
√
θ2συ · e, where θ1 = (1− 2τ)/[τ(1− τ)], θ2 = 2/[τ(1− τ)], υ ∼ Exp(1/σ),

e ∼ N(0, 1), υ and e are independent with each other. The biggest advantage of this

representation is that it can transform the ALD to the conditional normal distribution.

Further, Reich et al. [19] considered Bayesian spatial quantile regression models using this

mixture representation, Kobayashi and Kozumi [20] considered Bayesian quantile regres-

sion of censored dynamic panel data, Zhao and Lian [21] considered Bayesian Tobit quantile

regression for single-index models, Tian et al. [22] studied Bayesian joint quantile regression

for mixed effects models with censoring and errors in covariates.
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§3. Bayesian WCQR

3.1 The CALD

The CQR was firstly proposed by Zou and Yuan [1] to estimate linear regression.

CQR can combine multiple quantiles together and provide more robust estimation than

traditional mean regression and median regression, especially for non-normal errors. For

model (1), suppose Q be a set of quantiles under consideration: Q = {τ1, τ2, . . . , τK},
0 < τ1 < τ2 < · · · < τK . The CQR estimator of regression coefficient vector β can be

obtained by minimizing the following objective loss function

(α̂1, α̂2, . . . , α̂K , β̂
CQR) = arg min

α1,α2,...,αK ,β

n∑
i=1

K∑
k=1

ρτk(yi − xT
i β − αk), (4)

where αk is the τk-th quantile of the error εi which satisfies monotonicity: α1 < α2 < · · · <
αK . Generally, one can let τk = k/(K + 1), k = 1, 2, . . . ,K, where K is the quantile level

size. Loss function (4) is a combination of the objective functions of quantile regression

models. When K = 1, function (4) is the loss function of median regression. In order to

ensure the identifiability of constant term in linear regression model (1), we can force a

constraint condition
K∑
k=1

αk = 0 on parameters α1, α2, . . . , αK . Additionally, loss function

(4) is piecewise linear and is hard to solve by differentiating the objective function. We

will provide a Bayesian treatment based on the CALD which was firstly proposed in [23].

The probability density function of the CALD is

h(y |µ, σ) ∝
K∏
k=1

1

σk
exp

[
− ρτk

(y − µk
σk

)]
, (5)

where µ = (µ1, µ2, . . . , µK) is the location vector, σ = (σ1, σ2, . . . , σK) is the scale vector,

τ1, τ2, . . . , τK are quantiles in equation (4).

Remark 1 The function h(y |µ, σ) is a density kernel via omitting the regularized

constants. The similar thought was introduced by Sriram et al. [24] for implementing simulta-

neous Bayesian estimation of multiple quantiles. As showed by Sriram et al. [13], theoretically,

omitting the regularizing constant does not produce large deviation for estimation.

Remark 2 For model (1), suppose yi follows the PCALD conditionally on covariate

xi, where location parameters µk, k = 1, 2, . . . ,K are taken as µk = xT
i β + αk. It is easy

to see that the MLE of regression parameters are equivalent to minimize the loss function
N∑
i

K∑
k=1

σ−1
k ρτk(yi − αk − xT

i β). Compared this loss function (4), the CQR estimation is

equivalent the MLE under the CALD error distributions, where σ−1
k , k = 1, 2, . . . ,K are

K weights of quantile regressions. Specially, when σ1 = σ2 = · · · = σK , the MLE is the

common CQR estimation.



182 Chinese Journal of Applied Probability and Statistics Vol. 35

Remark 3 For the CALD, set µk = xT
i βk + αk, k = 1, 2, . . . ,K, the MLE is the

simultaneous multiple quantiles estimation of model (1). In simultaneous multiple quantiles

regression, a key is how to retain monotonicity of quantile estimators. In Bayesian WCQR, we

only need to keep monotonicity of posterior estimators of parameters α1, α2, . . . , αK . Other

references of simultaneous multiple quantiles regression can refer to [24], [25] and [26].

3.2 Bayesian Inference

The likelihood function of the WCQR is not easy to maximize due to the complexity

of the CALD. To solve this problem, the density function of CALD can be decomposed as

follows 
g(y |µ, σ, υ) ∝

K∏
k=1

1√
θ2,kυkσk

exp
[
−

(y − µk − θ1,kυk)2

2θ2,kσkυk

]
,

υk ∼ Exp
( 1

σk

)
, k = 1, 2, . . . ,K,

(6)

where υ = (υ1, υ2, . . . , υK) is a latent vector, θ1,k = (1− 2τk)/[τk(1− τk)], θ2,k = 2/[τk(1−
τk)], k = 1, 2, . . . ,K.

