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Abstract: We establish best-possible supremum bounds of copulas with the degree of non-
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§1. Introduction

We encountered the Fréchet-Hoeffding bounds as universal bounds for copulas. The

bounds can often be improved when we possess additional information about copula. Kaas

et al. [1] studied the problem of finding best-possible upper bounds on the Value-at-Risk

when the marginal distributions are known. Durante et al. [2] found best-possible bounds

for copulas with given values in rectangles at corners of unit square.

The relationship between exchangeability and non-exchangeability is analogous to

the relationship between independence and dependence. While there is but one copula

for independent random variables (namely C(u, v) = uv), there is but one class of copulas

for exchangeable random variables (the symmetric copulas). At the other extreme, there

are several forms of complete or maximal dependence – examples include: X and Y

are mutually completely dependent (counter monotone), if the copula of X and Y is

M(u, v) = min(u, v) (W (u, v) = max(u+ v − 1, 0)). In this paper we shall establish best-

possible supremum bounds of copulas with the degree of non-exchangeability t = 3/4,

t = 3/5, and t = 3/6 = 1/2, and study the structures of these sets of copulas.
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Let X and Y be continuous random variables with joint distribution function H and

margins F and G, respectively, and copula C, then X and Y are exchangeable if H(x, y) =

H(y, x) for all real x and y [3]. When X and Y are not exchangeable, H(x, y) 6= H(y, x) for

some x and y, and the supremum of |H(x, y)−H(y, x)| can be used to measure the degree

of non-exchangeability of X and Y . Since the set of values of |H(x, y)−H(y, x)| for real

x and y is the same as the set of values of |C(u, v)−C(v, u)| for u and v in I = [0, 1], the

degree of non-exchangeability of H coincides with the the degree of non-exchangeability

of the corresponding copula C, which can be written as:

δ(C) = 3 · max
(u,v)∈I2

|C(u, v)− C(v, u)|, (1)

where 3 is the normalization factor [4].

Dong et al. [5] studied the nonexchangeable degrees of best-possible bounds for copulas

specified at a single interior point. Beliakov et al. [6] established best-possible bound on

the set of quasi-copulas with given degree of non-exchangeability. Fernández-Sánchez and

Úbeda-Flores [7] provided lower and upper bounds on the degree of asymmetry of a copula

with respect to a track. De Baets et al. [8] studied the degree of asymmetry of a quasi-

copula with respect to a curve. Nelsen and other authors studied several types of best

possible bounds in their papers (see [9–11]).

The best-possible bounds on the set of copulas with given degree of non-exchange-

ability was established in [6], where the best-possible lower bound St and upper bound St

are the quasi-copula given by

St(u, v) = max(0, u+ v − 1,min(u− 1 + 2t/3, v − 1 + 2t/3)); (2)

St(u, v) = min(u, v,max(1− t, u− t/3, v − t/3, u+ v − t)), (3)

St is a copula for any t ∈ [0, 1]. For any t ∈ [0, 3/4], St = W = max(0, u+ v − 1), and for

any t ∈ [0, 3/4], St is a shuffle of M . The best-possible upper bound St(u, v) is not always

a copula. For any t ∈ [0, 3/4], St(u, v) is a copula, while for any t ∈ [0, 3/4], it is a proper

quasi-copula. For any t ∈ [0, 1/2], St = W = min(u, v), and for any t ∈ [1/2, 3/4], it is a

shuffle of M with support containing three segments for t ∈ [1/2, 3/5], five segments for

t ∈ [3/5, 3/4], and four segments for t = 3/4.

The three values of t = 3/4, t = 3/5 and t = 3/6 = 1/2 were the dividing points in [6].

Extending the original study of Nelsen et al., we will discuss the comparison of bounds on

three sets of copulas with given degree of non-exchangeability.

From Eq. (2) and (3), we haveSt(u, v) = St(v, u) and St(u, v) = St(v, u), then St and

St are symmetric. The degree of non-exchangeability of them are 0, but not t. So St and
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St are the general bounds of the set of copula with a given degree of non-exchangeability

t ∈ [0, 1].

Our goal is to establish the best-possible supremum bounds or minimum (resp. max-

imum) of copulas with the degree of non-exchangeability t = 3/4, t = 3/5 and t = 3/6 =

1/2. These bounds are copulas of the shuffle of M . Our paper is organized as follows. In

Section 2, we establish the best-possible bounds on the set of copulas with given degree

of non-exchangeability t = 3/4, while in Section 3, we establish the best-possible bounds

on the set of copulas with given degree of non-exchangeability t = 3/5 and t = 1/2. The

latter implies the effective of our best-possible bounds in narrowing the Fréchet-Hoeffding

bounds (see [11,12] for narrowing effective).

