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Abstract: In this paper, we consider a perturbed compound Poisson risk model with dependence,

where the dependence structure for the claim size and the inter-claim time is modeled by a gener-

alized Farlie-Gumbel-Morgenstern copula. The integro equations, the Laplace transforms and the

defective renewal equations for the Gerber-Shiu functions are obtained. For exponential claims,

some explicit expressions are obtained, and some numerical examples for the ruin probabilities are
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Keywords: time-dependent claims; Gerber-Shiu function; Laplace transform; defective renewal

equation; ruin probability

2010 Mathematics Subject Classification: 60G51; 62P05; 91B30

Citation: YANG L, DENG G H, YANG L, et al. A perturbed risk model with dependence based

on a generalized Farlie-Gumbel-Morgenstern copula [J]. Chinese J Appl Probab Statist, 2019, 35(4):

373–396.

§1. Introduction

The actuarial ruin model perturbed by a diffusion process was first put forword in

[1]. By then, it has received remarkable attention in insurance mathematics, see e.g. [2–6].

However, in all the aforementioned papers, it is depended on a postulation of independence

between the claim size and the inter-claim time. Although such an assumption indeed

simplifies the study of many risk problems, it has been proved to be very restrictive

and inadequate in some applications. To overcome the drawback of the independence

hypothesis, the ruin model with dependence has received considerable critical attention in
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actuarial mathematics. The ruin model with dependence but without diffusion has been

studied by many authors, see e.g.[7–10]. The need for extensions to the perturbed actuarial

ruin model has led to several studies on the modeling of dependence. Among them, Zhou

and Cai [11] considered a perturbed risk model with dependence between premium rate and

claim size. Zhang and Yang [12] examined several properties for a ruin model perturbed by a

Brownian motion with dependence based on a Farlie-Gumbel-Morgenstern (FGM) copula.

Zhang et al. [13] studied the Gerber-Shiu function for a renewal ruin model perturbed by

a jump-diffusion process with dependence by using a q-potential measure.

In this paper, we consider the actuarial ruin model perturbed by a Brownian motion

with dependence based on a generalized FGM copula. The surplus process has the form

U(t) = u+ pt−
N(t)∑
i=1

Xi + σW (t), t > 0, (1)

where u > 0 is the initial principal and p > 0 is the premium rate. The counting process

{N(t) : t > 0} is a Poisson process defined by N(t) = max{n : V1 + V2 + · · · + Vn 6

t}, where the inter-claim times {Vj , j = 1, 2, . . .} are a sequence of exponential random

variables (r.v.’s) distributed like a generic variable V with probability density function

(p.d.f.) k(t) = λe−λt for λ > 0, cumulative distribution function (c.d.f.) K(t) = 1 − e−λt

and Laplace transform (L.T.) k̂(s) = λ/(λ + s). The individual claim sizes {Xi, i =

1, 2, . . .} are assumed to be a sequence of strictly positive r.v.’s distributed as a generic

variable X with p.d.f. f(x), c.d.f. F (x) and L.T. f̂(s). We suppose that the claim

size and the inter-claim time are dependent. Finally, W (t) independent of the aggregate

claims process is a standard Brownian motion starting from zero, and σ > 0 is the diffusion

volatility.

The aim of this paper is to study the Gerber-Shiu function. The risk model studied

in this paper extends that of [12] by using a generalized FGM copula instead of a FGM

copula. It is important to point out that the key difference between [12] and ours is that

they solve their problems through the integro-differential equation approach, while we

gain our results by applying Laplace transform method. Their approach should assume

that the claim size has a continuous density function and the Gerber-Shiu function is

twice continuously differentiable, but our method only needs the claim size with Laplace

transform and the Gerber-Shiu function with inversion of Laplace transform. Finally, our

results extend the range of the dependence parameter θ.

The rest of the paper is organized as follows. In Section 2, we briefly describe the de-

pendence structure based on a generalized FGM copula and introduce some ruin measures.
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We discuss in Section 3 a generalized Lundberg equation. The Laplace transforms for the

Gerber-Shiu functions are obtained in Section 4. In Section 5, we derive the defective

renewal equations for the Gerber-Shiu functions, and accordingly, the analytic expressions

are also obtained. Finally, explicit expressions of the Gerber-Shiu functions and numerical

results of the ruin probabilities are provided for exponential claims in Section 6.

§2. Dependence Structure and Ruin Measures

Motivated by [9], we suppose that the joint distribution of (X,V ) is based on a

generalized FGM copula, which belongs to the family of copulas introduced and studied

by [14]. The copula is denoted by

C(u, v) = uv + θh(u)g(v), 0 6 u, v 6 1, (2)

where h(u) = ua(1− u)b and g(v) = vc(1− v)d with a, b, c, d > 1. It is an extension to the

classical FGM copulas

C(u, v) = uv + θuv(1− u)(1− v), 0 6 u, v 6 1,

where −1 6 θ 6 1. One motivation of these extensions is to improve the range of de-

pendence association between the components of (X,V ). Rodriguez-Lallena and Ubena-

Flores [14] show that the admissible range for θ increases with the values of a, b, c and d.

For example, if a = b = c = d = 2, then −27 6 θ 6 27.

As in [9], the pairs {(Xi, Vi), i ∈ N} form a sequence of independent and identically

distributed random vectors distributed as the generic random vector (X,V ), in which the

components may be dependent. The joint p.d.f. and the joint c.d.f. of (X,V ) are denoted

by fX,V (x, t) and FX,V (x, t) respectively.

The p.d.f. associated to (2) is given by

c(u, v) = 1 + θh′(u)g′(v). (3)

From (2), the bivariate c.d.f. of FX,V (x, t) is defined by

FX,V (x, t) = C(F (x),K(t)) = F (x)K(t) + θF (x)a[1− F (x)]bK(t)c[1−K(t)]d, (4)

where F (x) and K(t) are the distributions of the marginals of (X,V ) respectively.