Suppose that the τk conditional quantile of the response yi be

Qτk(yi |xi) = xT
i β + αk, k = 1, 2, . . . ,K, i = 1, 2, . . . , n. (7)

Using the mixture representation (6), the conditional density function of the response

yi can be represented as follows
g(yi | υi, µi, σ, τ) ∝

K∏
k=1

1√
θ2,kσkυik

exp
[
−

(yi − µik − θ1,kυik)2

2θ2,kσkυik

]
,

υik ∼ Exp
( 1

σk

)
, k = 1, 2, . . . ,K,

(8)

where υ = (υi, υi+1, . . . , υn), υi = {υik, k = 1, 2, . . . ,K}, µik = xT
i β + αk.

The joint hierarchical likelihood of the complete data {y, x, υ} is expressed as

L(y, x, υ) =
n∏
i=1

[
g(yi |xi, υi, β, σ, α)×

K∏
k=1

f(υik |σk)
]
, (9)

where g(yi |xi, υi, β, σ) is the conditional density function of hierarchical model (8), f(υik |
σk) is the density function of exponential distribution Exp(1/σk).

To implement Bayesian analysis, one need to specify prior distributions for all param-

eters. We set priors of {β, α, σ} as follows

π(β, α, σ) ∝ π(β)π(α)π(σ).

The prior of β is taken as the multivariate normal distribution: N(β0, B0), where β0

and B0 are known hyper parameters. For fixed K, the prior of α is taken as π(α) =
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K∏
k=1

π(αk), where αk, k = 1, 2, . . . ,K are supposed to follow normal distributions N(αk,0,

ς2k,0), αk,0 and ς2k,0 are known mean and variance. In addition, quantile parameters

α1, α2, · · · , αK should satisfy the constraint: α1 < α2 < · · · < αK . To remain the above

monotonicity, the hyper parameters αk,0, k = 1, 2, . . . ,K can be set as α1,0 < α2,0 <

· · · < αK,0. The scale hyper parameters ς2k,0 can be taken as the same value for simplicity.

The prior of σ can be taken as π(σ) =
K∏
k=1

π(σk), where σk, k = 1, 2, . . . ,K are supposed

to follow inverse Gamma distributions IG(ck,0, dk,0) with shape parameter ck,0 and scale

parameter dk,0. For simplicity, denote Π as the set composed of all posterior sampling

variables and Π− as complementary set of Π excluding the present sampling variables.

Incorporating the above priors into the joint likelihood (9), the joint posterior density of

set Π can be presented as

π(Π | y, x) ∝ L(y, x, υ) · π(β)π(α)π(σ). (10)

Based on Gibbs sampling algorithm, we derive the full conditional posterior distribu-

tions of all parameters as follows

� π(β |Π−) ∼ N(β∗, B∗), where

∆ik = yi − αk − θ1,kυik,

β∗ = B∗ ·
( n∑
i=1

K∑
k=1

xi∆ik

θ2,kσkυik
+B−1

0 β0

)
, B∗ =

( n∑
i=1

K∑
k=1

xix
T
i

θ2,kσkυik
+B−1

0

)−1
;

� π(σk |Π−) ∼ IG
(3n

2
+ ck,0,

n∑
i=1

( e2ik
2θ2,kυik

+ υik

)
+ dk,0

)
, where

eik = yi − αk − xT
i β − θ1,kυik, k = 1, 2, . . . ,K, i = 1, 2, . . . , n;

� π(vik |Π−) ∼ GIG
(1

2
,

η2ik
θ2,kσk

,
θ21,k + 2θ2,k

θ2,kσk

)
, where

ηik = yi − αk − xT
i β, k = 1, 2, . . . ,K, i = 1, 2, . . . , n;

� π(αk |Π−) ∼ N
(
α∗
k,0, (ς2k,0)

∗), where

εik = yi − xT
i β − θ1,kυik, k = 1, 2, . . . ,K, i = 1, 2, . . . , n,

α∗
k,0 = (ς2k,0)

∗
( n∑
i=1

εik
θ2,kσkυik

+
αk,0
ς2k,0

)
, (ς2k,0)

∗ =
( n∑
i=1

1

θ2,kσkυik
+

1

ς2k,0

)−1
.