§2. Best-Possible Bounds on the Set of Copulas with

Non-exchangeability t = 3/4

We first tackle the problem of establishing best-possible bounds on the set of copulas

with given degree of non-exchangeability t = 3/4. Let Ci, i = 1, 2, . . . , 6 denote the

following sets of copulas

C1 = {C |C(1/2, 1/4) = 0, C(1/4, 1/2) = 1/4};

C2 = {C |C(1/4, 1/2) = 0, C(1/2, 1/4) = 1/4};

C3 = {C |C(3/4, 1/4) = 0, C(1/4, 3/4) = 1/4};

C4 = {C |C(3/4, 1/4) = 1/4, C(1/4, 3/4) = 0};

C5 = {C |C(3/4, 1/2) = 1/4, C(1/2, 3/4) = 1/2};

C6 = {C |C(1/2, 3/4) = 1/4, C(3/4, 1/2) = 1/2}.

Note that C1 and C2 are disjoint, as for C3 and C4, C5 and C6. A copula C is in

C1(C3,C5), if and only if CT is in C2(C4,C6), where CT denotes the transpose of C, given

by CT(u, v) = C(v, u).

The following four copulas will play an important role in the sequel:

C1(u, v) = min(u, v, (u− 1/2)+ + (v − 1/4)+), (4)

C2(u, v) = max(0, u+ v − 1, 1/4− (1/4− u)+ − (1/2− v)+), (5)

C3(u, v) = min(u, v, 1/4 + (u− 3/4)+ + (v − 1/2)+), (6)

C4(u, v) = max(0, u+ v − 1, 1/2− (1/2− u)+ − (3/4− v)+), (7)
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where x+ = max(0, x). Both C1, C2, C3 and C4 are the shuffle of M with non-exchange-

ability t = 3/4, the support of them consists of three line segments in I2 (see Figure 1).
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1
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0 1

1

C3
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C4

Figure 1 The supports of C1, C2, C3 and C4

Theorem 1 Let C denote the set of copulas with given degree of non-exchangeability

t = 3/4, i.e., C = {C |C is a copula and δ(C) = 3/4}. Then

(a) C = C1 ∪C2 ∪C3 ∪C4 ∪C5 ∪C6, i.e., C ∈ C if and only if it compliances with any

of the following conditions:

(i) C(1/2, 1/4) = 0, C(1/4, 1/2) = 1/4 or C(1/4, 1/2) = 0, C(1/2, 1/4) = 1/4;

(ii) C(3/4, 1/4) = 0, C(1/4, 3/4) = 1/4 or C(1/4, 3/4) = 0, C(3/4, 1/4) = 1/4;

(iii) C(3/4, 1/2) = 1/4, C(1/2, 3/4) = 1/2 or C(1/2, 3/4) = 1/4, C(3/4, 1/2) = 1/2.

(b) For every C ∈ C, C ∈ C1 ∪ C3, if and only if C2 ≺ C ≺ C1; C ∈ C2 ∪ C4, if and

only if CT
2 ≺ C ≺ CT

1 ; C ∈ C5, if and only if C4 ≺ C ≺ C3; C ∈ C6, if and only if

CT
4 ≺ C ≺ CT

3 , where C1, C2, C3 and C4 are given in (4), (5), (6) and (7).

Proof (a) If δ(C) = 3/4, then there exists a point (u0, v0) ∈ I2 with u0 < v0 such

that either (i) C(u0, v0) − C(v0, u0) = 1/4 or (ii) C(v0, u0) − C(u0, v0) = 1/4. We show

that in case (i), C ∈ C1 ∪C3 ∪C5, the proof that C ∈ C2 ∪C4 ∪C6 in case (ii) is similar

and omitted.

Assume that C(u0, v0)−C(v0, u0) = 1/4. From C(u, v)−C(v, u) 6 min(u, 1−v, v−u)

(see Eq. (3) in (4)), we have min(u0, 1−v0, v0−u0) = 1/4, and hence (u0, v0) = (1/4, 1/2),

(1/4, 3/4), (1/2, 3/4). So

C(1/4, 1/2)− C(1/2, 1/4) = 1/4,

C(1/4, 3/4)− C(3/4, 1/4) = 1/4,

C(1/2, 3/4)− C(3/4, 1/2) = 1/4.