Accordingly (3), the joint p.d.f. of fX,V (x, t) is given by

fX,V (x, t) = c(F (x),K(t))f(x)k(t) = f(x)k(t) + θh′(F (x))g′(K(t))f(x)k(t). (5)
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For simplicity of presentation, let

gX(x) = h′(F (x))f(x), (6)

and

hV (t) = g′(K(t))k(t), (7)

where the Laplace transforms of gX(x) and hV (t) are denoted by ĝX(s) and ĥV (s) respec-

tively. Then by these notations, the p.d.f. of (X,V ) could be written as

fX,V (x, t) = c(F (x),K(t))f(x)k(t) = f(x)k(t) + θgX(x)hV (t). (8)

In particular, we know from (5) and (6) that the conditional p.d.f. of the claim size is

given by

fX|V=t(x) = f(x) + θg′(K(t))gX(x). (9)

Let T = inf{t : U(t) 6 0} or∞ otherwise, be the ruin time associated with risk model

(1), and denote the ultimate ruin probability by

ψ(u) = P(T <∞|U(0) = u).

By examining the sample paths of the process U(t), it shows that ruin can be caused either

by the oscillation of the Brownian motion or a claim. Similar to [2], we can split the ruin

probability into two parts:

ψ(u) = ψs(u) + ψw(u),

where ψs(u) is the ruin probability caused by a claim, and ψw(u) is the ruin probability

due to oscillation. The requirement of a positive security loading is that the following net

profit condition holds

E(pV −X) > 0.

Let w(x1, x2), x1 > 0, x2 > 0, be a nonnegative function. For δ > 0, we define the

Gerber-Shiu function at ruin by

φ(u) = E[e−δTw(U(T−), |U(T )|)I(T <∞) |U(0) = u],

where I(·) is an indicator function. The quantity w(U(T−), |U(T )|) is viewed as a penalty

at the ruin time for the surplus immediately before ruin U(T−) and the deficit at ruin

|U(T )|. It provides a unified approach to study ruin theory in different risk models.

Similarly, we can also decompose φ(u) as follows, i.e.

φ(u) = φs(u) + φw(u),
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where

φs(u) = E[e−δTw(U(T−), |U(T )|)I(T <∞, U(T ) < 0) |U(0) = u]

is Gerber-Shiu function at ruin that is due to a claim, and

φw(u) = E[e−δTw(U(T−), |U(T )|)I(T <∞, U(T ) = 0) |U(0) = u]

= w(0, 0)E[e−δT I(T <∞, U(T ) = 0) |U(0) = u]

is Gerber-Shiu function at ruin that is caused by oscillation. Without loss of generality,

we suppose that w(0, 0) = 1. Note the cases δ = 0 and w(x1, x2) = 1, φs(u) and φw(u)

correspond to the ruin probabilities ψs(u) and ψw(u).

Throughout this paper, we assume that a, b > 1, c ∈ {2, 3, . . .} and d > 1.

§3. Analysis of a Generalized Lundberg Equation

In this section, the chief aim focuses on deriving the roots of a generalized Lundberg

equation associated with the ruin model studied in this paper. Throughout the paper, the

Laplace transform of a function is defined by adding a cap to the corresponding letter.

First, we introduce the following lemma, which provides analytic expressions for hV (t)

and ĥV (s).

Lemma 1 The function hV (t) defined in equation (7) could be expressed as

hV (t) =
c+1∑
i=1

αie
−λit

and its associate L.T. is given by

ĥV (s) =
c!λcs

c+1∏
i=1

(s+ λi)

(10)

=
c+1∑
i=1

αi
s+ λi

, (11)

where

λi = λ(d+ i− 1), (12)

αi =
c!λc(−λi)

c+1∏
j=1, j 6=i

(−λi + λj)

=
c!λc(−1)c−1λi
τ ′c+1(λi)

, (13)

and

τc+1(s) =
c+1∏
j=1

(s− λi). (14)
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Proof See formula (19) on page 446 of [9]. �

In order to deduce the generalized Lundberg equation, we consider the discrete-time

process embedded in the continuous-time surplus process {U(t) : t > 0}. Set U0 = 0, and

for n ∈ N+, we denote Un to be the surplus instantaneous after the nth claim, i.e.

Un = u+
n∑
i=1

(pVi −Xi) + σW
( n∑
i=1

Vi

)
, u+

n∑
i=1

[pVi −Xi + σW (Vi)],

where , signifies equality in distribution. Now we look for a number s such that the

process {e−δVn+sUn , n = 0, 1, 2, . . .} is a martingale. This process is a martingale if and

only if

E(e−δV+s[pV−X+σB(V )]) = 1, (15)

which is the generalized Lundberg equation associated with the risk model (1). By (8),

the left-hand side of (15) can be written as

E(e−δV+s[pV−X+σB(V )]) =

∫ ∞
0

∫ ∞
0

fX,V (x, t)E(e−δt+s[pt−X+σB(t)])dxdt

=

∫ ∞
0

∫ ∞
0

f(x)k(t)e−sx+(σ2s2/2+ps−δ)tdxdt

+ θ

∫ ∞
0

∫ ∞
0

gX(x)hV (t)e−sx+(σ2s2/2+ps−δ)tdxdt

= f̂(s)k̂
(
δ − ps− σ2

2
s2
)

+ θĝX(s)ĥV

(
δ − ps− σ2

2
s2
)
. (16)

for Re(s) > 0 and Re(σ2s2/2 + ps) < λ + δ, where Re(·) represents the real part of a

number. Substituting (10) and (16) into (15) and using k̂(s) = λ/(λ+ s), the generalized

Lundberg equation (15) reduces to

λ

λ+ δ − ps− σ2s2/2
f̂(s) + θ

c!λc(δ − ps− σ2s2/2)
c+1∏
i=1

(λi + δ − ps− σ2s2/2)

ĝX(s) = 1. (17)

When σ = 0, equation (17) equals to (20) in [9].

We declare without proof of the following proposition which can be readily proved by

the (generalized) Rouché’s theorem.