Remark 4 GIG(λ, χ, ψ) denote the generalized inverse Gaussian (GIG) distribution

with density function

f(x) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

xλ−1 exp
[
− 1

2
(χx−1 + ψx)

]
, χ > 0, ψ > 0, x > 0,

where Kλ denotes a modified Bessel function.
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Remark 5 It is easy to see that dα∗
k,0/dαk,0 > 0, k = 1, 2, . . . ,K which prove

that α∗
k,0 is the monotonically increasing function of α∗

k,0. This conclusion implies that

the monotonicity of hyper parameters αk,0, k = 1, 2, . . . ,K can ensure the monotonicity of

posterior estimates of parameters α1, α2, . . . , αK . In fact, for parameters αk, k = 1, 2, . . . ,K,

we conduct posterior inference by making use of Gibbs posterior samples. We obtain the final

estimation values by taking the average values of MCMC posterior samples which converge

to the posterior mean values α∗
k,0, k = 1, 2, . . . ,K. Hence, the monotonicity of hyper

parameters αk,0, k = 1, 2, . . . ,K can ensure the monotonicity of the final posterior estimates

of parameters αk, k = 1, 2, . . . ,K. Additionally, to guarantee the identifiability condition
K∑
k=1

αk = 0, we can subtract a average value from the posterior estimates of α1, α2, . . . , αK

to derive the final estimation values in MCMC algorithm.

By sampling repeatedly from the full posterior distributions of parameters {β, α, σ},
we obtain a series of stationary samples (β(1), α(1), σ(1)), (β(2), α(2), σ(2)), . . . , (β(T ), α(T ),

σ(T )) to conduct posterior inference.

§4. Simulations

In this section, we conduct Monte Carlo simulations to illustrate the Bayesian WCQR

procedure. For model (1), the true parameter is β = (β0, β1, β2, β3)
T = (0.5, 1, 2, 1)T, two

sample sizes n = 50, 100 are considered, the covariates are set as xT
i = (1, xi1, xi2, xi3),

where xij , j = 1, 2, 3 are generated independently from the standard normal distribution

N(0, 1). Four error distributions are considered: standard normal distribution (N(0, 1)), t

distribution with three degrees of freedom (t3), chi-square distribution with two degrees

of freedom (χ2(2)) and standard Cauchy distribution (C(0, 1)). Quantile level numbers

K = 1, 3, 5, 7, 9 are considered, where the case of K = 1 represent median regression. The

priors of all parameters are set as follows:

βj ∼ N(0, 102), j = 0, 1, 2, 3; σk ∼ IG(0.5, 0.5), αk ∼ N(αk,0, 102), k = 1, 2, . . . ,K.

The hyper parameters αk,0, k = 1, 2, . . . ,K are monotonously taken as K knots

which divide interval [−10, 10] into K − 1 equal subintervals. Initial value of β is set as

the LSE. Initial values of scale parameters σk, k = 1, 2, . . . ,K are taken as 1. We run

50 times repeated simulations for the Bayesian WCQR procedure and run 15 000 times

Gibbs sampling algorithm for each simulation. From the trace plots of Gibbs samples,

we find that MCMC chains of regression coefficients can converge to their stationary

distributions rapidly. For each simulation, we remove the first 5 000 samples and preserve

the tailed 10 000 samples to produce 1 000 samples with 10 thin steps for implementing
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posterior inference. We report posterior bias, posterior root mean square errors (RMSE)

and 95% confidence interval (CI) of regression coefficients β1, β2, β3 based on 50 repeated

simulations. Estimation results are presented in Tables 1 – 2. Meanwhile, in order to

compare with Bayesian WCQR results, we provide the LSE results in Table 3.