As for any copula C(u, v) satisfing the inequality:

W = max(0, u+ v − 1) 6 C(u, v) 6 min(u, v) = M,
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where W and M are Fréchet-Hoeffding lower and upper bounds.

Because of (i) C(1/4, 1/2) 6 1/4 and C(1/2, 1/4) > 0; (ii) C(1/4, 3/4) 6 1/4 and

C(3/4, 1/4) > 0; (iii) C(1/2, 3/4) 6 1/2 and C(3/4, 1/2) > 1/4, it follows that (i)

C(1/4, 1/2) = 1/4 and C(1/2, 1/4) = 0, (ii) C(1/4, 3/4) = 1/4 and C(3/4, 1/4) = 0,

(iii) C(1/2, 3/4) = 1/2 and C(3/4, 1/2) = 1/4. Hence C ∈ C1 ∪C3 ∪C5.

(b) Let C ∈ C, assume C2 ≺ C ≺ C1. Hence C(1/4, 1/2) = 1/4, C(1/2, 1/4) = 0, or

C(1/4, 3/4) = 1/4 and C(3/4, 1/4) = 0, thus C ∈ C1∪C3. Now let C ∈ C1∪C3. Theorem

3.2.3 of [3] state that any copula C satisfying C(a, b) = θ for given values (a, b) ∈ [0, 1]2

and θ ∈ [0, 1] must satisfy

max(u, v, θ − (a− u)+ − (b− v)+) 6 C(u, v) 6 min(u, v, θ + (u− a)+ + (v − b)+).

So an upper bound for any copula with C(1/4, 1/2) = 1/4 is a shuffle of M :

C1(u, v) = min(u, v, 1/4 + (u− 1/4)+ + (v − 1/2)+),

the upper bound with C(1/2, 1/4) = 0 is

C1(u, v) = min(u, v, (u− 1/2)+ + (v − 1/4)+)

(see Eq. (4)); the upper bound with C(1/4, 3/4) = 1/4 is

C̃1(u, v) = min(u, v, 1/4 + (u− 1/4)+ + (v − 3/4)+),

and the upper bound with C(3/4, 1/4) = 0 is

Ĉ1(u, v) = min(u, v, (u− 3/4)+ + (v − 1/4)+).

Since

min(C1(u, v), C1(u, v), C̃1(u, v), Ĉ1(u, v)) = C1(u, v),

the least upper bound for any copula with C(1/4, 1/2) = 1/4, C(1/2, 1/4) = 0 or C(1/4,

3/4) = 1/4, C(3/4, 1/4) = 0 is C1(u, v). C1(u, v) is an element of C for its non-exchange-

ability being t = 3/4.

An lower bound for any copula with C(1/4, 1/2) = 1/4 is

C2(u, v) = max(0, u+ v − 1, 1/4− (1/4− u)+ − (1/2− v)+),

the lower bound with C(1/2, 1/4) = 0 is

C̃2(u, v) = max(u, v,−(1/2− u)+ − (1/4− v)+),
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the lower bound with C(1/4, 3/4) = 1/4 is

Ĉ2(u, v) = max(u, v, 1/4− (1/4− u)+ − (3/4− v)+),

the lower bound with C(3/4, 1/4) = 0 is

C2(u, v) = max(u, v,−(3/4− u)+ − (1/4− v)+).

Since

min(C2(u, v), C2(u, v), C̃2(u, v), Ĉ2(u, v)) = C2(u, v),

the greatest lower bound for any copula with C(1/4, 1/2) = 1/4, C(1/2, 1/4) = 0 or

C(1/4, 3/4) = 1/4, C(3/4, 1/4) = 0 is C2(u, v). C2(u, v) is also an element of C for its

non-exchangeability being t = 3/4. The case C ∈ C2 ∪C4 is similar and omitted.

Assume C6 ≺ C ≺ C5. Hence C(1/2, 3/4) = 1/2 and C(3/4, 1/2) = 1/4, thus C ∈ C5.

Now let C ∈ C5. An upper bound for any copula with C(1/2, 3/4) = 1/2 is a shuffle of

M :

C3(u, v) = min(u, v, 1/2 + (u− 1/2)+ + (v − 3/4)+),

another upper bound for any copula with C(3/4, 1/2) = 1/4 is

C3(u, v) = min(u, v, 1/4 + (u− 3/4)+ + (v − 1/2)+).