Proposition 2 For δ > 0 and θ 6= 0, Eq. (17) has exactly c+2 roots, say ρ1(δ), ρ2(δ),

. . . , ρc+2(δ), with Re(ρi(δ)) > 0, i = 1, 2, . . . , c+2. For δ = 0 and θ 6= 0, Eq. (17) has exactly

c + 1 roots, say ρ1(0), ρ2(0), . . . , ρc+1(0), with Re(ρi(0)) > 0, i = 1, 2, . . . , c + 1 and one

root, ρc+2(0), equal to zero. In the sequel, for simplicity we write ρi for ρi(δ).
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Remark 3 As mentioned at the end of Section 2, we suppose that d > 1 in this

paper. When d = 1, Eq. (17) has exactly c + 1 roots, say {ρi(δ), i = 1, 2, . . . , c + 1} in the

right-half-complex plane with Re(ρi(δ)) > 0 for δ > 0 and θ 6= 0. For δ = 0 and θ 6= 0,

Eq. (17) has exactly c roots, say {ρi(0), i = 1, 2, . . . , c} with Re(ρi(0)) > 0, and one root

ρc+1(0) equal to zero.

In the following sections, we consider the case d > 1 and the roots of Eq. (17) are

distinct.

§4. Laplace Transforms

The emphasis of this section lies in deriving the Laplace transforms of the Gerber-Shiu

functions φs(u) and φw(u).

First, we give analytic expressions of g′(K(t)) and ĝ′(K(t)), which play an important

role in analyzing the Gerber-Shiu functions.

Lemma 4 The function g′(K(t)) could be expressed as

g′(K(t)) =
c+1∑
i=1

βie
−(λi−λ)t, (18)

and its associate L.T. is given by

ĝ′(K(t)) =
c!λc−1(s− λ)
c+1∏
i=1

(s− λ+ λi)

(19)

=
c+1∑
i=1

βi
s− λ+ λi

, (20)

where

βi =
c!λc−1(−λi)
c+1∏

j=1, j 6=i
(−λi + λj)

=
αi
λ
. (21)

Proof Taking Laplace transforms on g′(K(t)), and using integration by parts and

(10), we obtain

ĝ′(K(t)) =

∫ ∞
0

e−stg′(K(t))dt =
1

λ

∫ ∞
0

e−(s−λ)tk(t)g′(K(t))dt

=
1

λ

∫ ∞
0

e−(s−λ)thV (t)dt =
1

λ
ĥV (s− λ)

=
c!λc−1(s− λ)
c+1∏
i=1

(s− λ+ λi)

. (22)
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Using partial fractions, it follows that

ĝ′(K(t)) =
c+1∑
i=1

βi
s− λ+ λi

. (23)

Therefore, by inverting the Laplace transform in (23), we obtain (18). �

Now we introduce some auxiliary results. Let B(t)= sup
06s6t

B(s) be the running sper-

mium of B(t), where B(t) = −pt − σW (t) is a Brownian motion starting from zero with

drift −p and variance σ2. Denote by τu = inf{t > 0 : B(t) = u} the first hitting time of

the value u > 0. From Eq. (2.0.1) in [15; page 295], we derive for δ > 0,

E(e−δτu) = e−υu (24)

with υ = p/σ2 +
√

2δ/σ2 + p2/σ4.

For q > 0, we denote eq to be an exponential random variable with mean 1/q, and

introduce the following measure

Uq(u,dy) = P(B(eq) < u, B(eq) ∈ dy), u > 0, u > y,

whose explicit expression is provided in the following well-known lemma.

Lemma 5 Suppose that eq and {B(t)} are independent, we know that the following

variables

B(eq); B(eq)−B(eq)

are independent and exponentially distributed with rates

ν1 =
p

σ2
+

√
2q

σ2
+
p2

σ4
, ν2 = − p

σ2
+

√
2q

σ2
+
p2

σ4
,

respectively. Then, we obtain for 0 6 y < u,

Uq(u,dy) =
ν1ν2
ν1 + ν2

(e−ν1y − e−(ν1+ν2)u+ν2y)dy, (25)

and for y < 0,

Uq(u,dy) =
ν1ν2
ν1 + ν2

(eν2y − e−(ν1+ν2)u+ν2y)dy. (26)

Proof See Lemma 2 in [12]. �

From (25) and (26), we know that the measure Uq(u,dy) is absolutely continuous

with respect to Lebesgue measure for u > 0.

In order to derive the Laplace transforms of φs(u) and φw(u), we define the following

potential measure

P(u,dy,dx) = E[e−δV I(B(V ) < u,B(V ) ∈ dy,X ∈ dx)], u, x > 0, y < u, (27)
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where δ > 0. Using Lemma 4, Lemma 5 and taking equation (9) into consideration, we

obtain the following lemma.

Lemma 6 The measure P(u,dy,dx) has a density given by

p(u, y, x) =
c+1∑
i=1

θαiςi1ςi2
(λi + δ)(ςi1 + ςi2)

(e−ςi1y − e−(ςi1+ςi2)u+ςi2y)gX(x)

+
λ%1%2

(λ+ δ)(%1 + %2)
(e−%1y − e−(%1+%2)u+%2y)f(x) (28)

for 0 6 y < u, and

p(u, y, x) =
c+1∑
i=1

θαiςi1ςi2
(λi + δ)(ςi1 + ςi2)

(eςi2y − e−(ςi1+ςi2)u+ςi2y)gX(x)

+
λ%1%2

(λ+ δ)(%1 + %2)
(e%2y − e−(%1+%2)u+%2y)f(x) (29)

for y < 0, where

%1 =
p

σ2
+

√
2(λ+ δ)

σ2
+
p2

σ4
, %2 = − p

σ2
+

√
2(λ+ δ)

σ2
+
p2

σ4
, (30)

and for i = 1, 2, . . . , c+ 1,

ςi1 =
p

σ2
+

√
2(λi + δ)

σ2
+
p2

σ4
, ςi2 = − p

σ2
+

√
2(λi + δ)

σ2
+
p2

σ4
. (31)

Proof Conditioning on the value of V , and using Lemma 4 and (9), we have

P(u,dy,dx) =

∫ ∞
0

λe−(λ+δ)fX|V=t(x)P(B(t) < u,B(t) ∈ dy)dxdt

=

∫ ∞
0

λe−(λ+δ)f(x)P(B(t) < u,B(t) ∈ dy)dxdt

+ λθ

∫ ∞
0

c+1∑
i=1

βie
−(λi+δ)tgX(x)P(B(t) < u,B(t) ∈ dy)dxdt

=
λ

λ+ δ
f(x)Uλ+δ(u,dy)dx+ gX(x)

c+1∑
i=1

λθβi
λi + δ

Uλi+δ(u,dy)dx

=
λ

λ+ δ
f(x)Uλ+δ(u,dy)dx+ gX(x)

c+1∑
i=1

θαi
λi + δ

Uλi+δ(u,dy)dx (32)

which together with Lemma 5 gives the desired results. �

In the following, we will derive the Laplace transforms for the Gerber-Shiu functions

φs(u) and φw(u).