Table 1 Bayesian WCQR results for n = 50

β1 = 1 β2 = 2 β3 = 1

Error K Bias RMSE 95% CI Bias RMSE 95% CI Bias RMSE 95% CI

1 0.029 0.183 (0.688,1.401) -0.007 0.160 (1.737,2.351) 0.023 0.157 (0.770,1.295)

3 -0.006 0.152 (0.668,1.248) -0.005 0.173 (1.636,2.304) 0.013 0.151 (0.732,1.309)

N(0, 1) 5 -0.005 0.149 (0.722,1.289) -0.010 0.144 (1.748,2.240) -0.023 0.158 (0.680,1.272)

7 0.027 0.142 (0.780,1.329) 0.013 0.143 (1.775, 2.296) -0.002 0.257 (0.708,1.289)

9 -0.019 0.169 (0.720,1.316) 0.009 0.153 (1.697, 2.304) 0.012 0.160 (0.727,1.289)

1 0.047 0.219 (0.665,1.450) 0.006 0.193 (1.648,2.342) -0.001 0.188 (0.638,1.313)

3 -0.023 0.182 (0.587,1.267) -0.046 0.222 (1.577,2.345) 0.046 0.190 (0.672,1.387)

t3 5 -0.063 0.204 (0.617,1.351) -0.003 0.203 (1.613, 2.350) -0.007 0.217 (0.543,1.427)

7 0.018 0.211 (0.680,1.456) -0.071 0.187 (1.602,2.321) -0.051 0.219 (0.623,1.300)

9 -0.020 0.205 (0.653,1.307) -0.045 0.169 (1.619,2.211) -0.002 0.199 (0.653,1.391)

1 -0.012 0.250 (0.602,1.454) 0.017 0.280 (1.600,2.688) -0.085 0.273 (0.374,1.376)

3 0.028 0.172 (0.717,1.309) 0.002 0.168 (1.682, 2.298) 0.039 0.247 (0.574,1.514)

χ2(2) 5 0.063 0.218 (0.702,1.553) 0.026 0.197 (1.619,2.387) -0.003 0.184 (0.626,1.256)

7 -0.006 0.193 (0.609,1.339) -0.033 0.181 (1.682,2.368) 0.015 0.224 (0.642,1.430)

9 -0.006 0.153 (0.764,1.350) -0.013 0.188 (1.628,2.345) 0.005 0.202 (0.489,1.316)

1 0.025 0.358 (0.216,1.709) 0.002 0.241 (1.596,2.442) 0.046 0.312 (0.551,1.594)

3 0.019 0.350 (0.319,1.840) -0.010 0.250 (1.575,2.429) -0.009 0.311 (0.501,1.540)

C(0, 1) 5 0.013 0.357 (0.489,1.912) 0.027 0.320 (1.403,2.646) 0.005 0.307 (0.338,1.496)

7 -0.078 0.355 (0.290,1.698) 0.064 0.365 (1.489,2.879) 0.082 0.288 (0.612,1.621)

9 0.070 0.360 (0.291,1.823) -0.044 0.355 (1.124,2.385) -0.026 0.357 (0.332,1.616)

From Tables 1 – 3, we see Bayesian WCQR performs better consistently for different

error distributions and different quantile level number K. For most of cases, Bayesian

WCQR for K = 3, 5, 7, 9 illustrate better estimates with smaller RMSEs and shorter

confidence intervals than the results for K = 1 (median regression) and the traditional

LSE, especially for small sample size (n = 50) and non-normal errors (such as χ2(2) and

C(0, 1)). Compared to the traditional estimation methods, Bayesian WCQR behaves more

robust for relatively bigger K and non-normal errors. For C(0, 1) error, the Bayesian WC-

QR presents more advantages than the LSE. For same K, Bayesian WCQR results under

N(0, 1) error outperform those results under t3, χ
2(2) and C(0, 1) errors. Additionally, the
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Table 2 Bayesian WCQR results for n = 100

β1 = 1 β2 = 2 β3 = 1

Error K Bias RMSE 95% CI Bias RMSE 95% CI Bias RMSE 95% CI

1 -0.007 0.117 (0.735,1.208) -0.026 0.110 (1.715,2.163) 0.011 0.111 (0.800,1.217)

3 -0.019 0.108 (0.745,1.163) -0.012 0.099 (1.829,2.182) -0.008 0.098 (0.802,1.161)

N(0, 1) 5 -0.006 0.085 (0.837,1.121) -0.012 0.093 (1.814,2.146) 0.007 0.121 (0.759,1.227)

7 -0.013 0.106 (0.848,1.207) 0.028 0.115 (1.857,2.224) 0.000 0.096 (0.797,1.141)

9 0.023 0.115 (0.821,1.258) -0.001 0.103 (1.779,2.149) -0.003 0.077 (0.866,1.149)