Since

min(C3(u, v), C3(u, v)) = C3(u, v),

the least upper bound for any copula with C(1/2, 3/4) = 1/2, C(3/4, 1/2) = 1/4 is C3(u,

v). C3(u, v) is an element of C for its non-exchangeability being t = 3/4.

An lower bound for any copula with C(1/2, 3/4) = 1/2 is

C4(u, v) = max(0, u+ v − 1, 1/2− (1/2− u)+ − (3/4− v)+),

another lower for any copula with C(3/4, 1/2) = 1/4 is

C4(u, v) = max(u, v, 1/4− (3/4− u)+ − (1/2− v)+).

Since

max(C4(u, v), C4(u, v)) = C4(u, v),

the greatest lower bound for any copula with C(1/2, 3/4) = 1/2, C(3/4, 1/2) = 1/4 is

C4(u, v). C4(u, v) is also an element of C for its non-exchangeability being t = 3/4. The

case C ∈ C6 is similar and omitted. �
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Theorem 1 means that there are four best possible upper and lower bounds for

the set of copulas with given degree of non-exchangeability t = 3/4, denoted by CU =

{C1, C3, C
T
1 , C

T
3} as the set of upper bounds, and CL = {C2, C4, C

T
2 , C

T
4} the lower bounds

set.

§3. Best-Possible Bounds of Copulas with

Non-exchangeability t = 3/5 and 1/2

Similar to the theory of Section 2, the following eight copulas play an important role

in the sequel of best-possible bounds of copulas with given degree of non-exchangeability

t = 3/5:

C5
1 (u, v) = min(u, v, (u− 2/5)+ + (v − 1/5)+);

C5
2 (u, v) = max(0, u+ v − 1, 1/5− (1/5− u)+ − (2/5− v)+);

C5
3 (u, v) = min(u, v, (u− 3/5)+ + (v − 2/5)+);

C5
4 (u, v) = max(0, u+ v − 1, 1/5− (2/5− u)+ − (3/5− v)+);

C5
5 (u, v) = min(u, v, 1/5 + (u− 3/5)+ + (v − 2/5)+);

C5
6 (u, v) = max(0, u+ v − 1, 2/5− (2/5− u)+ − (3/5− v)+);

C5
7 (u, v) = min(u, v, 2/5 + (u− 4/5)+ + (v − 3/5)+);

C5
8 (u, v) = max(0, u+ v − 1, 3/5− (3/5− u)+ − (4/5− v)+).

Theorem 2 Let C5 = {C |C is a copula and δ(C) = 3/5}. Then

(a) C ∈ C5 if and only if C meets any of the following conditions:

(i) C(2/5, 1/5) = 0, C(1/5, 2/5) = 1/5 or C(2/5, 1/5) = 1/5, C(1/5, 2/5) = 0;

(ii) C(3/5, 2/5) = 0, C(2/5, 3/5) = 1/5 or C(3/5, 2/5) = 1/5, C(2/5, 3/5) = 0;

(iii) C(3/5, 2/5) = 1/5, C(2/5, 3/5) = 2/5 or C(3/5, 2/5) = 2/5, C(2/5, 3/5) = 1/5;

(iv) C(4/5, 2/5) = 1/5, C(2/5, 4/5) = 2/5 or C(4/5, 2/5) = 2/5, C(2/5, 4/5) = 1/5;

(v) C(4/5, 3/5) = 2/5, C(3/5, 4/5) = 3/5 or C(4/5, 3/5) = 3/5, C(3/5, 4/5) = 2/5.

(b) For every C ∈ C5, C is satisfies the conditions (i) of (a) if and only if C5
2 ≺ C ≺ C5

1

or C5
2
T ≺ C ≺ C5

1
T
; C satisfies (ii) if and only if C5

4 ≺ C ≺ C5
3 , or C5

4
T ≺ C ≺ C5

3
T
; C

satisfies (iii) or (iv) if and only if C5
6 ≺ C ≺ C5

5 , or C5
6
T ≺ C ≺ C5

5
T
; C satisfies (v) if

and only if C5
8 ≺ C ≺ C5

7 or C5
8
T ≺ C ≺ C5

7
T
.
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The proof of Theorem 2 is similar to Theorem 1, slightly here. There are eight pairs

of best possible upper and lower bounds for the set of copulas with given degree of non-

exchangeability t = 3/5, denoted by respectively

C5
U =

{
C5
1 , C

5
3 , C

5
5 , C

5
7 ;C5

1
T
, C5

3
T
, C5

5
T
, C5

7
T}
,

C5
L =

{
C5
2 , C

5
4 , C

5
6 , C

5
8 ;C5

2
T
, C5

4
T
, C5

6
T
, C5

8
T}
.

The following twelve copulas play an important role in the sequel of best-possible

bounds of copulas with given degree of non-exchangeability t = 1/2:

C6
1 (u, v) = min(u, v, (u− 1/3)+ + (v − 1/6)+);

C6
2 (u, v) = max(0, u+ v − 1, 1/6− (1/6− u)+ − (1/3− v)+);

C6
3 (u, v) = min(u, v, 1/6 + (u− 1/2)+ + (v − 1/3)+);

C6
4 (u, v) = max(0, u+ v − 1, 1/3− (1/3− u)+ − (1/2− v)+);

C6
5 (u, v) = min(u, v, 1/6 + (u− 2/3)+ + (v − 1/2)+);

C6
6 (u, v) = max(0, u+ v − 1, 1/3− (1/2− u)+ − (2/3− v)+);

C6
7 (u, v) = min(u, v, (u− 1/2)+ + (v − 1/3)+);

C6
8 (u, v) = max(0, u+ v − 1, 1/6− (1/3− u)+ − (1/2− v)+);

C6
9 (u, v) = min(u, v, 1/3 + (u− 2/3)+ + (v − 1/2)+);

C6
10(u, v) = max(0, u+ v − 1, 1/2− (1/2− u)+ − (2/3− v)+);

C6
11(u, v) = min(u, v, 1/2 + (u− 5/6)+ + (v − 2/3)+);

C6
12(u, v) = max(0, u+ v − 1, 2/3− (2/3− u)+ − (5/6− v)+).

Theorem 3 Let C6 = {C|C is a copula and δ(C) = 1/2}. Then

(a) C ∈ C6 if and only if C meets any of the following conditions:

(i) C(1/6, 5/6) = 1/6, C(5/6, 1/6) = 0; C(1/6, 4/6)=1/6, C(4/6, 1/6) = 0; C(1/6,

1/2) = 1/6, C(1/2, 1/6) = 0; C(1/6, 1/3) = 1/6, C(1/3, 1/6) = 0;

(ii) C(1/3, 1/2) = 1/3, C(1/2, 1/3) = 1/6;

(iii) C(1/3, 1/2) = 1/6, C(1/2, 1/3) = 0;

(iv) C(1/3, 5/6) = 1/3, C(5/6, 1/3) = 1/6 or C(1/2, 2/3) = 1/3, C(2/3, 1/2) = 1/6;

(v) C(1/2, 2/3) = 1/2, C(2/3, 1/2) = 1/3 or C(1/2, 5/6) = 1/2, C(5/6, 1/2) = 1/3;

(vi) C(2/3, 5/6) = 2/3, C(5/6, 2/3) = 1/2.
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(b) For every C ∈ C6, C is satisfies the conditions (i) of (a) if and only if C6
2 ≺ C ≺ C6

1

or C6
2
T ≺ C ≺ C6

1
T
; C satisfies (ii) if and only if C6

4 ≺ C ≺ C6
3 , or C6

4
T ≺ C ≺ C6

3
T
;

C satisfies (iii) if and only if C6
6 ≺ C ≺ C6

5 , or C6
6
T ≺ C ≺ C6

5
T
; C satisfies (iv) if and

only if C6
8 ≺ C ≺ C6

7 , or C6
8
T ≺ C ≺ C6

7
T
; C satisfies (v) if and only if C6

10 ≺ C ≺ C6
9 ,

or C6
10

T ≺ C ≺ C6
9
T
; C satisfies (vi) if and only if C5

12 ≺ C ≺ C5
11 or C5

12
T ≺ C ≺ C5

11
T
.

So there are twelve best possible upper and lower bounds for the set of copulas with

given degree of non-exchangeability t = 3/5, denoted by respectively

C6
U =

{
C6
1 , C

6
3 , C

6
5 , C

6
7 , C

6
9 , C

6
11;C

6
1
T
, C6

3
T
, C6

5
T
, C6

7
T
, C6

9
T
, C6

11
T}
,

C6
L =

{
C6
2 , C

6
4 , C

6
6 , C

6
8 , C

6
10, C

6
12;C

6
2
T
, C6

4
T
, C6

6
T
, C6

8
T
, C6

10
T
, C6

12
T}
.

§4. A Comparison of the Bounds

To measure the effectiveness in narrowing the Fréchet-Hoeffding bounds of the degree

of non-exchangeability, we use the function

m(t) = 1− 6

∫ ∫
I2

[At(u, v)−At(u, v)]dudv, (8)

where At(u, v) and At(u, v) are the bounds element of the set CU (C5
U ,C

6
U ) and CL(C5

L,

C6
L). m(t) represents the volume between copulas z = At(u, v) and z = At(u, v) in I3.