For φs(u), by conditioning on the time and amount of first claim, and using the

definition of p(u, y, x), one obtains

φs(u) =

∫
t∈(0,∞)

∫
y∈(−∞,u)

∫
x∈(0,u−y]

e−δtP(B(t) < u,B(t) ∈ dy)
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× φs(u− y − x)fX,V (x, t)dxdt

+

∫
t∈(0,∞)

∫
y∈(−∞,u)

∫
x∈(u−y,∞)

e−δtP(B(t) < u,B(t) ∈ dy)

× w(u− y, x− (u− y))fX,V (x, t)dxdt

=

∫ u

−∞

∫ u−y

0
φs(u− y − x)p(u, y, x)dxdy

+

∫ u

−∞

∫ ∞
u−y

w(u− y, x− (u− y))p(u, y, x)dxdy. (33)

Using (28) and (29), (33) can be rewritten as

φs(u) =
c+1∑
i=1

θαiςi1ςi2
(λi + δ)(ςi1 + ςi2)

∫ u

0
(e−ςi1y − e−(ςi1+ςi2)u+ςi2y)σs,1(u− y)dy

+
λ%1%2

(λ+ δ)(%1 + %2)

∫ u

0
(e−%1y − e−(%1+%2)u+%2y)σs,2(u− y)dy

+
c+1∑
i=1

θαiςi1ςi2
(λi + δ)(ςi1 + ςi2)

∫ 0

−∞
(eςi2y − e−(ςi1+ςi2)u+ςi2y)σs,1(u− y)dy

+
λ%1%2

(λ+ δ)(%1 + %2)

∫ 0

−∞
(e%2y − e−(%1+%2)u+%2y)σs,2(u− y)dy, (34)

where

σs,1(u) =

∫ u

0
φs(u− x)gX(x)dx+ ω1(u),

σs,2(u) =

∫ u

0
φs(u− x)f(x)dx+ ω2(u),

ω1(u) =

∫ ∞
u

w(u, x− u)gX(x)dx,

ω2(u) =

∫ ∞
u

w(u, x− u)f(x)dx.

Taking a change of variable z = u− y, (34) turns to

φs(u) =
c+1∑
i=1

θαiςi1ςi2
(λi + δ)(ςi1 + ςi2)

[ ∫ u

0
e−ςi1(u−z)σs,1(z)dz +

∫ ∞
u

eςi2(u−z)σs,1(z)dz

−
∫ ∞
0

e−ςi1u−ςi2zσs,1(z)dz
]

+
λ%1%2

(λ+ δ)(%1 + %2)

[ ∫ u

0
e−%1(u−z)σs,2(z)dz

+

∫ ∞
u

e%2(u−z)σs,2(z)dz −
∫ ∞
0

e−%1u−%2zσs,2(z)dz
]
. (35)

In what follows, we introduce the Dickson-Hipp operator Ts and some of its properties.

The operator Ts on a function h is defined by

Tsh(x) =

∫ ∞
x

e−s(y−x)h(y)dy, x > 0,
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where h is a real-valued integrable function and s is a nonnegative real number (or a

complex number with nonnegative real part). Some useful properties of the operator Ts

needed in this paper are listed below:

(i) Tsh(0) =

∫ ∞
0

e−syh(y)dy = ĥ(s), s ∈ C.

(ii) TsTrh(x) = TrTsh(x) =
Tsh(x)− Trh(x)

r − s
, x > 0, r 6= s ∈ C.

For more properties of Ts, see [16].

Adopting the Dickson-Hipp operator Ts with property (i) brings (35) into

φs(u) =
c+1∑
i=1

θαiςi1ςi2
(λi + δ)(ςi1 + ςi2)

[ ∫ u

0
e−ςi1(u−z)σs,1(z)dz + Tςi2σs,1(u)

− e−ςi1uTςi2σs,1(0)
]

+
λ%1%2

(λ+ δ)(%1 + %2)

[ ∫ u

0
e−%1(u−z)σs,2(z)dz

+ T%2σs,2(u)− e−%1uT%2σs,2(0)
]
. (36)

Taking Laplace transform of (36) and using the properties of Laplace transform, we have

φ̂s(s) =
c+1∑
i=1

θαiςi1ςi2
(λi + δ)(ςi1 + ςi2)

[ σ̂s,1(s)− σ̂s,1(ςi2)
s+ ςi1

+
σ̂s,1(ςi2)− σ̂s,1(s)

s− ςi2

]
+

λ%1%2
(λ+ δ)(%1 + %2)

[ σ̂s,2(s)− σ̂s,2(%2)
s+ %1

+
σ̂s,2(%2)− σ̂s,2(s)

s− %2

]
, (37)

where

σ̂s,1(s) = φ̂s(s)ĝX(s) + ω̂1(s), σ̂s,2(s) = φ̂s(s)f̂(s) + ω̂2(s). (38)

Substituting (30) and (31) into (37) and by careful calculations, we obtain

φ̂s(s) =
θĥV (δ − ps− σ2s2/2)ω̂1(s) + k̂(δ − ps− σ2s2/2)ω̂2(s)− η̂(s)

1− θĥV (δ − ps− σ2s2/2)ĝX(s)− k̂(δ − ps− σ2s2/2)f̂(s)
, (39)

where

η̂(s) = θ
c+1∑
i=1

αiσ̂s,1(ςi2)

λi + δ − ps− σ2s2/2
+

λσ̂s,2(%2)

λ+ δ − ps− σ2s2/2
.

From (39), we can derive the following theorem.