1 0.007 0.131 (0.745,1.256) -0.004 0.139 (1.776,2.249) -0.005 0.136 (0.732,1.245)

3 0.005 0.148 (0.755,1.348) -0.006 0.129 (1.694,2.183) -0.031 0.145 (0.683,1.197)

t3 5 -0.007 0.122 (0.761,1.269) 0.004 0.137 (1.758,2.291) -0.026 0.137 (0.750,1.231)

7 -0.013 0.129 (0.688,1.203) 0.025 0.139 (1.802,2.261) 0.077 0.129 (0.870,1.262)

9 -0.005 0.146 (0.709,1.306) 0.019 0.133 (1.770,2.251) -0.008 0.116 (0.781,1.192)

1 0.002 0.165 (0.743,1.315) 0.002 0.165 (1.713,2.277) 0.014 0.153 (0.764,1.267)

3 -0.018 0.135 (0.724,1.230) -0.010 0.130 (1.710,2.239) 0.023 0.137 (0.792,1.303)

χ2(2) 5 -0.012 0.099 (0.805,1.140) 0.011 0.114 (1.784,2.229) 0.022 0.123 (0.789,1.276)

7 -0.002 0.106 (0.770,1.179) 0.019 0.134 (1.775,2.257) -0.015 0.112 (0.786,1.187)

9 -0.018 0.120 (0.760,1.182) 0.006 0.097 (1.831,2.173) 0.012 0.115 (0.801,1.232)

1 -0.050 0.183 (0.636,1.325) 0.009 0.231 (1.792,2.345) -0.032 0.212 (0.650,1.225)

3 0.005 0.200 (0.679,1.439) -0.012 0.163 (1.721,2.404) -0.005 0.213 (0.550,1.370)

C(0, 1) 5 -0.012 0.215 (0.577,1.306) 0.031 0.222 (1.698,2.411) -0.033 0.227 (0.551,1.498)

7 0.004 0.239 (0.603,1.451) -0.059 0.234 (1.507,2.336) -0.024 0.183 (0.569,1.343)

9 -0.020 0.200 (0.595,1.359) -0.007 0.196 (1.637,2.360) -0.010 0.223 (0.527,1.303)

Table 3 LSE results

β1 = 1 β2 = 2 β3 = 1

Error n Bias RMSE 95% CI Bias RMSE 95% CI Bias RMSE 95% CI

N(0, 1) 50 0.027 0.136 (0.787,1.314) -0.018 0.157 (1.705,2.254) 0.001 0.138 (0.749,1.303)

100 0.007 0.114 (0.832,1.246) 0.001 0.079 (1.848,2.152) 0.003 0.101 (0.807,1.190)

t3 50 0.008 0.218 (0.611,1.390) 0.017 0.203 (1.685,2.362) 0.033 0.225 (0.647,1.388)

100 -0.003 0.166 (0.662,1.264) -0.009 0.164 (1.666,2.220) 0.012 0.156 (0.743,1.245)

χ2(2) 50 0.111 0.295 (0.666,1.575) 0.022 0.281 (1.534,2.533) 0.001 0.229 (0.630,1.436)

100 -0.027 0.232 (0.575,1.414) -0.025 0.239 (1.522,2.379) 0.046 0.194 (0.717,1.368)

C(0, 1) 50 – – – – – – – – –

100 – – – – – – – – –

estimation efficiency of Bayesian WCQR does not always increase as K becomes bigger.

From simulations, taking the size of K from 3 to 9 seems enough to derive ideal results.



No. 2 TIAN Y. Z., et al: Gibbs Sampler Algorithm of Bayesian Weighted Composite Quantile Regression 187

§5. Real Data Analysis

In this section, we use Bayesian WCQR to evaluate Engel food expenditure data

which can be found in [27]. This data set consists of 235 observations of household income

and expenditure on food. Consider the linear regression model

yi = β0 + β1xi + β2x
2
i + εi, i = 1, 2, . . . , n, (11)

where yi is the i-th observation for the response variable log10(Expenditure), xi is the i-th

observation for covariate log10(Income).