When there is no improvement in the bounds, m(t) = 0, i.e., At = W and At = M , and

when the bounds coincide, m(t) = 1,

By Theorem 1, C1(u, v) and C2(u, v) defined by Eq. (4) and (5) are the upper and

lower bounds of copulas with non-exchangeability t = 3/4 satisfying C(1/2, 1/4) = 0 and

C(1/4, 1/2) = 1/4. The support of them see Figure 1. Using Eq. (8), we can calculate the

narrowing effectiveness between them as following,

m1,2

(3

4

)
= 1− 6

∫ ∫
I2

[C1(u, v)− C2(u, v)]dudv = 1− 6× 7

96
= 0.5625,

where∫ ∫
I2

[C1(u, v)− C2(u, v)]dudv

=

∫ 1
8

0

[ ∫ u+1/4

1
4

(
v − 1

4

)
dv +

∫ 1/2−1

u+1/4
udv +

∫ 1/2

1/2−u

(1

2
− v
)

dv
]
du

+

∫ 1/4

1/8

[ ∫ 1/2−u

1/4

(
v − 1

4

)
dv +

∫ 1/4+u

1/2−u

(1

4
− u
)

dv +

∫ 1/2

1/4+u

(1

2
− v
)

dv
]
du
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+

∫ 1/2

1/4

[ ∫ 1/4+u

1/2

(
v − 1

2

)
dv +

∫ 5/4−u

1/4+u

(
u− 1

4

)
dv +

∫ 1

5/4−u
(1− v)dv

]
du

+

∫ 3/4

1/2

[ ∫ u−1/2

0
vdv +

∫ 1/2

u−1/2

(
u− 1

2

)
dv +

∫ 5/4−u

1/2

(
u+ v − 1

2

)
dv +

∫ 3/4

5/4−u

1

4
dv

+

∫ 1

3/4
(1− v)dv

]
du+

∫ 1

3/4

[ ∫ 1−u

0
vdv +

∫ u

1−u
(1− u)dv +

∫ 1

u
(1− v)dv

]
du.

Similarly as m12(3/4), we have

m3,4

(3

4

)
= 1− 6

∫ ∫
I2

[C3(u, v)− C4(u, v)]dudv = 1− 6× 7

96
= 0.5625 = m12

(3

4

)
,

where C3 and C4 are given by (6) and (7). As∫ ∫
I2

[CT
k(u, v)− CT

k+1(u, v)]dudv =

∫ ∫
I2

[Ck(u, v)− Ck+1(u, v)]dudv, k = 1, 3.

The m(t) of the upper and lower bounds of transpose copula are omitted here.

Comparing with the conclusion about bounds of the paper [6], where m(3/4) = 3/32 =

0.09375, so the bounds in our paper is more accurate.

For the narrowing effectiveness about best-possible bounds of copulas with non-

exchangeability t = 3/5 and 1/2, we have the following similar conclusions. Let

mi,i+1

(3

5

)
= 1− 6

∫ ∫
I2

[C5
i (u, v)− C5

i+1(u, v)]dudv, i = 1, 3, 5, 7;

mj,j+1

(3

5

)
= 1− 6

∫ ∫
I2

[C6
j (u, v)− C6

j+1(u, v)]dudv, j = 1, 3, 5, 7, 9, 11.

After tedious integral calculation, we have

m1,2

(3

5

)
= 0.432, m3,4

(3

5

)
= 0.768,

m5,6

(3

5

)
= m7,8

(3

5

)
= m1,2

(3

5

)
= 0.432;

m1,2

(1

2

)
= m11,12

(1

2

)
= 0.361, m3,4

(1

2

)
= 0.444,

m5,6

(1

2

)
= m7,8

(1

2

)
= 0.5, m9,10

(1

2

)
= 0.389.

Comparing with the conclusion about bounds of the paper [8], where m(3/5) =

1/125 = 0.008 and m(1/2) = 0, which means the bounds in our paper are specific practical

and effective in narrowing the Fréchet-Hoeffding bounds.
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