Theorem 7 The Laplace transform φ̂s(s) can be expressed as

φ̂s(s) =
γ̂1,s(s)− γ̂2,s(s)
ĥ1(s)− ĥ2(s)

, (40)

where

ĥ1(s) =
(
λ+ δ − ps− σ2

2
s2
) c+1∏
i=1

(
λi + δ − ps− σ2

2
s2
)
,
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ĥ2(s) = λ
c+1∏
i=1

(
λi+ δ − ps−σ

2

2
s2
)
f̂(s) + θc!λc

(
δ − ps−σ

2

2
s2
)(
λ+ δ − ps−σ

2

2
s2
)
ĝX(s),

γ̂1,s(s) = θc!λc
(
δ − ps−σ

2

2
s2
)(
λ+ δ − ps−σ

2

2
s2
)
ω̂1(s) +λ

c+1∏
i=1

(
λi+ δ − ps−σ

2

2
s2
)
ω̂2(s),

and γ̂2,s(s) in terms of π(s) = σ2s2/2 + ps is a polynomial of degree c+ 1 or less, with

γ̂2,s(s) =
c+2∑
j=1

γ̂1,s(ρj)
c+2∏

k=1, k 6=j

π(ρk)− π(s)

π(ρk)− π(ρj)
.

Proof Multiplying both the numerator and denominator of (39) by (λ + δ − ps −

σ2s2/2)
c+1∏
j=1

(λj + δ − ps− σ2s2/2) yields (40), with

γ̂2,s(s) =
(
λ+ δ − ps− σ2

2
s2
) c+1∏
j=1

(
λj + δ − ps− σ2

2
s2
)
η̂(s)

= λ
c+1∏
j=1

(
λj + δ − ps− σ2

2
s2
)
σ̂s,2(%2)

+ θ
(
λ+ δ − ps− σ2

2
s2
) c+1∏
j=1

(
λj + δ − ps− σ2

2
s2
) c+1∑
i=1

αiσ̂s,1(ςi2)

λi + δ − ps− σ2s2/2

= λ
c+1∏
j=1

(
λj + δ − ps− σ2

2
s2
)
σ̂s,2(%2)

+ θ
(
λ+ δ − ps− σ2

2
s2
) c+1∑
i=1

αi

[ c+1∏
j=1, j 6=i

(
λj + δ − ps− σ2

2
s2
)]
σ̂s,1(ςi2),

which in terms of σ2s2/2 + ps is a polynomial of degree c+ 1 or less. It is simple to check

that the generalized Lundberg equation (17) can also be written as ĥ1(s) − ĥ2(s) = 0,

which means that ρj
′s, j = 1, 2, . . . , c + 2 are roots of the denominator in (40). These

roots must also be the roots of the numerator in (40) since φ̂s(s) is analytic for Re(s) > 0,

and thus γ̂1,s(ρj) = γ̂2,s(ρj), j = 1, 2, . . . , c + 2. By the Lagrange interpolation formula,

we obtain the desired result. �

For φw(u), conditioning on whether or not ruin arises owing to oscillation before the

first claim, we obtain

φw(u) =

∫
t∈(0,∞)

∫
y∈(−∞,u)

∫
x∈(0,u−y]

e−δtP(B(t) < u,B(t) ∈ dy)

× φw(u− y − x)fX,V (x, t)dxdt+ E[e−δτuI(τu < V )], (41)

where τu is the first hitting time defined at the beginning of this section.

Since V independent of {B(t)} is a exponential random variable with parameter λ,

we have

E[e−δτuI(τu < V )] = E{E[e−δτuI(τu < V )] | {B(t)}} = E(e−(λ+δ)τu) = e−%1u (42)
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thanks to (24). Therefore, from (42) and Lemma 6, (41) can be rewritten as

φw(u) =

∫ u

−∞

∫ u−y

0
φw(u− y − x)p(u, y, x)dxdy + e−%1u. (43)

Proceeding as in the proof of Theorem 7 for the rest of proof, we obtain the following

theorem:

Theorem 8 The Laplace transform φ̂w(s) can be expressed as

φ̂w(s) =
γ̂1,w(s)− γ̂2,w(s)

ĥ1(s)− ĥ2(s)
, (44)

where

γ̂1,w(s) =
σ2

2
(%2 − s)

c+1∏
i=1

(
λi + δ − ps− σ2

2
s2
)
,

and γ̂2,w(s) in terms of σ2s2/2 + ps is a polynomial of degree c+ 1 or less, with

γ̂2,w(s) =
c+2∑
j=1

γ̂1,w(ρj)
c+2∏

k=1, k 6=j

π(ρk)− π(s)

π(ρk)− π(ρj)
.

Here ĥ1(s) and ĥ2(s) are defined in Theorem 7.

Remark 9 Because the surplus process U(t) defined in this paper only regenerates

itself at the claim epoches, the common approach that consider whether or not there is a

claim during the infinitesimal time interval [0,dt] can’t be applied to study the risk model

of this paper. So we apply a potential measure method in [12] to research the Gerber-Shiu

function for the extended insurance risk model.

§5. Defective Renewal Equations

In this section, we derive some defective renewal equations for the Gerber-Shiu func-

tions by using the roots of the generalized Lundberg equation.

Now we consider the common denominator of (40) and (44). For convenience, let

Γ(π(s)) =
c+2∏
j=1

[π(ρj)− π(s)], Γ′(π(ρj)) =
c+2∏

k=1, k 6=j
[π(ρk)− π(ρj)].

Using Lemma 1, we know that ĥ1(s)−Γ(π(s)) which is a polynomial function of σ2s2/2+ps

with degree c+ 1 satisfies

ĥ1(ρj)− Γ(π(ρj)) = ĥ2(ρj)

for j = 1, 2, . . . , c+ 2. Then, using the Lagrange interpolating formula one obtains

ĥ1(s) = Γ(π(s)) +
c+2∑
j=1

ĥ2(ρj)
c+2∏

k=1, k 6=j

π(ρk)− π(s)

π(ρk)− π(ρj)
.
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Thus, we have

ĥ1(s)− ĥ2(s) = Γ(π(s)) +
c+2∑
j=1

ĥ2(ρj)
c+2∏

k=1, k 6=j

π(ρk)− π(s)

π(ρk)− π(ρj)
− ĥ2(s)

= Γ(π(s)) +
c+2∑
j=1

[ĥ2(ρj)− ĥ2(s)]
c+2∏

k=1, k 6=j

π(ρk)− π(s)