We apply Bayesian WCQR method to Engel data set based on model (11). In estima-

tion procedure, the initial values of regression parameters are set as the LSE. Priors and

initial values of other parameters are taken as the same to simulations in Section 4. Ten

quantile levels K = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are considered. For each quantile level K, we

run 15 000 times Gibbs samplers and only the latest 10 000 posterior samples are remained

to produce 1 000 samples with 10 thin steps. Bayesian WCQR estimates (Est.) and esti-

mated standard errors (St.E.), 95% CI based on 1000 posterior samples are presented in

Table 4, where the case for K = 1 mean the result of median regression. We also provide

estimation results of the LSE in Table 4.

Table 4 Bayesian CQR estimates and LME(s)

β0 β1 β2

Method K Est. St.E. 95% CI Est. St.E. 95% CI Est. St.E. 95% CI

1 -1.854 0.688 (-3.070,-0.396) 2.268 0.464 (1.281,3.102) -0.236 0.078 (-0.371,-0.070)

2 -1.742 0.479 (-2.635,-0.697) 2.182 0.322 (1.469,2.798) -0.220 0.054 (-0.324,-0.104)

3 -1.560 0.404 (-2.317,-0.723) 2.058 0.272 (1.499,2.576) -0.200 0.045 (-0.285,-0.105)

4 -1.448 0.356 (-2.148,-0.719) 1.985 0.239 (1.492,2.452) -0.188 0.040 (-0.266,-0.105)

5 -1.378 0.313 (-2.010,-0.750) 1.936 0.211 (1.518,2.361) -0.179 0.035 (-0.252,-0.109)

BCQR 6 -1.374 0.299 (-1.937,-0.803) 1.933 0.201 (1.542,2.315) -0.179 0.033 (-0.243,-0.113)

7 -1.361 0.260 (-1.873,-0.855) 1.924 0.175 (1.589,2.273) -0.177 0.029 (-0.236,-0.121)

8 -1.349 0.244 (-1.846,-0.881) 1.915 0.165 (1.599,2.250) -0.175 0.027 (-0.232,-0.122)

9 -1.328 0.237 (-1.786,-0.862) 1.901 0.159 (1.592,2.212) -0.173 0.026 (-0.226,-0.122)

10 -1.322 0.215 (-1.754,-0.916) 1.896 0.145 (1.626,2.196) -0.172 0.025 (-0.222,-0.126)

LSE -1.352 0.646 (-2.626,-0.078) 1.922 0.432 (1.070,2.774) -0.178 0.072 (-0.320,-0.035)

From Table 4, we see that Bayesian WCQR results perform better for K quantile

numbers. For most of cases, the estimated standard errors decrease and 95% CI become

narrower as K becomes bigger. Bayesian WCQR result of K > 1 perform better consis-

tently than the results of K = 1 (median regression) and the LSE. In fact, for this data set,
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quantile level number K = 5 seems enough to provide a group of more robust estimates

than other K. As a illustration, Figure 1 display the trace plots of 15 000 Gibbs samplers

for K = 5, autocorrelation plots and hist plot of 1 000 produced posterior samples of two

regression coefficients. The corresponding predictive plot between income and expenditure

for this case is displayed in Figure 2.
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Figure 1 The left column represents the trace plots of 15 000 Gibbs samples and the

right column represents autocorrelation plots of 1 000 produced samples of

regression coefficients for K = 5

§6. Conclusion

We discuss Bayesian WCQR of linear regression based on the CALD. By using the

hierarchical mixture of the CALD, we build a hierarchical Bayesian model and derive

the full conditional posterior distributions of all unknown parameters using the Gibbs

sampling algorithm. Some simulations are implemented and a data set is analyzed to

illustrate the proposed procedure. Compared to the LSE and Bayesian median regression,

Bayesian WCQR can provide more robust and accurate estimation results for a variate of

error distributions, especially for non-normal error distributions. Bayesian WCQR is an
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Figure 2 Fitted curve of Engel data for K = 5

interesting issue in CQR literatures and has not been fully discussed. There are still a lot

of work to do in future research. For example, how to define a evaluation criterion to select

the optimal K and how to apply the Bayesian WCQR to complex and high dimensional

regression models are both interesting research subjects that can be discussed. We are

continuing to pay attention to these issues in future work.
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Appexdix

The joint posterior distribution in equation (10) is expressed as

π(Π | y, x) ∝ L(y, x, υ) · π(β, α, σ)

∝
n∏
i=1

[
g(yi |xi, υi, β, σ, α)×

K∏
k=1

1

σk
exp

(
− υik
σk

)]
· π(β)π(α)π(σ)