π(ρk)− π(ρj)

= Γ(π(s))
{

1−
c+2∑
j=1

ĥ2(s)− ĥ2(ρj)
[π(ρj)− π(s)]Γ′(π(ρj))

}

= Γ(π(s))

{
1− λ

c+2∑
j=1

c+1∏
i=1

[λi + δ − π(s)]−
c+1∏
i=1

[λi + δ − π(ρj)]

[π(ρj)− π(s)]Γ′(π(ρj))
f̂(s)

− λ
c+2∑
j=1

c+1∏
i=1

[λi + δ − π(ρj)]

[π(ρj)− π(s)]Γ′(π(ρj))
[f̂(s)− f̂(ρj)]

− θc!λc
c+2∑
j=1

[δ − π(s)][λ+ δ − π(s)]− [δ − π(ρj)][λ+ δ − π(ρj)]

[π(ρj)− π(s)]Γ′(π(ρj))
ĝX(s)

− θc!λc
c+2∑
j=1

[δ − π(ρj)][λ+ δ − π(ρj)]

[π(ρj)− π(s)]Γ′(π(ρj))
[ĝX(s)− ĝX(ρj)]

}
. (45)

Since
c+1∏
i=1

[λi + δ−π(s)] and [δ−π(s)][λ+ δ−π(s)] are two polynomials in function of π(s)

with degree c+ 1 and 2 respectively,

c+1∏
i=1

[λi + δ − π(s)]−
c+1∏
i=1

[λi + δ − π(ρj)]

π(s)− π(ρj)

and
[δ − π(s)][λ+ δ − π(s)]− [δ − π(ρj)][λ+ δ − π(ρj)]

π(s)− π(ρj)

are two polynomials in function of π(s) with degree c and 1 respectively, using the following

formula

n∑
i=1

(si − s)k
n∏

j=1, j 6=i
(si − sj)

=



1, k = n− 1;

0, k = 0, 1, 2, . . . , n− 2;

− 1
n∏
i=1

(s− si)
, k = −1.

Eq. (45) can be rewritten as

ĥ1(s)− ĥ2(s) = Γ(π(s))

{
1−

c+2∑
j=1

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)(s+ ρj + 2p/σ2)Γ′(π(ρj))

f̂(s)− f̂(ρj)

ρj − s
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−
c+2∑
j=1

θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)(s+ ρj + 2p/σ2)Γ′(π(ρj))

ĝX(s)− ĝX(ρj)

ρj − s

}
. (46)

Similarly, we obtain

γ̂1,s(s)− γ̂2,s(s) = γ̂1,s(s)−
c+2∑
j=1

γ̂1,s(ρj)
c+2∏

k=1, k 6=j

π(ρk)− π(s)

π(ρk)− π(ρj)

= Γ(π(s))
c+2∑
j=1

γ̂1,s(s)− γ̂1,s(ρj)
[π(ρj)− π(s)]Γ′(π(ρj))

= Γ(π(s))

{
c+2∑
j=1

θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)(s+ ρj + 2p/σ2)Γ′(π(ρj))

ω̂1(s)− ω̂1(ρj)

ρj − s

+
c+2∑
j=1

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)(s+ ρj + 2p/σ2)Γ′(π(ρj))

ω̂2(s)− ω̂2(ρj)

ρj − s

}
. (47)

Also, we can derive

γ̂1,w(s)− γ̂2,w(s) = γ̂1,w(s)−
c+2∑
j=1

γ̂1,w(ρj)
c+2∏

k=1, k 6=j

π(ρk)− π(s)

π(ρk)− π(ρj)

= Γ(π(s))
c+2∑
j=1

γ̂1,w(s)− γ̂1,w(ρj)

[π(ρj)− π(s)]Γ′(π(ρj))

= Γ(π(s))
c+2∑
j=1

c+1∏
i=1

[λi + δ − π(ρj)]

(s+ ρj + 2p/σ2)Γ′(π(ρj))
. (48)

Plugging (46) and (47) back into (40), and plugging (46) and (48) back into (44), respec-

tively, then using the property (ii) of Ts, we have

φ̂s(s) =

{
c+2∑
j=1

{
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjω1(0)

s+ ρj + 2p/σ2

+

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjω2(0)

s+ ρj + 2p/σ2

}}
/{

1−
c+2∑
j=1

{
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjgX(0)

s+ ρj + 2p/σ2

+

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjf(0)

s+ ρj + 2p/σ2

}}
, (49)

and

φ̂w(s) =

{
c+2∑
j=1

c+1∏
i=1

[λi + δ − π(ρj)]

(s+ ρj + 2p/σ2)Γ′(π(ρj))

}
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/{
1−

c+2∑
j=1

{
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjgX(0)

s+ ρj + 2p/σ2

+

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjf(0)

s+ ρj + 2p/σ2

}}
. (50)

Rewriting (49) and (50) as

φ̂s(s) = φ̂s(s)×
c+2∑
j=1

{
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjgX(0)

s+ ρj + 2p/σ2

+

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjf(0)

s+ ρj + 2p/σ2

}

+
c+2∑
j=1

{
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjω1(0)

s+ ρj + 2p/σ2

+

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjω2(0)

s+ ρj + 2p/σ2

}
, (51)

and

φ̂w(s) = φ̂w(s)×
c+2∑
j=1

{
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjgX(0)

s+ ρj + 2p/σ2

+

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

TsTρjf(0)

s+ ρj + 2p/σ2

}

+
c+2∑
j=1

c+1∏
i=1

[λi + δ − π(ρj)]

(s+ ρj + 2p/σ2)Γ′(π(ρj))
. (52)

By inverting the Laplace transforms of (51) and (52), we obtain the following results.

Theorem 10 The Gerber-Shiu functions φs(u) and φw(u) satisfy the following de-

fective renewal functions

φs(u) =

∫ u

0
φs(u− x)g(x)dx+Hs(u), (53)

φw(u) =

∫ u

0
φw(u− x)g(x)dx+Hw(u), (54)

where

g(x) =
c+2∑
j=1

{
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))
e−(ρj+2p/σ2)x ∗ TρjgX(x)
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+

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))
e−(ρj+2p/σ2)x ∗ Tρjf(x)

}
,

Hs(u) =
c+2∑
j=1

{
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))
e−(ρj+2p/σ2)u ∗ Tρjω1(u)

+

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))
e−(ρj+2p/σ2)u ∗ Tρjω2(u)

}
,

Hw(u) =
c+2∑
j=1

c+1∏
i=1

[λi + δ − π(ρj)]

Γ′(π(ρj))
e−(ρj+2p/σ2)u,

and ∗ is the convolution operator.

Proof For (53) and (54) to be defective renewal equations, we need to prove that∫∞
0 g(x)dx < 1 or equivalently ĝ(0) < 1.

By (46), we obtain

ĝ(s) = 1− ĥ1(s)− ĥ2(s)
Γ(π(s))

.

Then for δ > 0, we have

∫ ∞
0

g(x)dx = ĝ(0) = 1− ĥ1(0)− ĥ2(0)

Γ(π(0))
= 1−

δ
c+1∏
i=1

(λi + δ)

c+2∏
j=1

(σ2ρ2j/2 + pρj)

< 1. (55)

As for δ = 0, setting s = ρc+2(δ) in (15) and then taking derivatives w.r.t. δ yields

ρ′c+2(0) =
E(V )

E(pV −X)
> 0

due to the net profit condition. Finally, taking the limit δ → 0 in (55) and using

L’Hôspital’s rule, we obtain

∫ ∞
0

g(x)dx = 1−

c+1∏
i=1

λi

c+1∏
j=1

[(σ2/2)ρ2j (0) + pρj(0)]

× lim
δ→0

δ

(σ2/2)ρ2c+2(δ) + pρc+2(δ)

= 1−

c+1∏
i=1

λiE(pV −X)

c+1∏
j=1

[(σ2/2)ρ2j (0) + pρj(0)]pE(V )

< 1.
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The proof is completed. �

Now setting (1+k)−1 = ĝ(0) < 1 and G(x) = (1+k)
∫ x
0 g(y)dy, then G(x) is a proper

distribution. Define the following compound geometric tail

A(x) = 1−A(x) =
∞∑
n=1

k

1 + k

( 1

1 + k

)n
G∗n(x), x > 0,

where G∗n(x) is the tail of the n-fold convolution of G with itself. Then by Theorem 2.1

of [17], we know that the general solutions to (53) and (54) are

φs(u) =
1 + k

k

∫ u

0
Hs(u− x)dA(x) +Hs(u), (56)

φd(u) =
1 + k

k

∫ u

0
Hd(u− x)dA(x) +Hd(u). (57)

For general claim distribution F , the expression of compound geometric distribution func-

tion G is rather complicated. Thus, in the next section, we consider a special case that the

claim sizes are exponentially distributed. Then, explicit expressions for the Gerber-Shiu

functions φs(u) and φd(u) are given.

Remark 11 From (56) and (57), we know that the general solutions of the Gerber-

Shiu functions φs(u) and φd(u) can be expressed via a compound geometric distribution

function G. It should be point out that the expression of G just requires the claim size

distribution F with Laplace transform.

§6. Exponential Claim Amounts

In this section, we assume that the parameter a is a strictly positive integer and the

claim size X follows an exponential distribution with p.d.f. f(x) = µe−µx and L.T.

f̂(s) =
µ

s+ µ
. (58)

From the assumption of X and the definitions of h (with a ∈ {1, 2, . . .}) and g (with

c ∈ {2, 3, . . .}) in the generalized FGM copula, gX(x), denoted by (6), has the same form

as hV (t). Therefore, we obtain from Lemma 1

gX(x) =
a+1∑
i=1

ξie
−µix, (59)

and

ĝX(s) =
a+1∑
i=1

ξi
s+ µi

=
a!µas

a+1∏
i=1

(s+ µi)

, (60)
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where

µi = µ(b+ i− 1) (i = 1, . . . , a+ 1),

and

ξi =
a!µa(−µi)

a+1∏
j=1, j 6=i

(−µi + µj)

.

It is simple to check that

TρjgX(x) =
a+1∑
i=1

ξie
−µix

ρj + µi
, Tρjf(x) =

e−µx

ρj + µ
. (61)

Then

TsTρjgX(0) =
a+1∑
i=1

ξi
(ρj + µi)(s+ µi)

, TsTρjf(0) =
µ

(ρj + µ)(s+ µ)
. (62)

Plugging the above results back into (49) and (50), then multiplying both the denominators

and the numerators in (49) and (50) by (s+ µ)
c+2∏
j=1

(s+ ρj + 2p/σ2)
a+1∏
i=1

(s+ µi) yields

φ̂s(s) =
c+2∑
j=1

rs,1,j(s)TsTρjω1(0) + rs,2,j(s)TsTρjω2(0)

p(s)− q(s)
, (63)

and

φ̂w(s) =
c+2∑
j=1

rw,j(s)

p(s)− q(s)
, (64)

where

p(s) = (s+ µ)
c+2∏
j=1

(
s+ ρj +

2p

σ2

) a+1∏
i=1

(s+ µi),

q(s) =
c+2∑
j=1

{
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

a+1∑
i=1

ξi(s+ µ)

ρj + µi

c+2∏
k=1, k 6=j

(
s+ ρk +

2p

σ2

)

×
a+1∏

l=1, l 6=i
(s+ µl) +

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))

µ

ρj + µ

c+2∏
k=1, k 6=j

(
s+ ρk +

2p

σ2

) a+1∏
i=1

(s+ µi)

}
,

rs,1,j(s) =
θc!λc[δ − π(ρj)][λ+ δ − π(ρj)]

(σ2/2)Γ′(π(ρj))
(s+ µ)

c+2∏
k=1, k 6=j

(
s+ ρk +

2p

σ2

) a+1∏
i=1

(s+ µi),

rs,2,j(s) =

λ
c+1∏
i=1

[λi + δ − π(ρj)]

(σ2/2)Γ′(π(ρj))
(s+ µ)

c+2∏
k=1, k 6=j

(
s+ ρk +

2p

σ2

) a+1∏
i=1

(s+ µi),

rw,j(s) =

c+1∏
i=1

[λi + δ − π(ρj)]