∝
n∏
i=1

K∏
k=1

{ 1√
θ2,kσkυik

exp
[
−

(yi − xT
i β − αk − θ1,kυik)2

2θ2,kσkυik

]
× 1

σk
exp

(
− υik
σk

)}
·N(β0, B0) ·

K∏
k=1

N(αk,0, ς
2
k,0) ·

K∏
k=1

IG(ck,0, dk,0),

where Π denotes the set composed of all posterior sampling variables, Π− denotes the

complementary set of Π excluding the present sampling variables, N(β0, B0) denotes the

probability density function (pdf) of multivariate normal distribution with mean β0 and
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variance-covariate matrix B0, IG(ck,0, dk,0) denotes the pdf of inverse Gamma distribution

with shape parameer ck,0 and scale parameter dk,0.

Based on Gibbs sampling algorithm on the joint posterior distribution π(Π | y, x), the

full conditional posterior distributions of all parameters can be expressed as follows

� π(β |Π−) ∝ exp
[
−

n∑
i=1

K∑
k=1

(yi − xT
i β − αk − θ1,kυik)2

2θ2,kσkυik

]
· exp

[
− 1

2
(β − β0)TB−1

0 (β − β0)
]

∝ exp
[
−

n∑
i=1

K∑
k=1

(βTxi −∆ik)
2

2θ2,kσkυik

]
· exp

[
− 1

2
(β − β0)TB−1

0 (β − β0)
]

∼ N(β∗, B∗),

where ∆ik = yi − αk − θ1,kυik, k = 1, 2, . . . ,K, i = 1, 2, . . . , n,

β∗ = B∗ ·
( n∑
i=1

K∑
k=1

xi∆ik

θ2,kσkυik
+B−1

0 β0

)
, B∗ =

( n∑
i=1

K∑
k=1

xix
T
i

θ2,kσkυik
+B−1

0

)−1
;

� π(σk |Π−) ∝
n∏
i=1

{ 1
√
σk

exp
[
−

(yi − xT
i β − αk − θ1,kυik)2

2θ2,kσkυik

]
× 1

σk
exp

(
− υik
σk

)}
·
( 1

σk

)ck,0+1
exp

(
−
dk,0
σk

)
∝
( 1

σk

)3n/2+ck,0+1
exp

{
− 1

σk

[ n∑
i=1

( e2ik
2θ2,kυik

+ υik

)
+ dk,0

]}
∼ IG

(3n

2
+ ck,0,

n∑
i=1

( e2ik
2θ2,kυik

+ υik

)
+ dk,0

)
,

where eik = yi − αk − xT
i β − θ1,kυik, k = 1, 2, . . . ,K, i = 1, 2, . . . , n;

� π(vik |Π−) ∝ 1
√
υik

exp
[
−

(ηik − θ1,kυik)2

2θ2,kσkυik
− υik
σk

]
∝ 1
√
υik

exp
[
− 1

2

( η2ik
θ2,kσk

υ−1
ik +

θ21,k + 2θ2,k

θ2,kσk
υik

)]
∼ GIG

(1

2
,

η2ik
θ2,kσk

,
θ21,k + 2θ2,k

θ2,kσk

)
,

where ηik = yi − αk − xT
i β, k = 1, 2, . . . ,K, i = 1, 2, . . . , n;

� π(αk |Π−) ∝ exp
[
−

n∑
i=1

(yi − xT
i β − αk − θ1,kυik)2

2θ2,kσkυik

]
· exp

[
−

(αk − αk,0)2

2ς2k,0

]
∝ exp

[
−

n∑
i=1

(αk − εik)2

2θ2,kσkυik
−

(αk − αk,0)2

2ς2k,0

]



No. 2 TIAN Y. Z., et al: Gibbs Sampler Algorithm of Bayesian Weighted Composite Quantile Regression 191

∼ N
(
α∗
k,0, (ς2k,0)

∗),
where εik = yi − xT

i β − θ1,kυik, k = 1, 2, . . . ,K, i = 1, 2, . . . , n,

α∗
k,0 = (ς2k,0)

∗
( n∑
i=1

εik
θ2,kσkυik

+
αk,0
ς2k,0

)
, (ς2k,0)

∗ =
( n∑
i=1

1

θ2,kσkυik
+

1

ς2k,0

)−1
.
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