Γ′(π(ρj))
(s+ µ)

c+2∏
k=1, k 6=j

(
s+ ρk +

2p

σ2

) a+1∏
i=1

(s+ µi).
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It is readily seen that p(s) − q(s) in (63) and (64) is a polynomial with degree a + c + 4

with leading coefficient 1. In particular, by Proposition 2, p(s) − q(s) has no zeros with

nonnegative real part, then it can be expressed as

p(s)− q(s) =
a+c+4∏
n=1

(s+Rn),

where all R′ns have positive real parts. If these a+c+4 roots are all distinct, by performing

partial fractions, we have

rs,1,j(s)

p(s)− q(s)
=

a+c+4∑
n=1

c+2∑
j=1

an,j
s+Rn

,
rs,2,j(s)

p(s)− q(s)
=

a+c+4∑
n=1

c+2∑
j=1

bn,j
s+Rn

, (65)

rw,j(s)

p(s)− q(s)
=

a+c+4∑
n=1

c+2∑
j=1

cn,j
s+Rn

, (66)

where

an,j =
rs,1,j(−Rn)

a+c+4∏
m=1,m 6=n

(Rm −Rn)

,

bn,j =
rs,2,j(−Rn)

a+c+4∏
m=1,m 6=n

(Rm −Rn)

,

cn,j =
rw,j(−Rn)

a+c+4∏
m=1,m 6=n

(Rm −Rn)

.

Then plugging (65) and (66) into (63) and (64), respectively, one obtains

φ̂s(s) =
a+c+4∑
n=1

c+2∑
j=1

[an,jTsTρjω1(0)

s+Rn
+
bn,jTsTρjω2(0)

s+Rn

]
, (67)

and

φ̂w(s) =
a+c+4∑
n=1

c+2∑
j=1

cn,j
s+Rn

. (68)

By inverting the Laplace transforms of (67) and (68), we have

Theorem 12 Suppose that f(x) = µe−µx for µ > 0, and the R′ns are distinct. Then

the Gerber-Shiu functions satisfy

φs(u) =
a+c+4∑
n=1

c+2∑
j=1

[
an,je

−Rnu ∗ Tρjω1(u) + bn,je
−Rnu ∗ Tρjω2(u)

]
, (69)

and

φw(u) =
a+c+4∑
n=1

c+2∑
j=1

cn,je
−Rnu. (70)
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Example 13 (The ruin probability) For the numerical results, we assume that δ = 0

and w(x1, x2) = 1, then the Gerber-Shiu functions reduce to ψs(u) and ψw(u). By formula

(70) we derive

ψw(u) =
a+c+4∑
n=1

c+2∑
j=1

cn,je
−Rnu. (71)

Next, we consider ψs(u). Note that ω1(u) =
a+1∑
i=1

(ξi/µi)e
−µiu, ω2(u) = e−µu. Thus, by

formula (69) we have

ψs(u) =
a+c+4∑
n=1

c+2∑
j=1

[ a+1∑
i=1

an,jξi
µi(µi + ρj)(Rn − µi)

(e−µiu − e−Rnu)

+
bn,j

(µ+ ρj)(Rn − µ)
(e−µu − e−Rnu)

]
. (72)

(i) Set µ = 1.5, λ = 1, p = 2, σ2/2 = 1, a = b = c = d = 2 and θ = 25, 10,−10,−25.

From (71) and (72), we obtain

ψw(u) =
8∑

n=1

4∑
j=1

cn,je
−Rnu, (73)

and

ψs(u) =
8∑

n=1

4∑
j=1

[ 3∑
i=1

an,jξi
µi(µi + ρj)(Rn − µi)

(e−µiu − e−Rnu)

+
bn,j

(µ+ ρj)(Rn − µ)
(e−µu − e−Rnu)

]
. (74)

Figure 1 (a) and (b) show the behaviors of ψw(u) and ψs(u) for different dependent parameters

θ = 25, 10,−10,−25. It is clearly see the impact of the dependence parameter θ on the ruin

probabilities ψw(u) and ψs(u) from Figure 1 (a) and (b).
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Figure 1 Influence of the parameter θ. (a) Ruin probabilities due to oscillation

ψw(u). (b) Ruin probabilities caused by a claim ψs(u).
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(ii) Set µ = 1.5, λ = 1, p = 2, σ2/2 = 1, b = c = d = 2, θ = 10 and a = 2, 10. From

(71) and (72), we have

ψw(u) =
a+6∑
n=1

4∑
j=1

cn,je
−Rnu, (75)

and

ψs(u) =
a+6∑
n=1

4∑
j=1

[ a+1∑
i=1

an,jξi
µi(µi + ρj)(Rn − µi)

(e−µiu − e−Rnu)

+
bn,j

(µ+ ρj)(Rn − µ)
(e−µu − e−Rnu)

]
. (76)

Figure 2 (a) and (b) show the behaviors of ψw(u) and ψs(u) for different parameters a = 2, 10.

It is clearly see the impact of the parameter a on the ruin probabilities ψw(u) and ψs(u) from

Figure 2 (a) and (b).
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Figure 2 Influence of the parameter a. (a) Ruin probabilities due to oscillation

ψw(u). (b) Ruin probabilities caused by a claim ψs(u).

(iii) Set µ = 1.5, λ = 1, p = 2, σ2/2 = 1, a = b = c = 2, θ = 10 and d = 2, 15. From

(71) and (72), we have

ψw(u) =
8∑

n=1

4∑
j=1

cn,je
−Rnu, (77)

and

ψs(u) =
8∑

n=1

4∑
j=1

[ 3∑
i=1

an,jξi
µi(µi + ρj)(Rn − µi)

(e−µiu − e−Rnu)

+
bn,j

(µ+ ρj)(Rn − µ)
(e−µu − e−Rnu)

]
. (78)

Figure 3 (a) and (b) show the behaviors of ψw(u) and ψs(u) for different parameters d = 2, 15.

It is clearly see the impact of the parameter d on the ruin probabilities ψw(u) and ψs(u) from

Figure 3 (a) and (b).
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Figure 3 Influence of the parameter d. (a) Ruin probabilities due to oscillation

ψw(u). (b) Ruin probabilities caused by a claim ψs(u).
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